TILAK MAHARASHTRA VIDYAPEETH, PUNE **BACHELOR OF COMPUTER APPLICATIONS (B.C.A.)** SPECIALIZATION IN CYBER SECURITY(CS) **EXAMINATION : DECEMBER - 2022** SEMESTER – I

Sub: Mathematics (BCA -142-18/142-20/BCA-CS-142-20)

Date	: 29/12/ 2022	Total Marks : 60	Time: 10.00 am to 12.30 pm
	 Instructions: All questions are computed. Bold figures to the right Candidates are advised at Answers written illegibly Use of scientific calculate Draw neat and labeled at 	lsory unless and otherwise st of every question are the ma to attempt questions in order are likely to be marked zero fors, Log tables, Mollier Cha liagrams wherever necessary	ated. ximum marks for that question. rts is allowed.
Q.1.	Solve (Any 4)		(8)
1.	If $f(x) = \frac{x+3}{2x-1}$ Find:	$f(-1) \& f\left(\frac{1}{2}\right)$	
2.	Solve : $6x^2 + x - 12 = 0$	0	
3.	Find A^2 for the matrix:	$A = \begin{bmatrix} 1 & -2 \\ -3 & -5 \end{bmatrix}$	
4.	In how many ways a gro lawyers?	oup of 3 persons can be select	ted from 4 doctors & 5
5.	$A = \{1, 2, 3, 4, 5\}, B = \{4\}$	(5,6,7). Find the sets $(A - B)$	B & (B-A)
6.	For a G.P. , $a = 5, r =$	$2, S_n = 635$, Find n.	
Q.2.	Solve (Any 3)		(9)
1.	If $A = \{10, 20, 30, 40, 50\}$	(60) , $B = \{40, 50, 60, 70\}$ and	d Universal set
	$U = \{10, 20, 30, 40, 50, 60, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1$	0,70,80,90,100, Verify the	result: $(A \cup B)' = A' \cap B'$
2.	Solve the quadratic equa	ation $10x^2 - x - 3 = 0$ by us	ing formula method.
3.	Check whether the fur	function $f(x) = \left(\frac{4x}{3} - 1\right)$ is i	njective or not?
4.	Find A.M., G.M and H.	M. for the numbers 49,81.	
Q.3.	Solve (Any 2)		(8)
1.	Find the inverse of the n	natrix A by using adjoint met	hod, if it exists.
	$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 4 & 0 \\ -2 & -5 & -3 \end{bmatrix}$		
2.	Find x, if $f(x) = g(x)$ and $f(x) = \sqrt{x} - 3$, $g(x) = 5 - x$.		
3.	Solve: (i) Find r , ${}^{21}C_r$ =	${}^{21}C_{3r-3}$. (ii) Find ${}^{r}C_{4}$ if ${}^{15}C_{4}$	$C_r = {}^{15}C_{r+1}$

CB 60:40

Q.4. Solve (Any 3)

1. If
$$A = \begin{bmatrix} 8 & 4 \\ 10 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & -4 \\ 10 & -8 \end{bmatrix}$, Show that: $A^2 + AB + B^2 = (A + B)^2$

- 2. The problem in Mathematics is given to three students whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ respectively. If all of them have tried independently, find the probability that atleast one of them could solve the problem.
- 3. Find the values of $\alpha + \beta$, $\alpha \cdot \beta$, $\alpha \beta$ and $\frac{1}{\alpha} + \frac{1}{\beta}$ for the quadratic equation : $3x^2 - 5x + 2 = 0$.
- 4. Solve the system of linear equations: 2x+3y+6z=5,-3x+2y+z=-4, x+y+4z=4.

Q.5. Solve. (Solve any 2)

- In how many ways a committee of 4 persons can be formed from 5 ladies and 6 gentlemen so that,
 (i) Atleast 2 ladies will be there in a committee.
 (ii) At the most 2 ladies will be there in a committee.
 (iii) Majority of the ladies will be there in a committee.
- 2. If $A = \{a, b, c, d, e\}$, $B = \{d, e, f, g, h, i\}$, $C = \{a, d, e, i, j\}$ and Universal set $U = \{a, b, c, d, e, f, g, h, i, j, k\}$, Verify the following results: (i) $n(A \cup B \cup C) =$ $n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C))$ (ii) $n(A) + n(B) - n(A \cup B) = n(A \cap B)$
- 3. Find the nature of the roots of the following quadratic equations:
 - (i) $x^{2} + x 10 = 0$ (ii) $9x^{2} + 6x + 1 = 0$ (iii) $x^{2} + 2x + 6 = 0$ (iv) $x^{2} - 3x - 10 = 0$

(15)

(20)