TILAK MAHARASHTRA VIDYAPEETH, PUNE
 BACHELOR OF SCIENCE(B.SC.)-GAME ART AND DESIGN (S)
 BACHELOR OF ARTS (B.A.)-GAME ART AND DESIGN (S)
 EXAMINATION:DECEMBER - 2022
 THIRDSEMESTER

Sub.: Mathematics(Theory)(BSGD-21-306 BAGD-19-306)

Instructions: All questions are compulsory.
Q. 1. Multiple-choice questions

1. In $\triangle A B C$, right angled at $\mathrm{B}, \mathrm{AB}=24 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$. The value of $\tan \mathrm{C}$ is :
a) $12 / 7$
b) $24 / 7$
c) $20 / 7$
d) $7 / 24$
2. $\sin \left(90^{\circ}-\mathrm{A}\right)$ and $\cos \mathrm{A}$ are :
a) Different
b) Same
c) Not related
d) None of the above
3. If $\cos x=a / b$, then $\sin x$ is equal to :
a) $\left(b^{2}-a^{2}\right) / b$
b) $(b-a) / b$
c) $\sqrt{\left(b^{2}-a^{2}\right)} / b$
d) $\sqrt{(b-a)} / b$
4. $\sin 2 \mathrm{~A}=2 \sin \mathrm{~A}$ is true when $\mathrm{A}=$
a) 30°
b) 45°
c) 0°
d) 60°
5. The position vector of the point $(1,2,0)$ is :
a) $i+j+k$
b) $i+2 j+k$
c) $i+2 j$
d) $2 \mathrm{j}+\mathrm{k}$
6. What is the magnitude of vector, $v=1 / \sqrt{3} i+1 / \sqrt{ } 3 j+1 / \sqrt{3 k}$?
a) 0
b) 1
c) 2
d) 3
7. The scalar product of $5 \mathrm{i}+\mathrm{j}-3 \mathrm{k}$ and $3 \mathrm{i}-4 \mathrm{j}+7 \mathrm{k}$ is :
a) 15
b) -15
c) 10
d) -10
8. If $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is a square matrix of order 2 such that $\mathrm{a}_{\mathrm{ij}}=1$, when $\mathrm{i} \neq \mathrm{j}$ and $\mathrm{a}_{\mathrm{ij}}=0$, when i $=j$, then A^{2} is :
a) $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
9. If $\left[\begin{array}{cc}\mathbf{2 p}+\boldsymbol{q} & \boldsymbol{p}-\mathbf{2 q} \\ \mathbf{5 r}-\boldsymbol{s} & \mathbf{4 r}+\mathbf{3 s}\end{array}\right]=\left[\begin{array}{cc}\mathbf{4} & -\mathbf{3} \\ \mathbf{1 1} & \mathbf{2 4}\end{array}\right]$, then the value of $\mathrm{p}+\mathrm{q}-\mathrm{r}+2 \mathrm{~s}$ is
a) 8
b) 10
c) 4
d) -8
10. If $\mathrm{A}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{2} \\ \mathbf{3} & \mathbf{- 4}\end{array}\right]$ and $\mathrm{kA}=\left[\begin{array}{cc}\mathbf{0} & \mathbf{3 a} \\ \mathbf{2 b} & \mathbf{2 4}\end{array}\right]$, then the values of k , a and b respectively are :
a) $-6,-12,-18$
b) $-6,-4,-9$
c) $-6,4,9$
d) $-6,12,18$
Q. 2. Solve the following (Any two)
11. Find the value of $\cos 570^{\circ} \sin 510^{\circ}+\sin \left(-330^{\circ}\right) \cos \left(-390^{\circ}\right)$.
12. Show that the points A, B and C with position vectors $\overrightarrow{\boldsymbol{a}}=\mathbf{3} \hat{\boldsymbol{\imath}}-\mathbf{4} \hat{\jmath}-\mathbf{4} \widehat{\boldsymbol{k}}, \overrightarrow{\boldsymbol{b}}=\mathbf{2} \hat{\boldsymbol{\imath}}-$ $\hat{\boldsymbol{\jmath}}+\widehat{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{c}}=\hat{\boldsymbol{\imath}}-\mathbf{3} \hat{\boldsymbol{\jmath}}-\mathbf{5} \widehat{\boldsymbol{k}}$ form the vertices of a right angled triangle.
13. Let $A=\left[\begin{array}{cc}\mathbf{2} & -\mathbf{1} \\ 3 & \mathbf{4}\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ \mathbf{7} & \mathbf{4}\end{array}\right], C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$, then find a matrix D such that $\mathrm{CD}-\mathrm{AB}=\mathrm{O}$.
Q. 3. Write the Answers of the following (Solve any 2)
14. The scalar product of vector $\hat{\imath}+\hat{\jmath}+\hat{k}$ with a unit vector along the sum of the vectors $2 \hat{\imath}+\widehat{4 \jmath}-5 \hat{k}$ and $\lambda \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ is equal to 1 . Find the value of λ.
15. Find the length of x and remaining two angles in the following figure and hence find the perimeter of the triangle.

16. If $A=\left[\begin{array}{cc}\mathbf{2} & 3 \\ 1 & -4\end{array}\right]$ and $B=\left[\begin{array}{cc}\mathbf{1} & -\mathbf{2} \\ -1 & 3\end{array}\right]$ then show that $(A B)^{-\mathbf{1}}=B^{-\mathbf{1}} A^{-1}$.
