TILAK MAHARASHTRA VIDYAPEETH, PUNE BACHELOR OF SCIENCE(B.SC.)–GAME ART AND DESIGN (S) BACHELOR OF ARTS (B.A.)–GAME ART AND DESIGN (S) EXAMINATION:DECEMBER - 2022 THIRDSEMESTER

Sub.: Mathematics(Theory)(BSGD-21-306 BAGD-19-306)

Date: 20/12/2022			Total Marks:40		Time:2.00 pm to 4.00 pm	
Instructions: All questions are compulsory.						
Q. 1.	1.	Multiple-choice que In $\triangle ABC$, right angle	estions ed at B, $AB = 24$ cm,	BC = 7 cm. The value	C = 7 cm. The value of tan C is :	
	2.	a)12/7 sin (90° – A) and cos	b)24/7 A are :	c)20/7	d)7/24	
		a) Different	b) Same	c) Not related	d) None of the above	
	3.	If $\cos x = a/b$, then si a) $(b^2 - a^2)/b$	in x is equal to : b) $(b - a)/b$	c) $\sqrt{(b^2 - a^2)}/b$	d) $\sqrt{(b-a)}/b$	
	4.	sin2A = 2sinA is true a) 30°	e when $A =$ b) 45°	c) 0°	d) 60°	
	5.	The position vector c a) $i + j + k$	of the point $(1, 2, 0)$ is b) $i + 2j + k$	s : c) i + 2j	d) 2j + k	
	6.	What is the magnitud a) 0	the of vector, $v = 1/\sqrt{3}$ b) 1	$i + 1/\sqrt{3j} + 1/\sqrt{3k}?$ c) 2	d) 3	
	7.	The scalar product of a) 15	f 5i + j - 3k and 3i - 6b) - 15	4j + 7k is : c) 10	d) -10	
	8.	If $A = [a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = 1$, when $i \neq j$ and $a_{ij} = 0$, when $i = j$, then A^2 is :				
		a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$	d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
	9.	If $\begin{bmatrix} 2p + q & p & 2q \\ 5r - s & 4r + 3 \\ a \end{bmatrix} 8$	$\begin{bmatrix} \mathbf{a} \\ \mathbf{s} \end{bmatrix} = \begin{bmatrix} \mathbf{a} & -\mathbf{s} \\ 11 & 24 \end{bmatrix}$, then b) 10	n the value of $p + q - c$) 4	r + 2s is d) -8	
	10.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and a) -6, -12, -18	$\mathbf{kA} = \begin{bmatrix} 0 & \mathbf{3a} \\ \mathbf{2b} & 24 \end{bmatrix}, \text{ then}$ b) -6, -4, -9	n the values of k, a an c) -6, 4, 9	d b respectively are : d) -6, 12, 18	
Q. 2.		Solve the following	(Any two)			(10)
	1.	Find the value of cos	$570^{\circ} \sin 510^{\circ} + \sin ($	$(-330^{\circ})\cos(-390^{\circ}).$		
	2.	Show that the points A, B and C with position vectors $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}$, $\vec{b} = 2\hat{i} - 4\hat{k}$				
		$\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$ form the vertices of a right angled triangle.				
	3.	Let $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, B	$e = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	5], then find a matri 8]	x D such that	
		CD - AB = O.				

Q. 3. Write the Answers of the following (Solve any 2)

(20)

- 1. The scalar product of vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + \hat{4j} - 5\hat{k}$ and $\hat{\lambda}\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value of $\hat{\lambda}$.
- 2. Find the length of x and remaining two angles in the following figure and hence find the perimeter of the triangle.

