
A STUDY OF COLLECTING CUSTOMER NEEDS

IN SOFTWARE DEVELOPMENT PROCESS AND

ITS IMPACT ON BUSINESS OF SELECTED IT

COMPANIES IN PUNE

A Thesis Submitted to

Tilak Maharasthra Vidyapeeth, Pune

For The Degree of Doctor of Philosophy (Ph.D.)

In Management Subject

Under The Board of Management Studies

Submitted By

Mrs. Ashvini Pradeep Shende

Under The Guidance of

Dr. Prasanna G. Deshmukh

September 2017

Declaration by the Candidate

I hereby declare that the thesis entitled “A Study of Collecting Customer

Needs In Software Development Process and Its Impact on Business

of Selected IT Companies In Pune” completed and written by me has not

previously formed the basis for the award of any Degree or other similar title upon me

of this or any other University or examining body.

I further declare that the material obtained from other sources has been acknowledged

in the thesis.

Mrs. Ashvini P. Shende

(Research Student)

Place: Pune

Date: 12 September 2017

Certificate of the Guide

This is to certify that the thesis entitled “A Study of Collecting Customer

Needs In Software Development Process and Its Impact on Business

of Selected IT Companies In Pune” which is being submitted herewith for the

award of the Degree of Philosophy (Ph.D.) under the faculty of Management of Tilak

Maharashtra Vidyapeeth, Pune, is the result of original research work completed by

Mrs. Ashvini Pradeep Shende, under my supervision and guidance.

To the best of my knowledge and belief the work incorporated in this thesis has not

formed the basis for the award of any Degree or similar title of this or any other

University or examining body upon her.

Dr. Prasanna G. Deshmukh

(Research Guide)

Place: Pune

Date: 12 September 2017

Acknowledgement

I owe my personal thanks to Dr. Sanjay Kaptan (Principal, Indira College of Commerce and

Science), Dr.Janardan Pawar (Vice-Principal, Indira College of Commerce and Science),

Dr.Anjali Kalkar (Vice-Principal, Indira College of Commerce and Science) for their whole

hearted support, motivation and inspiring encouragement.

I am extremely grateful to my guide Dr. Prasanna G. Deshmukh, Principal, Anantrao

Thopate Arts, Science and Commerce College, Pune, for his encouragement and continuing

support in this endeavor. His deep insights helped me at various stages of my research. Under

his expert guidance I have completed my doctoral research on the topic “A Study of

Collecting Customer Needs in Software Development Process and Its Impact on Business

of Selected IT Companies in Pune”

Very special thanks to Dr. Deepak J. Tilak (Vice-Chancellor, Tilak Maharashtra Vidyapeeth,

Pune) and Dr. Sunanda Yadav (HOD, Ph.D Section, Tilak Maharashtra Vidyapeeth, Pune)

for giving me the opportunity to carry out my doctoral research.

My sincere gratitude and heartfelt thanks is reserved for Sarita Byagar, Shivendu Bhushan,

Thomsan Varghese, Sarika Thakare, Vijaya Kumbhar, Manisha Patil, Mahesh Jagtap,

Dr.Suresh Pathare, Avinash Shingate, Shantilal Ghalme and my all colleagues and Non-

Teaching Staff for their timely guidance and valuable inputs. A big “Thank you!” also goes

out to all IT companies Project Managers and Software Engineers Mr.Sagar Thombre,

Mr.Somen Parmanik, Mr. Sharif Malik, Mr. Prabhakarn K., Mr. Hanumant U., Mr.Aniket

Pawar, Mr. Mandeep Singh,Mr.Ronak C. Mr.Saqub A. Mr.Jayesh S. Mr.Rohit Thakur,

Mr.Datta Pawar who helped me by giving the required information. I also want to mention

Dr.Manisha Patil, Project Manager, Nice Systems, Pune and all my students for their

support.

Finally, I would like to acknowledge the most important people in my life my husband Mr.

Pradeep Shende, my parents Ms. Anita Lagad, my in-laws Mr. Pramod Shende and Mrs.

Mandakini Shende & my son Sharvil for their extraordinary support, love patience and

understanding throughout my long journey. Their support and tolerance has proved great help

in the fulfillment of this mammoth task.

Mrs. Ashvini Pradeep Shende

 C O N T E N T S

Sr. No. Contents Page Nos.

I List of FIGURES i-ii

II List of TABLES iii-vi

III List of GRAPHS vii-viii

IV List of ABBREVIATIONS viii

V Abstract Synopsis 1-48

VI Annexure I - Questionnaire 235-243

VII
Annexure II - Conceptual Background of Software Requirement

Analysis and Software Testing
244-283

CHAPTER

– I
INTRODUCTION 49-78

1.1 Introduction 49-54

1.2 Research Problem 55-60

1.3 Focus of research and motivation 60-64

1.4 Proposed Solution for Problem 65-75

1.5 Thesis Organization 76-76

 References 76-78

CHAPTER

– II
RESEARCH METHODOLOGY

79-98

2.1 Introduction 79-79

2.2 Statement of the Problem 79-80

2.3 Importance of the Study 80-83

2.4 Scope of the Study 83-87

2.5 Objectives of the study 87-88

2.6 Hypotheses of the Study 88-88

2.7 Research Methodology 88-94

2.8 Statistical tools used for this research 94-95

2.9 Time Budgeting 95-95

2.10 Limitation of the Study 95-95

2.11 Chapter Scheme 95-96

 References 97-98

CHAPTER-

III
Review of Literature 99-133

3.1 Introduction 99-100

3.2 Definition of Software 100-100

3.3 Software Engineering Process 10-101

3.4 Software Development Life Cycle 101-103

3.5 Software Development Life Cycle Models 103-113

3.6 Software Requirement 113-114

3.7 Requirement Engineering 114-116

3.8 Software Testing 116-117

3.9 The Testing Spectrum 117-118

3.10 Type of Software Testing 118-123

3.11

Impact of Poor requirement gathering process on Software Testing

Process
124-129

 References 129-133

CHAPTER

-IV
Data Analysis and Interpretation 134-225

4.1 Introduction 134-136

4.2 Data Analysis 136-138

4.3 General Background of Respondents 138-144

4.4 Current state of Requirement Gathering Process in Software Industry 145-164

4.5 To Study the Impact of Poor Requirements in Software Development 164-182

4.6 To analyze various tools used in software companies 182-185

4.7 To analyze the current scenario of software testing 185-197

4.8
To understand the various hurdles coming in the software testing and

testers problem.
197-219

4.9 Testing of Hypothses 222-224

 References 224-225

CHAPTER

–V
Conclusion and Suggestions 226-234

5.1 Conclusion 226-228

5.2 Suggestions 229-231

5.3 Suggested Model 231-233

 References 233-234

 Bibliography 284-295

I

List of Figures

Chapter 1 Introduction

Figure No Figure Name Page No.

Fig. 1.1 Requirement Analyst Role 50

Fig. 1.2 Customer’s SOP Analyst Role. 61

Chapter 2 Research Methodology

Figure No Figure Name Page No.

Map 2.1 Map of Pune city 85

Map 2.2 Map of the software companies present

in PMC area

86

Map 2.3 Map of the software companies present in

PCMC area

87

Chapter 3 Review of Literature

Figure No Figure Name Page No.

Figure 3.1 Software Engineering Process 100

Figure 3.2 Waterfall Model 105

Figure 3.3 Iterative Model 106

Figure 3.4 Spiral Model 108

Figure 3.5 V- Model 110

II

Figure 3.6 Big Bang Model 113

Chapter 5 Conclusions and Suggestions

Figure No Figure Name Page No.

Figure 5.1 High Level Architecture of RMRSF

Model

232

III

List of Tables

Chapter 2 Research Design and Methodology

Table No Table Name Page No.

Table No.2.1 Software Companies 89

Table No. 2.2 Number of Employees Company wise 89

Table No. 2.3 Table No. 2.3 List of Companies selected

for analyzing SOP

91

Table No. 2.4 Selection of Sample 93

Chapter 4 Data Presentation, Analysis and Interpretation

Table No. Table Name Page Nos

Table 4.1 Employees from Software companies present

in PMC and PCMC

135

Table 4.2 Gender and Occupation wise Distribution of

Employees

139

Table 4.3 Qualification and Occupation wise

Distribution of Employees

140

IV

Table 4.4 Employees from different software

companies present in different areas of pune

city

142

Table 4.5 Distribution of Employees in different

software companies

144

Table 4.6 Requirement Gathering Technique used in

Software Industry

147

Table 4.7 Types of requirements need to use for

betterment of software project

149

Table 4.8 Time Duration for Client interaction while

gathering requirements

151

Table 4.9 Useful traps for requirement gathering

process

153

Table 4.10 People Involvement in requirement gathering

process

156

Table 4.11 Time duration required to interact with end

user for requirement gathering

158

Table 4.12 Significance of Different types of

Requirement Documents

162

 Table 4.13 Time consumption of Business Analyst on

non-requirement gathering activities

164

Table 4.14 Factors affecting on Requirement Gathering 166

V

Table 4.15 Factors responsible to make software

erroneous

174

 Table 4.16 Factors responsible for failure of software

project

175

Table 4.17 Requirements gathering Tools 184

 Table 4.18 Employee’s view about use of testing tools 186

Table 4.19 Employee’s view about usage of testing tools 187

 Table 4.20 Test Case Sample 189

 Table 4.21 Test cases execution per day 190

Table 4.22 Defects raised per day 192

Table 4.23 Significant Documents used in Software

testing process

197

Table 4.24 Cost Factors involved in testing process in

terms of project failure

199

Table 4.25 Work of Software testing process 203

Table 4.26 Overhead occurrences in software testing

due to poor requirement gathering

207

Table 4.27 Common Requirement Issues that may affect

Software Testing

211

Table 4.28 Employee’s view about usage of Reverse

Engineering Tool in case of minor changes

213

Table 4.29 Data collected for analyzing impact if SOP is

not freezed

219

VI

Table 4.30

Factors for Collecting SOP from Client 220

VII

List of Graphs

Graph No. Graph Name Page Nos.

Graph 4.1 Software companies present in PMC and PCMC 135

Graph 4.2 Gender and Occupation wise Distribution of Employees 139

Graph 4.3 Qualification and Occupation Distribution of Employees 141

Graph 4.4 Employees from different software companies present in

different areas of Pune city

142

Graph 4.5 Distribution of Employees in different software companies 145

Graph 4.6 Requirement Gathering Technique used in Software

Industry

148

Graph 4.7 Types of requirements need to use for betterment of

software project

150

Graph 4.8 Time Duration for Client interaction while gathering

requirements

151

Graph 4.9 People Involvement in requirement gathering process 157

Graph 4.10 Time duration required to interact with end user for

requirement gathering

158

Graph 4.11 Requirements gathering Tools 184

Graph 4.12 Employee’s view about use of testing tools 187

Graph 4.13 Employee’s view about usage of automated testing tools 188

Graph 4.14 Test cases execution per day 191

VIII

Graph 4.15 Defects raised per day 192

Graph 4.16 Usage of Reverse Engineering Tool in case of minor

changes.

220

ABBREVIATIONS

SOP-: Statement of Purpose

PMC-: Pune Municipal Corporation

PCMC-: Pune Chichwad Municipal Corporation

RA Engine-: Requirement Analysis Engine

CNMRSF-: Customer’s Needs Management to Reduce Software Failures

1

ABSTRACT

On

 A STUDY OF COLLECTING CUSTOMER NEEDS IN SOFTWARE

DEVELOPMENT PROCESS AND ITS IMPACT ON BUSINESS OF

SELECTED IT COMPANIES IN PUNE

1. INTRODUCTION

In today’s IT world, more and more online Applications and tools are used, which help in

carrying out various daily chores. If these applications and tools do not work according to

specification then it would cause inconvenience to all users. But it has almost been a too

many decades since the software industry has detonated. It has witnessed a remarkable

growth and a tremendous growth not only in the core activities but also in the IT enabled

services. Despite the uninterrupted expansion, the software industry still has the highest

number of project delays and failures. According to the Standish report, 44% of the software

projects are challenged (late, over budget and/or with less than the required features and

functions) and 24% have failed (cancelled prior to completion or delivered and never used).

Thus, making a total of 68% (both challenged and failed) which is quite exponential. Boehm

found that 15-35% of all the software projects were cancelled outright while the remaining

projects suffered either from schedule slippage, cost overruns or failure to meet the project

goals. [1]

Miscommunication between requirement management team and development and testing

team is one of the major reasons for the project failure. And root cause of this

miscommunication between requirement management team and other teams of the software

department is the volatile nature of collected needs coming from end customers or clients.

Collected needs in volatile nature are by default because we cannot skip the changing nature

of Customer’s demands. And here software programmer and testing becomes slave to fulfill

the volatile collected needs from the client. [2]

2

C. J. Davis, Fuller, Tremblay, & Berndt found accurately capturing system collected needs

is the major factor in the failure of 90% of large software projects,” echoing earlier work by

Lindquist who concluded ”poor collected needs management can be attributed to 71 percent

of software projects that fail.[25]

Collected needs play a driving role during the product creation because in every software

development method, requirement gathering and analysis phase plays the most important

role. Stability of collected needs potentially makes an impact on the success of later phases

in a software project, including the success of test cases. According to Brooks, the toughest

part in building a software system is to decide precisely what needs to be created.

Furthermore, the poor requirement gathering and analysis may affect negatively at a later

stage. Moreover, predicting potential results of the later phases from early time of software

development can obviously help the project team to better deal with the risks of project

rescheduling and resulting in a low-quality product. [3]

The success of software project depends on the quality of collected needs specification.

Even though we have good collected needs specification in the beginning, there will be

collected needs changes during the project development which may have the impact on

testing process.

Chapter Scheme

Chapter 1. Introduction

Chapter 2. Research Methodology

Chapter 3. Review of Literature

Chapter 4. Data Analysis and Interpretation.

Chapter 5. Conclusion and Suggestions.

3

Chapter 2. Research Methodology

 In this chapter the method of selection of the sample is described in this chapter and after

that the nature of primary data and secondary data is explained.

The researcher has used survey based research methodology to carry out this research. The

study is related to verify the impact of poor requirement gathering analysis on software

testing.

The researcher has considered the Pune and PCMC area for the study. This study is

primarily focused on awareness of various tools used during development of software and

problems face by testers in software companies in Pune and PCMC.s that is why primary

data was collected from employees of Software Company in Pune. Researcher has used

interview and questionnaire data collection method. Researcher has collected data from

software companies from Hinjewadi, Magarpatta (Hadapsar) ,Shivaji Nagar and Kharadi.

By applying purposive sampling, Total 21 companies have been identified for study which

has more than 250 cr. Turnover. [93-98]

Type of Industry Total Companies 5 % Sample of

Companies

Software

Companies

424 21

Table No. 1. Software Companies

By applying Quota sampling, Researcher has divided respondents in 3 categories Business

Analyst, Designer, Testers.

4

Table No.2. Distribution of

Sr. No. Company Name No. of Employees

1 Accenture 7

2 Amdocs 24

3 Atos 46

4 Davachi 7

5 BMC 6

6 Capegemini 53

7 Citi Bank 6

8 Congnizant 9

9 Hummingbird 9

10 Calsoft 16

11 Neptune InfoTech 2

12 IBM 4

13 KPIT Cummins 38

14 Patni 7

15 Persistent 9

16 Principal Optima 4

17 CLSA 7

18 Sigma Soft 51

19 Symphony 51

20 Tech Mahindra 34

21 Wipro 10

5

Employees in different software companies

Type of Respondent No of

Employee

Business Analyst 134

Designer 119

Tester 147

Total 400

Table No.3. Occupation of Employees

 As per Krejcie and Morgan’s law(1970) if population is in between 75,000 and upto

10,00,000 then 384 sample size should considered so here in research researcher has

considered it as 400.

 Researcher has used statistical package for the social science (IBM SPSS 20) to test the

hypothesis and analysis of the data.

Pilot Study

 The researcher has conducted pilot survey randomly to test the questionnaire. To know the

consistency of questionnaire to be administered for the research, researcher has applied the

Cronbach’s Alpha reliability test. Initially the questionnaire was circulated to 5 Software

Companies from which 47 Business Analyst responded and reliability test was conducted.

 The result of pilot survey about Business Analyst is given in following Table.

 No. of

 Respondents

 %

 Cronbach's Alpha N of

 Items

Cases

Valid 47 100.0

 .713 82 Excludeda 0 0.0

Total 47 100.0

6

Table 4. Reliability Statistics of Pilot Survey of Business Analyst of Software Companies.

 It is observed that questionnaire is consistence and Cronbach's Alpha score is 0.713. It means

70 percent respondents understood the questionnaire. Thus researcher concludes that this

questionnaire can be administered for the further research.

 Secondary Data

 Various sources like journals, government reports, Ph.D. Thesis, books, magazines, and

internet are explored to collect secondary data and same has been used to support the

objectives and hypotheses whenever it needed.

A- STATEMENT OF THE PROBLEM

A good set of collected needs are the base for any software project. Requirement gathering

phase is playing main role to estimate cost and schedule as well as developing design and

testing specifications. Hence quality of collected needs playing main role in the success of

any software project.

 According to the Standish report, 44% of the software projects are challenged (late,

over budget and/or with less than the required features and functions) and 24% have

failed (cancelled prior to completion or delivered and never used). Thus, making a

total of 68% (both challenged and failed) which is quite exponential. Boehm found

that 15-35% of all the software projects were cancelled outright while the remaining

projects suffered either from schedule slippage, cost overruns or failure to meet the

project goals. [1]

 Even though collected needs are freeze in initial phase of software project but it may

get changed throughout the software development lifecycle.

7

 Change in collected needs means it can be addition, deletion or modification. Such

kind of change in requirement during SDLC always impacts the cost, schedule and

quality of software product.

 The reason to fail any software product is mainly depends upon the quality of

collected needs. Hence, a good set of user collected needs are needed for any

software project, to be successful. But if collected needs are not specified clearly,

correctly against what the system should do, then many projects will fail in this case.

In fact, many systems have just been given a deadline for delivery, a budget to

spend, and a vague notion of what it should do.

As a result, testing phase faces many problems during implementation of software.

B- SCOPE OF THE STUDY

The study is related to the analysis of impact of poor requirement analysis and gathering

process on software testing. Pune city has been considered for this research work.

The scopes of this research are software companies in Pune.

During the course of the present study the researcher has focused on the study of the

impact of poor requirement gathering process on software testing. Also it is focused on

provision of model which will help to reduce the failures of software product due to

poor requirement gathering process. This model has been designed by considering

parameters like cost, time etc. The researcher has also done analysis of current scenarios

of software testing and tools used in software industries.

C- OBJECTIVES OF THE STUDY

 The main objective is to study difficulties of Software Testing and to find root cause of

software failures. The study has following detailed objectives:

1. To study various task undertaken for software development process in IT Companies.

2. To Study the various tools and techniques used in collecting initial needs for the

software product development.

8

3. To identify various factors responsible for the software development.

4. To study impact of Collecting needs from customer on business of IT companies.

5. To draw conclusion and suggestions.

D- HYPOTHESIS OF THE STUDY

In consistent with the objectives, the researcher formed following hypotheses:

 Hypothesis 1: There are hurdles in collecting customer needs in software development.

Hypothesis 2: IT Industry follows standard practices to use licensed or well-known tools to

collect initial needs from customer in software development.

 Hypothesis 3: If collected needs are not freeze, then it has impact on business.

 Testing of Hypothesis

In this research four hypotheses were stated, these entire four hypotheses are tested using SPSS

statistics 20 tool, and applied test.

Hypothesis 1-: KMO and Bartlett's Test

Hypothesis 2-: Z statistics test

Hypothesis 3-: Z statistics test

Hypothesis 1: There are hurdles in collecting needs process for software development

9

Kind of Customer’s needs Yes No Percent(Yes)

Scope Clarification for

Domain

21 379 5.3

Input Processes 7 393 1.8

Reporting Procedures 44 356 11.0

Number of Users 7 393 1.8

Data Collection 12 388 3

All of the Above 309 91 77.3

Methods for collecting requirement (The above Table is with reference to same chapter

Table no. 4.7).

 Test Statistic: – KMO and Bartlett's Test

 H0: Null Hypothesis: There are no hurdles in collecting needs process.

 H1: Alternate Hypothesis: There are hurdles in collecting needs process.

 This hypothesis has been tested by Business Analyst and developers; they mentioned various

hurdles in collecting needs process using KMO and Bartlett's Test. To study the hurdles face

by developers, factor analysis is used to develop concise multiple item scales for measuring

10

various constructs. This test is carried out by using Barletts test of Sphericity which checks

the determinant of correlation matrix into consideration which converts it into a chi-square

statistics. Another condition needs to be fulfilled before factor analysis would be carried out

Kaiser –Meyer-Olkin (KMO) statistics.

 Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .515

 Bartlett's Test of Sphericity

 Approx. Chi-Square 1549.871

 Df 15

 Sig. .000

Table No. 5 KMO and Bartlett's Test

From the survey and data analysis it has been seen that scope clarification for domain, input

processes, reporting procedures, number of users and data collection are all the methods are

most important and suitable for error free requirement collection. Using all these types of

customer’s needs results into error free requirement specification, this in turn results into

error free software project.

Hypothesis 2: IT Industry follows standard practices to use licensed or well-known tools to

collect initial needs from customer in software development.

11

Collecting needs Tools Yes No

Visual Paradigms 336 64

Project Management Software 238 167

Microsoft-Package 235 165

Data Dictionary 166 234

Use Cases and User Stories 160 240

ReqHarbor.com 357 43

MindTool 221 179

IBM Rational Doors 379 21

Jira 146 254

Rally 124 276

Taleo 150 250

Quality Center 318 82

Collecting needs Tools (The above Table is with reference Chapter 4Table no. 4.17).

Step 1: Setting Hypothesis

http://www.reqharbor.com/

12

H0: 95% or more employees agreed that it is best practice to use collecting needs tools used in

IT Industry. (H0: p = .95)

H1: < 95% or more employees agreed that it is best practice to use collecting needs tools used in

IT Industry. (H0: p = .95)

 (H1= p < .95)

 H0 : p =0.95

 H1= p < 0.95 (One tail test as rejection area is towards one side)

Step II: Sample Size

 n=400 (> 30) As n > 30, large sample test i.e. Z-test is used.

Step III: Calculation of S.E. (Standard Error)

 S.E=√ pq/n Where p = 95

 q = 100-p = 5

 S.E. = √ 95*5 / 400 = 0.2179

13

Step IV: Calculation of Z value.

Z= diff. / S.E. diff = 95-94.75

Zcal= 1.1473

Step V: Comparison:

Table value of Z for one tail test at 5% level of significance is 1.64

Step VI: Conclusion:

Calculated value of Z (1.1473) < Table value of Z (1.64) Hence we accept H0 which

means 95 percent System Analyst have a positive attitude towards usage of tools

for Collecting needs in IT Industry and hence the hypothesis of the study is

accepted.

Hypothesis 3: If collected needs are not freezed, then it has impact on business.

Referring above table 4.29 following hypothesis is proved

H0 -: On an average, clients are taking 35% of time duration for SOP (i.e µ = 0.35)

H1-: On an average, clients are taking more than 35% of time duration for SOP, which has an

impact on business (i.e µ > 0.35)

Calculation of Z value.

14

Sample mean = 0.3893

Population mean under H0 is µ = 0.35

Z= diff. / S.E.

where,

diff = 0.3893 – 0.35 = 0.0393

S.E. = σ/√n = 0.009202

Zcal = 0.0393 / 0.009202 = 4.2738

Table value of Z for one tail test at 5% level of significance is Ztab = 1.64

Conclusion:

Since Calculated value of Z (4.2738) > Table value of Z (1.64)Hence, we accept H1

which means that, on an average, clients are taking more than 35% of time duration

for SOP, which has an impact on business.

Chapter 3 LITERATURE REVIEW

In this chapter, Researcher found numerous research studies pertaining to analyzing

software requirement and testing process in software industry. The researcher has done a

literature review on various aspects of software development like impact assessment of

software collected needs on development process, testing process in software industry,

programmers perspective of gathering collected needs, comparative study of development

15

process models and future prospects for developing error free software product. Researcher

has defined 23 Characteristics, which are further used for designing questionnaires.

 Following are the Important Characteristics of requirement analysis and software

testing process

 kind of collected needs

 Users Involved in Requirement Analysis

 Awareness of following Software Development Life Cycle process

 Techniques use to gather software requirement

 significance of various documents in success of software project

 Factors reasonable for the failure of software project

 Factors contributing to failure for requirement gathering process

 Testers plays a role beginning of SDLC

 Tester role present in Requirement Phase

 Tools used in gathering collected needs Process

 Testing type i.e Manual or Automated

 Awareness of testing tools

 Various tools used for software testing

 Test cases execution

 Factors responsible for change in requirement gathering may affect on

software testing process

 Factors responsible to make software erroneous

 Defects are raised on incorrect requirement

 Overhead occurs in software testing due to poor requirement gathering

 Common requirement issues that may affect Software Testing

 Document is most useful in success of software testing

 Different cost that are considered during testing process

 Occupation of employees in software Industry

Most of the studies reveal requirement is base for success of software and how wrong

collected needs impact on testing process. Some study are also considered as per employees’

point of view usage of requirement gathering tools and testing tools benefited for error free

software.

16

 Chapter 4. Data Analysis and Interpretation.

A- ANALYSIS

The fifth chapter analyzes the data obtained from Developers and testers of Software

Companies. The analysis is carried out under various titles after doing pilot survey which

is as under:

 In this research, 400 respondent’s data collected from Business Analyst, Designer and

Tester from different software companies reside under PMC and PCMC area.

 The data for employees of Software companies has been collected through interviews &

questionnaires then compiled in 32 tables.

Researcher has done analysis for following points.

 Employees from Software Companies: In this research, 400 respondent’s data are

collected from Business Analyst, Designer and Tester from different software companies

they reside under PMC and PCMC area.

 Distribution of Business Analyst, Designer and Tester from different software

companies present under PMC: 400 respondents data are collected from different

software companies resides in PMC and PCMC area. Among 400 respondents, 190

employees belong to software companies reside in PMC area and 210 employees belong

to software companies reside in PCMC area.

 Gender and Occupation wise Distribution of Employees: For this research, this

analysis has been done based on gender of employees. From the analysis, it has been seen

that 28.5 percent male employees and 5 percent female employees have designation as

business analyst and 22.5 percent male and 7.5 percent female employees having

designation as Designer. Researcher also collected data for 22.5 percent male and 14.5

percent females employees are working as a Tester. From this analysis, it has been

17

proved that employees are working as Business Analyst, Designer, and tester in different

software companies.

 Qualification and Occupation wise Distribution of Employees: For the understanding

and awareness about requirement gathering process, researcher has collected educational

wise data from 21 of different software companies. For this research, this analysis has

been done based on qualification of employees. From the analysis, it has been seen that

28 percent Postgraduate and 5.5 percent graduate employees are Business Analyst. 23.75

percent postgraduate and 6 percent graduate employees is Designer and 21 percent

postgraduate and 15.75 percent graduate employees are Testers. From this analysis, it has

been proved that employees are graduate, postgraduate qualified, and they are having

knowledge about requirement gathering process with designation wise experience.

 Distribution of Business Analyst, Designer and Tester from different software

companies present under PMC and PCMC area: As we have considered PMC and

PCMC areas from Pune city, Hadapsar, Kharadi and Shivaji nagar office locations

belongs to PMC area and Hinjewadi belongs to PCMC area. Hence from the data

analysis, it has been proved that 49 employees are from Software companies which are

located in Hadapsar area, 210 employees from Hinjewadi area, 36 from Kharadi and 105

from Shivaji Nagar.

 Requirement Gathering Techniques used in Software Industry: From the analysis of

respondent views, it has been shown that, Personally Meeting with client is the best

requirement gathering technique as it is nothing but face to face communication with

client and using this technique business analyst can easily get clarified all the doubts

regarding requirement specification. Hence, maximum around 369 respondents i.e 92.3

percent provided positive vote for “Personal Meeting” requirement gathering technique

and this information supports the First Objective of the study.

 Useful tools for requirement gathering process: From the survey, it has been seen that

379 respondents are agreeing that ‘IBM Rational Doors’ is the best requirement gathering

tool. Because ‘IBM Rational Doors’ supports multiple functionalities for collected needs

18

like Requirement gathering, Software Design, Task Management and Collaborative

Modeling and this information supports the First Objective of the study.

 Types of collected needs need to use for betterment of software project : From the

survey and data analysis it has been seen that scope clarification for domain, input

processes, reporting procedures, number of users and data collection are all the methods

are most important and suitable for error free requirement collection. Using all these types

of collected needs results into error free requirement specification, which in turn results

into error free software project.

 Time Duration for Client interaction while gathering collected needs: To collect error

free requirement from client, there is need to consume adequate time for requirement

gathering process. However, 50 percentage employees are voting to 4 weeks time duration

for requirement gathering process.

 Useful traps for requirement gathering process: To avoid this incorrect and incomplete

requirement issue, there is need to user few traps these traps are actually suggested by

IBM and it needs to take in practice of requirement gathering process In this research, 400

respondents responded for their view about useful traps for the betterment of requirement

gathering process. 207 employees are strongly recommending for “Power up

communication with visuals” because communications with visuals provides more

visibility in requirement understanding. 104 employees are strongly agreed for “User of

standard template to support requirement gathering work” as standard template is designed

after considering best practices for requirement gathering process and hence it is quite

useful for error free requirement gathering process. 88 employees strongly recommends

“Avoid common pitfalls” means common mistakes needs to avoid while gathering

collected needs from client. 86 employees are strongly responded “Use of Tools” option

as using automated requirement gathering tools saves more time and lead to increase the

productivity of requirement engineering team.

 Involvement of different people in requirement gathering process: There is need to

involve many people like Senior management team, senior architecture team, testers,

19

developers, clients, end users and subscribers in the discussion of requirement gathering

meeting or session. 100 percent of respondents are agreed for “end user” involvement and

then for “Requirement Team”.

 Time duration required to interact with end user for requirement gathering: To

estimate cost of any software project, time is bigger factor to consider in requirement

gathering phase time required by designer or business analyst to interact with client

becomes most important factor. If requirement is even though small but if it complex then

business analyst may required more time to get it from end user. If client interaction time

gets more as compare to estimated time then it may affect to delivery of software project

or quality of project. 226 employees i.e 56.5 percent are strongly recommends daily 4 hrs

required to interact with client or end user to understand requirement or to clarify

requirement related queries.

 Significance of Different types of Requirement Documents: In requirement gathering

session or meeting, business analyst needs to take collected needs verbally from client and

then he/she needs to record or write requirement in specific document. Recording

collected needs somewhere in document is a need of an hour because for further changes

or future use we need base of requirement. It is seen that the highest average value is 7.71

for the ‘Functional Requirement Document (FRD)’ followed by ‘Component Design

Document (CDD)’ that is 7.32 and ‘Component specification document (CSD)’ and ‘Test

Case Document (TCD)’ which are 7.29 and 7.02. The average value for factor ‘Customer

Requirement Document (CRD)’ is 6.78 followed by ‘Business Requirement Document

(BRD)’ is 6.63. It is clear from the average values that Functional Requirement Document

(FRD) is most important document as per most of respondents.

 Time consumption of Business Analyst on non-requirement gathering activities: In

this research, following factors has been considered as non-requirement activities like

Writing Requirement Documents, Reviewing FRD/BRD, Client Customer Interaction,

Conducting Training for Testers and Developers are performed by business analyst and

designer

20

 To get views from respondents, data is divided in different ranges of percentage like 0-25,

25-50, 50-75, 75 and above. From the survey, it has been seen that higher percentage

range value for ‘Writing Requirement Document’ is 129.

 Factors responsible for Failure of Requirement Gathering process: during

requirement gathering process many challenges can encounter like changing nature of

collected needs, inadequate communication, problem of scope, incomplete collected

needs, ambiguous collected needs, wrong selection of stake holders, inappropriate

selection techniques, conflicting collected needs are some of the problems It is seen that

the highest average value is 7.52 for the ‘Lack of knowledge about the business context’ is

followed by ‘Lack of understanding of Business problems/opportunities’ is 7.44, followed

by ‘Missing of gaps to be bridged’ that is 7.18, followed by Inadequate Time’ is 7.02 and

‘Inadequate number of Resources’ is 6.76.

 Factors responsible to make software erroneous: Software testing is a branch where

verification of software’s functionality is happening. Once development team complete

their development and submit product to testing team, then testing team start verification

of functionality of software via test cases execution. It is seen that the highest average

value is 4.73 for the ‘Requirement Errors’ followed by ‘Logic Design’ is 4.34. The

average value of ‘Documentation’ is 4.26 followed by ‘Data’ and ‘Environment’ that is

3.74. The average value of ‘Interface’ is 3.58 followed by ‘Human’ that is 3.16. So

Requirement Errors’ is most responsible factor to make software product erroneous

because as we know that requirement is the base for all the phases of SDLC process and

this information supports the Third Objective of the study.

 Factors responsible for Failure of Software Project: It is seen that the highest average

value is 7.39 for the ‘Lack of user involvement’ followed by ‘Poor or No Collected

needs’, ‘Poor Testing’ and ‘Well-defined Schedules’,’ Long or unrealistic time scale’,

‘poor managerial decisions’, ‘Lack of foresight in building efficiency markets’, ‘Scope

Creep’ ‘Cost overrun’, ‘Lack of methodology’ ,‘No Change Control System’ ,‘Inadequate

Documentations’ , ‘Lack of an experienced’.

21

 Awareness of Type of Software Testing: In manual testing, tester needs to create test

case, test data and manually execute test cases with dummy data on particular software

component but in case of automated testing, test cases and dummy data has been created

by testing tool itself. As per survey, total number of respondents who are doing Automated

Testing is 239 and the total number of respondents who are doing manual testing is 161.

 Defects raised by testing team per day: If test cases are failed it means testers are raising

defects against these failed test cases. Moreover, per day how many defects can be raised

by testing team becomes important for management in terms of project completion. 100

percent testers are saying 5 to 6 defects are occurring per day.

 Impact of poor requirement gathering on software testing process: Poor requirement

gathering is nothing but issues present in the collected collected needs from client or

customer. A poor requirement is nothing but erroneous requirement .It is seen that the

highest average value is 4.62 for the ‘Addition of test cases’ followed by ‘Modification of

test cases’, ‘re-execution of modified test cases’, ‘Test result creation for newly added test

cases’, ‘Deletion of test case’, ‘Verification of Newly added functionality due to

Requirement Change’.

 Overhead occurs in software testing due to poor requirement gathering: Due to issues

present in collected needs, many overheads can occur in software testing process. It is

seen that the highest average value is 4.93 for the ‘Gap in testing’ is important overhead in

testing process followed by ‘inaccurate testing estimation’ ,‘System Testing Delay’ , ‘Test

Team Credibility’, ‘Increase in system failures’ , ‘Delay benefit realization’.

 Common Requirement Issues that may affect Software Testing: Software is developed

according to Clients Collected needs. Here some requirement issues are discussed with

software developer and tester, which may affect software-testing process. It is seen that

the highest average value is 4.73 for the ‘Absence and Incompleteness’ means if collected

needs are incomplete then there is chance of having errors in software also, followed by

‘Volatility’, ‘Incorrectness’, ‘Ambiguity and Vagueness’ and ‘Traceability’.

22

 If collected SOP are not freezed, it has impact on software development process:

Software development effort estimation is the process of predicting the most realistic amount

of effort (expressed in terms of person-hours or money or resource cost) required to develop

or maintain software based on incomplete, uncertain and erroneous SOP from customer.

Most of the employees are strongly agreed on Development and testing efforts must be

carried out which requires extra cost during development of software.

 Common SOP Issues that may affect Software business: From each company 5 clients

data is collected and analyzed their SOP collection duration. It is observed that for each

company out of 5 clients atleast 3 clients are taking more time for SOP as their SOP is not

freezed and eventually it has impact on software business.

B- FINDINGS

This research is related to relation or impact of requirement gathering on software testing

process in software development process. The researcher has tested positively the hypothesis

of this research study, with the help of primary and secondary data. The research findings

are related to awareness and usage of testing and requirement gathering tools and finding

hurdles in these processes.

 400 respondent’s data collected from different software company’s resides in PMC and

PCMC area. Among 400 respondent’s, 47.5 percent employees belong to software

companies reside in PMC area and 52.5 percent employees belong to software companies

reside in PCMC area. (Refer Chapter 4 Table 4.1. Software companies present in PMC

and PCMC)

 For the understanding and awareness about requirement gathering process, researcher has

collected educational wise data from 400 employees of different software companies. For

this research, this analysis has been done based on gender of employees. From the analysis,

23

it has been seen that 28.5 percent male employees and 5 percent female employees have

designation as business analyst and 22.5 percent male and7.25 percent female employees

having designation as Designer. Researcher also collected data for22.5 percent male and

14.25 percent females employees are working as a Tester. From this analysis, it has been

proved that employees are working as Business Analyst, Designer, and tester in different

software companies. (Refer Chapter 4 Table 4.2: Gender and Occupation wise

Distribution of Employees)

 For this research, this analysis has been done based on qualification of employees. From the

analysis, it has been seen that 32 percent postgraduate and 44.8 percent graduate employees

are Business Analyst. 55 postgraduate and 96 graduate employees are Business Analyst.

From this analysis, it has been proved that employees are graduate, postgraduate qualified,

and they are having knowledge about requirement gathering process with designation wise

experience.(Refer Chapter 4 Table 4.3: Qualification and Occupation wise Distribution

of Employees)

 As we have considered PMC and PCMC areas from Pune city, Hadapsar, Kharadi and

Shivaji nagar office locations belongs to PMC area and Hinjewadi belongs to PCMC area.

Hence from the data analysis, it has been proved that 12.5percent employees are from

Software companies which are located in Hadapsar area, 52.5 percent employees from

Hinjewadi area, 9 percent from Kharadi and 26.25 percent from Shivaji Nagar. (Refer

Chapter 4 Table 4.4: Employees from different software companies present in

different areas of pune city)

 It is found that 92.25 percent of employees are agreed for ‘Personal Meeting’ requirement

gathering technique to make error free software. (Refer Chapter 4 Table 4.6 :

Requirement Gathering Technique used in Software Industry)

 It is found that the scope clarification for domain, input processes, reporting procedures,

number of users and data collection are all the methods are most important and suitable for

error free requirement collection. Using all these types of collected needs results into error

free requirement specification, which in turn results into error free software project.(Refer

24

Chapter 4 Table 4.7 Types of collected needs need to use for betterment of software

project)

 It is seen that more 51 percent employee are agreed for collecting requirement duration is 4

weeks because time duration is most important factor and playing vital role in the success or

failure of any software project (Refer Chapter 4 Table 4.8 Time Duration for Client

interaction while gathering collected needs)

 52 percent of business analysts are agreed for use of “Power up communication with

visuals” because communications with visuals provides more visibility in requirement

understanding and to avoid this incorrect and incomplete requirement issue. (Refer Chapter

4 Table 4.9 Useful traps for requirement gathering process)

 100 percent employees are agreed for involvement of End User and 98 percent employees

agreed for involvement of Requirement Team in requirement gathering process for avoiding

ambiguity in requirement. (Refer Chapter 4 Table 4.10: People Involvement in

requirement gathering process)

 57 percent employees insist that daily more than 4 hrs time should be used for interaction

with client for gathering and understanding collected needs.(Refer Chapter 4 Table 4.11:

Time duration required to interact with end user for requirement gathering)

 83.5 percent developers agreed for use of Functional Requirement Document (FRD), this

document is used to record all functional that is execution base detailed designs for software

development process (Refer Chapter 4 Table 4.12: Significance of Different types of

Requirement Documents)

 70 percent developers insisting that ‘Lack of knowledge about the business context’ is most

important factor which affects on requirement gathering process. (Refer Chapter 4 Table

4.14: Factors affecting on Requirement Gathering)

 72 percent employees agreed that Requirement error is most important factor responsible for

Software erroneous. (Refer Chapter 4 Table 4.15: Factors responsible to make software

erroneous)

25

 It has found that 85 percent employees are agrees that ‘Lack of user involvement’ factor is

responsible for failure of Software. (Refer Chapter 4 Table 4.16: Factors responsible for

failure of software project)

 s94 percent Business Analyst agreed that ‘IBM Rational Doors’ tool is the best requirement

gathering tools for requirement gathering, managing and analysis. (Refer Chapter 4 Table

4.17 : Collected needs gathering Tools)

 59.75 percent testers agreed for use of testing tool during software testing process which is

benefited for testing and minimizing errors.

 (Refer Chapter 4 Table 4.18: Employee’s view about use of testing tools)

 Automated testing is good to get better productivity of testing team, hence there is need to

know whether testers are using testing tools or not.57 percent are aware about to use of

testing tools for testing of software. (Refer Chapter 4 Table 4.19 : Employee’s view about

usage of testing tools)

 90 percent testers are agreed for execution of minimum 8 testcases per day for finding minute

bugs present in the code to avoid further errors in software. (Refer Chapter 4 Table 4.21 :

Test cases execution per day)

 100 percent testers are agreed for finding minimum 5 to 6 defects from each testcases just to

avoid further errors in software (Refer Chapter 4 Table 4.22 : Defects raised per day)

 83 percent testers agreed that ‘Test Case Document (TCD)’ is a document useful for

recording testcases which is useful for easily development of testcases.

 (Refer Chapter 4 Table 4.23: Significant Documents used in Software testing process)

 84 percent Business Analyst agreed that cost required for software (tools)

And resources like manpower, machine etc is important for to avoid failure of software

project. Failures in software testing process always affect the quality of developed software

and hence, software would become highest cost of software failures. (Refer Chapter 4

Table 4.24: Cost Factors involved in testing process in terms of project failure)

 80 percent testers believed that Addition of TestCases during testing process is crucial task.

Addition of testcases can be happened due to Poor requirement gathering.

 (Refer Chapter 4 Table 4.25: Work of Software testing process)

26

 More than 75 percent employees are agreed for if collected needs are not freeze, it has

impact on software development process.

 Efforts required for task are considered as Development effort, Rework effort, Quality

Assurance effort, Testing Effort. Software development effort estimation is the process of

predicting the most realistic amount of effort (expressed in terms of person-hours or money

or resource cost) required to develop or maintain software based on incomplete, uncertain

and erroneous needs from customer. When needs from customers are volatile or keep on

changing then Efforts of employees affected most because whichever task initially done by

employees (earlier efforts) must be changed, so again employees are doing same work as per

suggestions means development efforts i.e coding task , Rework effort i.e redesigning of

product, Quality Assurance effort i.e product must be measured for its better quality, Testing

efforts i.e whichever code has been changed by coder or programmer must be tested again by

writing test cases , means all these efforts must be carried out for changes nothing but it has

impact on cost which can be counted as “Impact on Business”. (Refer Chapter 4 Table

4.26: Efforts carried out in case collected needs are not freeze)

 Around average values 4.93 of respondents are agreeing that poor collected needs always

create in gap in testing work of testers. Gap in testing or discontinuity in tester work lead to

wastage of time of testing resources and it lead to Inaccurate testing estimation. (Refer

Chapter 4 Table 4.27: Overhead occurs in software testing due to poor requirement

gathering)

 100 percent software employees are agreed that ‘Absence and Incompleteness’ factor affect

software testing. Hence, researcher of this research recommends that requirement should be

complete or should not be missing any important part. (Refer Chapter 4 Table 4.28:

Common Requirement Issues that may affect Software Testing)

 From each company 5 clients data is collected and analyzed their SOP collection duration.

researcher has observed that for each company out of 5 clients atleast 3 clients are taking

more time for SOP as their SOP is not freezed and eventually it has impact on software

27

business. (Refer Chapter 4 Table 4.29: Software Development Life Cycle during Year

2015-2016)

Chapter 6. Conclusion and Suggestions

1. Personally meeting with clients, through documents, online or automated are equally

important techniques for collecting unambiguous needs from customer in software

development process.

2. Type of customer’s needs i.e Using Scope Clarification for Domain, Input Processes,

Reporting Procedures, Number of Users and Data Collection are important information

which results into error free software product.

3. Time for collecting customer needs required for product development must be Adequate

so that proper needs can be collected to avoid further problems on product.

4. “Power up communication with visuals” is useful and effective technique for collecting

customer needs through this technique proper set of needs can be gathered.

5. Many people like senior management team, senior architecture team, testers, developers,

clients, end users and subscribers are involved in the discussion of collecting needs.

6. Time is the most important factor for software development process because as time

increases, schedule may get lagged due to which it may have indirect effect on cost and

business.

7. ‘Lack of knowledge about the business context’ is the most responsible factor for failure

of collecting needs from customer process.

8. ‘Requirement Errors’ is the most responsible factor to make software product erroneous

because as we know that requirement is the base for all the phases of SDLC process.

28

9. ‘Lack of user involvement’ followed by ‘Poor or No Requirements’ is most important

factor responsible for the failure of software project.

10. ‘IBM Rational Doors’ and ReqHarbor.com are the best collecting needs tool through

which needs are stored in automated format and can be accessed by team of software

product development.

11. Automated Testing is the most useful method of software testing in software companies.

12. Execution of 8 testcases per day using automated testing mode is best practice for

software testing process to avoid failure of software product.

13. Tester should expect 5 to 6 defects per day in their software testing process to avoid

software failure.

14. “Addition of test cases” is the most frequent task tester needs to do when customer’s

needs are incomplete and changing though its development process.

15. ‘Gap in testing or discontinuity in testing work’ affects total cost of software project.

Cost is indirectly related with schedule of development.

16. Absence and Incompleteness, Incorrectness, Ambiguity and Vagueness, Volatility,

Traceability parameters are the most important causes for failure of software.

17. Maximum companies who spent more time on collecting customer’s needs incur more

cost as cost is indirectly related to time for product development.

18. Thus the final conclusion is noticed through the research. The process of collecting

accurate needs should be well documented to resolve ambiguity because it directly

impacts on business of software development. The process of collecting needs must

29

be automated through tools so that ambiguity gets resolved and proper development

process will get executed. Once needs gets freezed there should not be delay in

schedule for development and thus extra cost should not be incurred for whole

software development process.

Suggested Model

Considering the present state of impact of collection of SOP process need to design through

the present research work. This new model is designed named as called Customer’s Needs

Management to Reduce Software Failures Model (CNMRSF)

The main functionality of CNMRSF model is to provide better software testing

actions for corresponding poor requirement. Model has 3 phases like input, processing and

output. CNMRSF model integrates the functionality of different modules like Input module,

processing module and output module

30

Fig 1. Suggested Model for Requirement gathering and analysis process.

Input Phase

Input phase will contain input module which deals with input data collection from the end

user and this input data will be in the form of functional requirement document (FRD) or

Customer Requirement Document (CRD). In this phase, Requirement document can get from

your local computer drive. Main functionality of this phase is to get exact type and

requirement document and call the processing module for further analysis.

Fig 2. Input module of CNMRSF Model Processing Phase

Processing phase deals with integrated functionality of Reading Requirement

document, analyzing requirement document by call Requirement Management Engine

Input Module

Reading File type input

from User (FRD, CRD

etc)

Asking User to get file

from drive using

upload

Calling processing

module by providing

requirement

document file

31

(RAEngine) and Execution of Output module to generate list of Issues, Impacts and Actions

for particular type of requirement issue. Processing phase contains processing module which

will deal with integrated functionality of Reading Requirement document, analyzing

requirement document by call Requirement Management Engine (RAEngine) and Execution

of Output module to generate list of Issues, Impacts and Actions for particular type of

requirement issue.

In processing phase, RMEngine gets call to analyze exact requirment issue type.

Requirement Analysis Engine (RAEngine) will be the major part of processing module and

will be developed based on the requirement issues responded by respondent from different

software companies. For RMEngine, following requirement issues will be considered [11].

1. Incomplete/Absent

2. Incorrect

3. Ambiguity & Vagueness

4. Volatility

5. Traceability

 RAEngine is heart of CNMRSF module. Without RAEngine, CNMRSF can not do anything.

RAEngine is basically works on if else ladder concept. It first checks what is exact

requirment issue present in provided requirment document and based on that decide type of

requirement issue. For deciding appropriate requirement issue, RAEngine analyze requirment

document by compairing it with software system architechure document and tries to provide

exact requirement issue. RAEngine takes Requirment document as an input and generates

requirement issue type by considering many isssues present in provided requirement

document.

 As metioned above, RAEngine maninly focuses on five type of requirment issues like

incomplete,incorrect, Ambuiguity,vaguess, volatility and traceability etc. [4]. Based on

different conditions like if track table is missing or improper change control process found

then its mark requirement issue as traceability issue. If functional or non-functional collected

needs are missing then it marks requirment issue type as incorrect. If there is change between

old requirment document and new requirement document then it marks requriement issue as

32

volatility. If requirement followed poor requirement definitoin then it marks requirement

issue as Ambiguity and Vagueness. Like wise it checks for Incomplete/Absence requirement

issue. Here using if syntax RAEngine verifies many conditions to decides appropriate

requirment issue.

 Once requirment issue is identified by RAEngine, it returns that requirement issue back to

processing module and then processing module works on further analysis.

Output generation phase

Output phase deals with generation of output based on input argument as a requirement issue

type provided by processing phase. Output phase has module named as Output Module and

this module is basically gets executed by Processing module. Main functionality of output

module is to get requirement type issue as an input and based on this input query to database

to fetch corresponding list of Issues, Impacts and Action points. This module is displaying

list of Issues, Impacts and Actions based on corresponding requirement issue type.

Output module deals with database to fetch records from three different tables named as

Issue, Impact and Action. The perquisite of this model is these tables should get created with

data in database.

33

Fig.3 Processing Module

34

Fig 4. Requirement Engine

35

 Fig 5.Output Module

36

SUGGESTIONS

1. It is suggested that developers, software testers should read and understand customer’s

needs carefully before starting their work.

2. Management of any software company should have adequate number of resources, work

allocation between resources should be balanced and requirement engineer should also

not spend more time collecting needs from customer.

3. Collected needs must be accurate and well documented.

4. Customer needs must be collected through automated tools.

5. Researcher has suggested a format of documents for collecting customer needs in the

proposed model.

6. Software testers should write testcases for accurate customer’s needs.

7. Software tester should get involved in the requirement phase and also communicate with

requirement engineers for better understanding of customer requirements.

8. Software tester should create correct test cases and test data before starting software

testing.

9. Software tester should verify test results with exact functionality required by customers

and also consider performance of software system.

10. Software companies should consider all the factors which are responsible for failure and

rectify the same immediately.

11. Implementation of model improves the interaction between developer and tester and

helps to increase quality of the product.

37

12. Encourage the software companies for active participation in quality product

development and implementation of model in minimal cost.

13. Interaction of researcher from Industry and academia is also required to make constant

improvement for successful implementation of model for better quality of product.

14. Conduction of quality audit from third party

15. Software Testing Clubs participation in execution of quality audits with standardized

(ISO, CMM, Six Sigma etc) companies.

16. Awareness about the quality standards among the employees of the software companies

can be created.

17. To make the employees more productive, thrust on awareness about tools by arranging

various training sessions for employees.

18. Make employees aware of their responsibility towards development of quality product.

19. There should be QA team activity on feedback system for employees on quality

development, tester performance improvement.

20. Organize quality product fest program to create awareness about quality product among

the employees.

21. QA team should organize award and recognition fest for successfully and error free

development of software.

22. Active involvement of finance manager throughout SDLC will help in keeping track of

the cost.

23. The manuals must be provided and followed by employees during implementation of

model to avoid errors.

38

24. There should be up gradation of tools used for development and testing.

25. Organization should purchase upgraded version and licensed of various tools used in

software companies.

26. By using tools organization saves resources like time, efforts, and cost.

27. By using automated reverse engineering tool requirement changes can be easily traced

out in the development process.

28. In suggested model, input model stores all customer’s needs document category wise like

missing requirement, wrong requirement etc. which will help to avoid errors in the

product.

29. Timely freezing of customer’s needs will lead to better utilization of resources like cost

and time.

SCOPE OF FUTURE

 More requirement documents formats will be supported by Customer Needs Management

to Reduce Software Failures model.

 More detail analysis of requirement documents and recognition of best requirement issue

by using by Customer Needs Management to Reduce Software Failures model.

 More factors will be considered for the failure or success of software projects.

 More clarity will be focused on to reduce the failure of software project.

 More actions will be provided by Requirement Management to Reduce Software Failures

model for software requirement engineers, developers, testers etc.

Bibliography:

1. The Standish Group Report (CHAOS). (2003). Retrieved November 2013, from:

http://www.projectsmart.co.uk/docs/chaos-report.pdf.

39

2. Boehm, B., & Bose, P. (1994). A collaborative spiral software process model based on Theory

W. Third International Conference on the Software Process, pp. (59-68).

3. Cao, L., & Ramesh, B. (2008). Agile Collected needs Engineering Practices: An Empirical Study.

IEEE Software, 25 (1), pp. (60-67).

4. 2013, Md Rounok Salehin “Missing Collected needs Information and its Impact on Software

Architectures:A Case Study” The School of Graduate and Postdoctoral Studies The University of

Western Ontario,London, Ontario, Canada

5. Gross, A., Doerr, J. (2012). What do software architects expect from collected needs

specifications? results of initial explorative studies. IEEE First International Workshop

on Twin Peaks of Collected needs and Architecture, IEEE Software, pp. (41-45).

6. Lee, S., & Rine, D. (2004). Missing Collected needs and Relationship Discovery through

Proxy Viewpoints Model. 19th annual ACM Symposium on Applied Computing, pp.

(1513-1518). Nicosia, Cyprus.

7. George, B., Bohner, S. A., & Prieto-Diaz, R. (2004). Software information leaks: A

complexity perspective. Ninth IEEE International Conference on Engineering Complex

Computer Systems (ICECCS'04), pp. (239-248). Florence, Italy: IEEE Computer Society.

8. Gumuskaya, H. (2005). Core Issues Affecting Software Architecture in Enterprise

Projects. Proceedings of World Academy of Science, Engineering And Technology,

volume 9, pp. (35-41)

9. Thomas Kiihne , “What is Model?” Darmstadt University of Technology, Darmstadt,

Germany.

10. http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

11. Kirsten Kiefer, “The Impact of Requirement issues on testing”, Software Education

associates Ltd

12. Brooks, F. 1987. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE

Computer, Vol. 20, No. 4, April 1987, 10-19.

13. Jayaswal, B. K., Patton, P. C. 2006. Design for Trustworthy Software: Tools,

Techniques, and Methodology of Developing Robust Software, 1st Edition. (September

2006), Prentice Hall edition.

http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

40

14. Zowghi, D. 2002. A Study on the Impact of Collected needs Volatility on Software

Project Performance. Proceedings of Ninth Asia-Pacific SE Conference (APSEC‟ 2002),

IEEE Computer Science.

15. Taghi, M., Khoshgoftaar, N., Sundaresh, N. 2006. An empirical study of predicting

software faults with case-based reasoning. (June 2006), Software Quality Control.

16. Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating fault prediction models.

(October 2008), Empirical Software Engineering.

17. M.P.Singh, Rajnish Vyas, “Collected needs Volatility in Software Development Process”

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-4, September 2012

18. Zowghi, N. Nurmuliani, ―A study of the Impact of collected needs volatility on

Software Project Performance, Proceedings of the Ninth Asia-Pacific Software

Engineering Conference , APSEC 2002, Gold

19. Cost, Queensland, Australia,04-06 Dec 2002, pp:3-11.

20. http://www.mapsofindia.com/maps/maharashtra/pune.htm (23/7/2008)

21. http://www.mapsofindia.com/pune/software-company-pune.html

22. https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-

8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3

bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrI

L4Bw&ved=0CB4QtQM&output=classic&dg=brw

23. Sr. S. P. Gupta, “Statistical Methods”, Sultanchand & Sons Publication, New Delhi.

24. Don Gotterbarn, “Reducing Software Failures: Addressing the Ethical Risks of the

Software Development Lifecycle” Australian Journal of Information Systems

25. Don Gotterbarn, “Reducing Software Failures: Addressing the Ethical Risks of the

Software Development Lifecycle” Australian Journal of Information Systems

26. Muhammad Naeem Ahmed Khan and et.all (2013), “Review of Collected needs

Management Issues in Software Development” I.J.Modern Education and Computer

Science, 2013, 1, 21-27, Published Online January 2013 in MECS (http://www.mecs-

press.org/) DOI: 10.5815/ijmecs.2013.01.03

http://www.mapsofindia.com/pune/software-company-pune.html
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw

41

27. https://web.cs.dal.ca/~hawkey/3130/SEBackground4.pdf

28. Systems Development Lifecycle: Objectives and Collected needs. Bender RPT Inc. 2003

29. Vanshika Rastogi (2015), “Software Development Life Cycle Models- Comparison,

Consequences” IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 6 (1) , 2015, 168-172

30. Software Development Life Cycle (SDLC) Yogi Berra presentation

31. Ms. Shikha maheshwari and Prof.Dinesh Ch. Jain 2012 “A Comparative Analysis of

Different types of Models in Software Development Life Cycle” International Journal of

Advanced Research in Computer Science and Software Engineering, Volume 2, Issue 5,

May 2012

32. Royce, Winston (1970), "Managing the Development of Large Software Systems" (PDF),

Proceedings of IEEE WESCON 26 (August): 1–9

33. PK.Ragunath, S.Velmourougan, P. Davachelvan, ,S.Kayalvizhi, R.Ravimohan (2010)

“Evolving A New Model (SDLC Model-2010) For Software Development Life Cycle

(SDLC)” IJCSNS International Journal of Computer Science and Network Security,

VOL.10 No.1, January 2010

34. Seema, Sona Malhotra 2012 “Analysis and tabular comparision of popular SDLC

models” International Journal of Advances in computing and Information Technology.

35. Sonali MAthur and Shaily Malik (2010), “Advancements in the V-Models”,

International Journal of Computer Applications (0975-8887) Volume 1- No.12

36. Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla “Evolving a New Software

Development Life Cycle Model SDLC-2013 with Client Satisfaction”

 International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-3, Issue-1, March 2013

37. G. Kotonya and I. Sommerville, (1998), have published article on “Collected needs

Engineering: Processes and Techniques”, in the book published by Chichester, UK: John

Wiley & Sons.

38. Collected needs Engineering A good practice guide, Ramos Rowel and Kurts Alfeche,

John Wiley and Sons, 1997

https://web.cs.dal.ca/~hawkey/3130/SEBackground4.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

42

39. I. Sommerville and P. Sawyer (1997), Collected needs Engineering: A Good Practice

Guide, New York: John Wiley & Sons,.

40. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=948567&url=http%3A%2F%2Fie

eexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D948567

41. K. E. Wiegers, Software Collected needs, 2nd ed., Redmond, W A: Microsoft Press,

2003.

42. http://prr.hec.gov.pk/Chapters/369S-2.pdf (Software Testing reference)

43. Donald Firesmith, Software Engineering Institute, U.S.A “Common Collected needs

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

44. Olga Liskin , et al., “Supporting Acceptance Testing in Distributed Software Projects

with Integrated Feedback Systems: Experiences and Collected needs” 2012 IEEE

Seventh International Conference on Global Software Engineering

45. Vishawjyoti, Sachin Sharma, “Study and Analysis of automation testing techniques” ,

Journal of global research in computer science, Volume 3, No. 12, December 2012,

ISSN-2229-371

46. Antonia Bertolino has published his research article on “Software testing research and

practice”

47. Vivek Kumar (2012) has published his article on “Comparison of Manual and automation

testing” International Journal of Research in Science And Technology, (IJRST) 2012,

Vol. No. 1, Issue No. V, Apr-Jun, ISSN: 2249-0604

48. R. M. Sharma (2014), “Quantitative Analysis of Automation and Manual Testing”

International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue

1, July 2014

49. Harsh Bhasin, at.el. (2014), have published research article on “Black Box Testing based

on Requirement Analysis and Design Specifications”

50. MIRZA MAHMOOD BAIG (2009), “NEW SOFTWARE TESTING STRATEGY”

N.E.D. University of Engineering & Technology

http://prr.hec.gov.pk/Chapters/369S-2.pdf
http://www.jot.fm/issues/issue_2007_01/column2/

43

51. Mohd. Ehmer Khan , Farmeena Khan “A Comparative Study of White Box, Black Box

and Grey Box Testing Techniques”, (IJACSA) International Journal of Advanced

Computer Science and Applications, Vol. 3, No.6, 2012

52. Paul C. Jorgensen (2013) published book on “Software testing: a craftsman's approach”

CRC Press

53. Wasif Afzal et al. (2008) “A Systematic Mapping Study on Non-Functional Search-based

Software Testing” paper available at http://www.researchgate.net/publication/221391274

54. W. K. Chan et al (2002), have published article on “An Overview of Integration Testing

Techniques for Object-Oriented Programs” Proceedings of the 2nd ACIS Annual

International Conference on Computer and Information Science (ICIS 2002),

International Association for Computer and Information Science, Mt. Pleasant, Michigan

(2002)

55. Shivkumar Hasmukhrai Trivedi, (2012), has published research article on “Software

Testing Techniques” International Journal of Advanced Research in Computer Science

and Software Engineering, Volume 2, Issue 10, October 2012

56. Leung, H.K.N (1989) has published article on “Insights into regression testing” Software

Maintenance, 1989., Proceedings., Conference on

57. M. Fagan, “Design and Code Inspections to Reduce Errors in Program Development,”

IBM Systems Journal, vol. 38, no. 2/3, pp. 258–287, 1999.

58. Hitesh Tahbildar at el(2011). “Automated software test data generation: Direction of

research” International Journal of Computer Science & Engineering Survey (IJCSES)

Vol.2, No.1, Feb 2011

59. http://www.rishabhsoft.com/blog/beta-testing-the-importance (2011)

60. Ms. S. Sharmila, “Analysis of Performance Testing on Web Applications” International

Journal of Advanced Research in Computer and Communication Engineering Vol. 3,

Issue 3, March 2014

http://books.google.co.in/books?hl=en&lr=&id=6WlmAQAAQBAJ&oi=fnd&pg=PP1&dq=Functional+software+testing&ots=Jsj-K3Okg0&sig=bb-ub8PKu4lB48sFdndwxm25Fgs
http://www.researchgate.net/publication/221391274
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leung,%20H.K.N..QT.&newsearch=true
http://www.rishabhsoft.com/blog/beta-testing-the-importance

44

61. Pooja Ahlawat (2013) “A Comparative Analysis of Load Testing Tools Using Optimal

Response Rate” International Journal of Advanced Research in Computer Science and

Software Engineering. Volume 3, Issue 5, May 2013

62. Chapter 4 ‘Capturing the Collected needs’, http://www.cse.msu.edu/~chengb/RE-

491/Papers/atlee-chapter4.pdf

63. 2013, Md Rounok Salehin “Missing Collected needs Information and its Impact on

Software Architectures:A Case Study” The School of Graduate and Postdoctoral Studies

The University of Western Ontario,London, Ontario, Canada

64. Mohd. Ehmer Khan, “Different Forms of Software Testing Techniques for Finding

Errors,” IJCSI, Vol. 7, Issue 3, No 1, pp 11-16, May 2010

65. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Collected needs

Elicitation". Technical Report CMU/SEI-92-TR-012. CMU / SEI. Retrieved January 14,

2012.

66. Donald Firesmith, Software Engineering Institute, U.S.A “Common Collected needs

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

67. Indika Perera, “Impact of Poor Requirement Engineering in Software Outsourcing: A

Study on Software Developers’ Experience”. Int. J. of Computers, Communications &

Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 2 (June), pp. 337-348

68. Collected needs Engineering A good practice guide, Ramos Rowel and Kurts Alfeche,

John Wiley and Sons, 1997

69. Chapter 4 ‘Capturing the Collected needs’, http://www.cse.msu.edu/~chengb/RE-

491/Papers/atlee-chapter4.pdf

70. http://www.tutorialspoint.com/software_engineering/software_engineering_overview.ht

ml

http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.jot.fm/issues/issue_2007_01/column2/
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm

45

71. http://www.jot.fm/issues/issue_2007_01/column2.pdf

72. http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-

reasons.

73. IndikaPerera, “Impact of Poor Requirement Engineering in Software Outsourcing: A

Study on Software Developers’ Experience”. Int. J. of Computers, Communications &

Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 2 (June), pp. 337-348

74. Collected needs Engineering A good practice guide, Ramos Rowel and KurtsAlfeche,

John Wiley and Sons, 1997

75. Donald Firesmith, Software Engineering Institute, U.S.A “Common Collected needs

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

76. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Collected needs

Elicitation". Technical Report CMU/SEI-92-TR-012. CMU / SEI. Retrieved January 14,

2012.

77. https://www.utdallas.edu/~chung/RE/Getting_collected needs_right-

avoiding_the_top_10_traps.pdf

78. Vidya Gaveakr, (2013) “A Study of Geographic Information System based computerized

framework to enhance the water supply system in Pune City” Thesis of Computer

Management Dept., Tilak Maharashtra Univerisity.

79. http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-

reasons.

80. K.K. Aggarwal and Yogesh Singh,”Software Engineering”,New age International

Publishers, third Edition, 2008.

81. http://www.umsl.edu/~sauterv/analysis/Fall2010Papers/Isserman/

82. http://www.practicalecommerce.com

83. http://www.reqharbor.com/

84. https://www.google.co.in/webhp?hl=en#hl=en&q=data%20dictionary

http://www.jot.fm/issues/issue_2007_01/column2.pdf
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.jot.fm/issues/issue_2007_01/column2/
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.reqharbor.com/
https://www.google.co.in/webhp?hl=en#hl=en&q=data%20dictionary

46

85. https://ankitmathur111.wordpress.com/2012/06/20/whats-whys-hows-of-software-

testing-wwh/

86. http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-

testing/

87. Thomas Kiihne , “What is Model?” Darmstadt University of Technology, Darmstadt,

Germany.

88. http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

89. http://www.voltreach.com/Development_Methodologies.aspx

90. Kirsten Kiefer, “The Impact of Requirement issues on testing”, Software Education

associates Ltd.

91. http://www.softed.com/resources/docs/impact-of-collected needs-issues-on-

testing.pdf

92. http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-and-

mitigate

93. http://kinzz.com/resources/articles/91-project-failures-rise-study-shows

94. S. Arun Kumar and T.Arun Kuma “Study The Impact Of Collected needs Management

Characteristics In Global Software Development Projects: An Ontology Based

Approach” in International Journal of Software Engineering & Applications (IJSEA),

Vol.2, No.4, October 2011

95. http://www.pune.ws/in/?list=it_software_companies-hinjawadi|here

96. http://www.pune.ws/in/?list=hadapsar-it_software_companies

97. http://www.pune.ws/in/?list=it_software_companies-kharadi

98. http://www.pune.ws/in/?list=it_software_companies-magarpatta

99. http://hiapune.in

100. Karl E. Wiegers More About Software Collected needs: Thorny Issues and

Practical Advice(Microsoft Press, 2006; ISBN 0-7356-2267-1)Chapter 2: Truths About

Software Requirement

http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/
http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/
http://www.voltreach.com/Development_Methodologies.aspx
http://www.softed.com/resources/docs/impact-of-requirements-issues-on-testing.pdf
http://www.softed.com/resources/docs/impact-of-requirements-issues-on-testing.pdf
http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-and-mitigate
http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-and-mitigate
http://kinzz.com/resources/articles/91-project-failures-rise-study-shows
http://www.pune.ws/in/?list=it_software_companies-hinjawadi|here
http://www.pune.ws/in/?list=hadapsar-it_software_companies
http://www.pune.ws/in/?list=it_software_companies-kharadi
http://www.pune.ws/in/?list=it_software_companies-magarpatta
http://hiapune.in/

47

101. Henry Johnson, An approach to software project management through collected

needs engineering, At Texas Tech University, Henry Johnson, December 2010

102. Davis , C.J, Fuller, R.M. Tremblay, M.C. & Berndt, D.J. (2006). Communication

Challenges in collected needs elicitation and the use of the repertory grid technique.

Journal of computer information Systems, 78

103. Bourque, P.; Fairley, R.E. (2014). "Guide to the Software Engineering Body of

Knowledge (SWEBOK)". IEEE Computer Society. Retrieved 17 July 2014

104. https://en.wikipedia.org/wiki/Software_development_effort_estimation

105. “Impact of software requirement volatility pattern on project dynamics: evidences

from a case study” International Journal of Software Engineering & Applications

(IJSEA), Vol.2, No.3, July 2011

106. https://www.dnb.co.in/TopIT/company_listing.asp?PageNo=1&q=employee&r

Books

1. Software Engineering for Students- A Programming Approach by Douglas Bell Pearson

Education. Pg 230-255

2. Software Engineering – A Practitioners Approach by Roger S. Pressman Tata McGraw Hill.

3. Quality, 5th ed., Prentice-Hall, 2010. Donna C. S. Summers. Pg 20-57

4. Total Quality Management, Prentice Hall, 2003 Dale H. Besterfield. . Pg 37-77

5. Information Technology Project Management -Kathy Schwalbe. Pg 7-177

6. Software Metrics A rigorous and practical approach – N Fenton, S Lawrence Pfleeger. Pg

170-255

7. .Research Methodology Methods and Techniques By C R Kothari and Gaurav Garg. Pg

52-109

8. .A Practitioner's Guide to Software Test Design, Lee Copeland, 2003. Pg 38-97

9. The Art of Software Testing, 2nd edition, Glenford Myers, et. 2004. Pg 76- 143

http://www.computer.org/portal/web/swebok/v3guide
http://www.computer.org/portal/web/swebok/v3guide
https://www.dnb.co.in/TopIT/company_listing.asp?PageNo=1&q=employee&r
http://www.amazon.com/gp/product/158053791X/ref=pd_sxp_elt_l1/102-6179150-6556164?n=283155
http://www.amazon.com/gp/product/0471469122/ref=pd_sim_b_1/102-6179150-6556164?%5Fencoding=UTF8&v=glance&n=283155

48

10. Software Testing Techniques, 2nd edition, Boris Beizer, 1990. Pg 14-65

11. How to Break Software: A Practical Guide to Testing, James Whittaker, 2002.

Pg123-254

Research Student Research Guide

Mrs.Ashvini Shende Dr.Prasanna Deshmukh

http://www.amazon.com/gp/product/0442206720/ref=ase_acmorg-20/102-6179150-6556164?s=books&v=glance&n=283155&tagActionCode=acmorg-20
http://www.amazon.com/gp/product/0201796198/ref=pd_sxp_elt_l1/102-6179150-6556164?n=283155

49

Chapter 1

Introduction

1.1. Introduction

This chapter gives explanation about basic terms used in thesis for the topic “A

Study of Collecting customer’s SOP in software development process and its impact on

Business of selected IT Companies”. [Annexure-II]

Customer SOP are also referred as Statement of Purpose for software

development Process.

21st century is known for computerization of all manual works, that human being

was doing so far. Computerization made man’s life easy and this computerization became

possible because of integration of hardware and software. Software plays most important

role in the automation of most of electronic appliances. Hence, in current market, demand

for all types of software is increasing day by day. This demand leads to development of

thousands of software applications that in turn increases number of software industries in

overall world.

Software project is nothing but collection of larger programmers with many

interactions and functional dependencies. It involves creation of a product that has never

been created before although the development processes are similar among other projects.

As a result, software development projects have a dismal track-record of cost and

schedule overruns and quality and usability problems [3]. In software industry, software

project terminology is used for the complete life cycle of these software applications.

Each customer’s SOP belongs to each software project.

Chapter 1: Introduction

 50

Software development projects are frequently time-driven, and project managers are

often put in the undesirable position of having to reduce the time to market. Combined

with the common misconception that a software project does not truly start until coding

begins, this notion leads to shortening, or even eliminating the preliminary analysis and

planning for the project. Presumably, software project managers do this because they

believe this practice will increase the success of the software project, with only a minimal

effect on the product's quality.

Software Development Life Cycle [27]

Software Development Life Cycle, also known as SDLC holds a very strong position in

the software development process. The SDLC helps one to determine or come up with an

approximate time that will be required to develop a software. Also, it helps in

determining the various phases through which a software undergoes throughout its life or

while it is being developed. Software Development Life Cycle has various stages or

phases, each of which has a specific task and definition. Each process is a successor of

the previous one, i.e., the phases should be executed in a specific manner.

Fig. 1.1 Software Development Life Cycle

http://technosoftwares.com/software-development-life-cycle/

Chapter 1: Introduction

 51

Following are the different stages of SDLC:

1. Requirement gathering & Analysis: The requirement from the customer are

gathered. Various questions like who is going to be the user of the product? What

does the software do? What type of data is to be stored? Etc. helps in gathering

the information from the customers. Once the customer’s SOP is gathered

properly, it is then analyzed and feasibility is checked to make sure if it a good

idea to move forward with.

2. Design: In this phase, the overall design of the product, i.e., the software and the

system is prepared based on the study of the customer’s SOP gathered in the

previous phase.

3. Implementation/ Coding: The software is then coded according to the design

made.

4. Testing: The developed product is then tested for the desired result and output.

Various test cases are applied on the software so developed to check if it gives the

desired output in every test case.

5. Deployment: Once the product undergoes the testing phase, it is deployed, i.e.,

delivered to the customer along with all the necessary documents such as user

manual. This phase also consists of beta testing part. Beta testing is done by the

users of the product.

6. Maintenance: Once the software is deployed to the customer, the tech team along

with the after sales team takes care of the software and any complaints from the

user of the software.

The key difference between engineering a software product and a hardware product is the

greater degree to which the intangible product must be conceptualized before it is built.

The first step to accomplishing this is clearly defining and understanding the user's

problem. Unlike a bridge or a building, software is an idea, and is therefore relatively free

from physical constraints of the real world. Computer logic offers many more

possibilities for perfect solutions, along with many more possibilities for bad ones. While

avoiding bad solutions is important in the physical world as well, it is much harder to

Chapter 1: Introduction

 52

accomplish when the number of possible solutions is greater. One of the key ways to

avoid choosing a bad solution is by clearly defining and understanding the problem to be

solved. The definition of the problem is the first and the most critical step of customer’s

SOP analysis. [17]

To develop huge number of software applications, every year these software

industries are spending billion and trillions rupees. Further, it becomes very difficult to

predict the success of software project because the scope of the project keeps changing

depending upon the market; hence the resources have to be re-allocated leading to

schedule slippage and cost overruns. Many software projects involve multiple entities

such as companies, divisions, etc., that may have varying interests. There is often a

feeling of disconnection between software developers and customer’s SOP engineering

team, each believing that the others are out of touch with reality resulting in

misunderstanding and lack of communication that in turn leads to failures in software

project.

The success rate of these software projects mainly depends on many factors.

However, if we see current software market situation, statistically, 31% of projects are

being cancelled before they ever are completed. 53% of projects cost twice as of their

original estimates, overall, the success rate is less than 30% [2]. However, it has almost

been a decade since the software industry has detonated. It has witnessed a remarkable

growth and a tremendous escalation not only in the core activities but also in the IT

enabled services. Despite the uninterrupted expansion, the software industry still has the

highest number of project delays and failures. According to the Standish report [1], 44%

of the software projects are challenged (late, over budget and/or with less than the

required features and functions) and 24% have failed (cancelled prior to completion or

delivered and never used). Thus, making a total of 68% (both challenged and failed)

which is quite exponential. Boehm [2] found that 15-35% of all the software projects

were cancelled outright while the remaining projects suffered either from schedule

slippage, cost overruns or failure to meet the project goals. Why did the project fail?

From symptoms to root cause -what are the major factors that cause software projects to

fail? What are the key ingredients that can reduce project failure?

Chapter 1: Introduction

 53

There are many factors and reasons due to which software projects fail like Lack

of user involvement, Long or unrealistic time scale, Poor or No Customer’s SOP,

Inadequate Documentations, Scope Creep, No Change Control System, Poor testing,

Lack of foresight in building efficiency markets, poor managerial decisions, Cost

overrun, Lack of an experienced project manager, Lack of methodology in the process,

inadequate well-defined Schedules etc. Among all these reasons if any of the reason

occurs in project then it leads to failure of software project. These are the some higher

level failure factors but there are many other hidden factors also responsible for the

failure of software project. Hidden factors means they are part of Software Development

Life Cycle project. Software Development Life Cycle (SDLC) is nothing but end to end

work flow of software project life. SDLC has different phases like customer’s SOP

gathering, software designing, development, testing, maintenance etc. But we go through

the functionality of these different phases of SDLC then these phases are also have many

factors which leads to failure of software project. For example if we consider the

customer’s SOP gathering phase of SDLC, it has following number of factors like

Failures of customer’s SOP gathering process, Lack of Knowledge about the business

context, Lack of Understanding of Business problems/opportunities, Missing of gaps to

be bridged, Inadequate number of Resources, Inadequate Time etc. Along with these

problems miscommunication between customer’s Requirement engineering team and

software development, testing team is one of the major factor for the project failure. Root

cause of this miscommunication and knowledge gap between customer’s SOP

engineering team and other teams is the volatile nature of customer’s SOP coming from

end customers or clients. A customer’s SOP in volatile nature is by default because we

cannot skip the changing nature of Customer’s demands. And here software developer

and testing becomes slave to fulfill the volatile customer’s SOP from the client.

Miscommunication and knowledge gap etc factors are mainly responsible for the failure

in customer’s SOP gathering process and in turn lead to failure of software project. If we

consider software design phase, designer may miss some important customer’s SOP due

to inadequate knowledge about the product and its impact to incomplete development of

software project. Same case can happen in software development phase where developer

can miss something important to implement due to knowledge gap and it lead to

Chapter 1: Introduction

 54

incomplete or erroneous software product. Ultimately, all these miss impacts of software

testing and maintenance phase and it leads to big failure in software project.

Considering such situation, there is a need to have error free software product so

that rate of software project failure will reduce. For error free software product, software

industry should mainly focus on failures present in each phase of SDLC process. Also in

current era, recognition of such failures is manual process. There is need of an hour to

automate such manual process so that software designer, developer and tester will have

list of failure factors readily in hand. Moreover, based on these failure factors, each

individual can take better action.

To give better solution for the above mentioned problems, in this research

researcher mainly focused on the analysis of different factors that are responsible for the

failure of software project. In addition, researcher has thrown light on the failure factor of

each phase of SDLC process. Researcher has collected information from many different

software companies to get better evidences for the analysis of such failure factors.

Researcher also focused on failure of customer’s SOP gathering process and its impact on

software design, software development, software testing and maintenance phase. Out of

the analysis of the different software failure factors, researcher has recommended better

action to overcome in such situations. Researcher has strongly focused on the design of

automatic model that help customer’s SOP-engineering team to identify the problems in

different software component design documents and will take actions to overcome such

problems. This automatic model is not only helpful for customer’s SOP engineering team

but also helpful for software design, development, and testing team.

Impact analysis is a key aspect of responsible requirements management. It

provides accurate understanding of the implications of a proposed change, which helps

the team make informed business decisions about which proposals to approve. The

analysis examines the proposed change to identify components that might have to be

created, modified, or discarded and to estimate the effort associated with implementing

the change. Skipping impact analysis doesn’t change the size of the task. [28]

Chapter 1: Introduction

 55

1.2. Research Problem

In today’s IT world, more and more online Applications and tools are used, which

help in carrying out various daily chores. If these applications and tools do not work

according to specification then it would cause inconvenience to all users. Many failures

are playing role as root cause behind the software not working properly. Failure of any

software leads to minimization of productivity, revenue of the software industry.

Software failure can occur in any stage of Software Development Life Cycle (SDLC). As

we have seen, that SDLC contains many phases like Customer’s SOP, Design,

Development, Testing and Maintenance. These phases can have their own failures and

success. If we consider Customer’s SOP phase, customer’s SOP collection is one of the

major activity of customer’s SOP phase and it is an early phase of the software

development life cycle. In Customer’s SOP gathering phase, customer’s SOP are the

foundation of the software development. They provide the basis for cost estimation and

for planning project schedules as well as for designing and testing specifications. The

success of software product, both functionally and financially is directly related to the

quality of the customer’s SOP. Although the initial sets of customer’s SOP are well

documented, but incorrect and incomplete customer’s SOP will occur during the software

development lifecycle. The reason behind the incomplete customer’s SOP can be the

constant changes (addition, deletion, modification) in customer’s SOP gathering process

during the development lifecycle. Such constant customer’s SOP is known as Volatile

customer’s SOP. Customer’s SOP in volatile nature are by default because we cannot

skip the changing nature of Customer’s demands. Moreover, here software developer and

testing team becomes slave to fulfill the volatile customer’s SOP from the client. It

affects the cost, the schedule and the quality of final product.

 In addition, the miscommunication between customers SOP engineer and

customer, knowledge gap, inadequate knowledge about the software product and

unavailability of supported infrastructure etc are others factors which impact on success

rate of software project. The miscommunication between customer’s SOP engineering

team and other teams is very well known and common factor. It also affects the cost and

schedule of the software project. This miscommunication happens from the customer’s

Chapter 1: Introduction

 56

SOP engineering team. But if we consider customer’s SOP engineering is one of the very

important phase of SDLC process and failure of this phase almost affects all the phases of

SDLC process. Customer’s SOP gathering process plays a driving role during the

software product creation. In every software project development life cycle, customer’s

SOP gathering and analysis phase plays the most important role to precede further

functionality of SDLC process. Stability of customer’s SOP potentially makes an impact

on the success of later phases in a software project, including the success of test cases.

According to Brooks [12], the toughest part in building a software system is to decide

precisely what customer’s SOP to be developed. Furthermore, the poor customer’s SOP

gathering and analysis may affect negatively at a later stage [13, 14]. Moreover,

predicting potential results of the later phases from early time of software development

can obviously help the project team to better deal with the risks of project rescheduling

and resulting in a low-quality product [15, 16].

As we have seen, failures of customer’s SOP engineering affects the all the phases

of SDLC process, software testing is one of well-known and impacted phase of SDLC

due to failure of customer’s SOP engineering phase. [4] In the development of large,

software-intensive systems, the system’s customer’s SOP are seldom, if ever, concluded

upon prior to commencing with systems development life cycle process. This research

shows that, in order to manage development, testing and domain complexities, instances

of customer’s SOP engineering (RE) and systems testing (ST) processes tend to inter-

weave. However, missing customer’s SOP information can cause one to create (or

recreate) the needed information during different software testing ST activities. While

backtracking in the software development process is known to be costly, the costs

associated with missing customer’s SOP in the SDLC process have not been investigated

empirically.

To overcome these problems there is need to understand the root cause of such

problems and tricks to solve the problems. In this research, researcher mainly focused on

understanding the root cause of software project failures by analysing different factors

which may affect the success rate of software product. Also thrown light on how poor,

incorrect and incomplete customer’s SOP gathering process affects the other phases of

Chapter 1: Introduction

 57

SDLC process. But while analysing these factors researcher came to know that this is

manual process and to complete this work there is need to collect related data from

experienced employees from different software companies. Also this process contains

manual intervention of human and as we know the nature of humans, it may create so

many mistakes and it strongly leads to failure of software project.

To overcome such manual intervention problem there is need to have generic,

automatic model which will identify the gaps, problems in the customer customer’s SOP

and will provide the exact problem type so that software customer’s SOP engineer can

correct his/her mistake may be by involving customer or by himself/herself. Hence,

researcher focused on analysis of impact of poor customer’s SOP gathering process on

SDLC process, which in turn affect the software testing process. In addition, researcher

has provided design of the model, which will analyse the customer’s SOP problems and

will provide the exact issue type present in customer’s SOP document just to make

customer’s SOP engineer to take correct action. The functionality of this model will be

automatically and for that user or customer’s SOP engineer just need to provide single

customer’s SOP document. To meet the customer customer’s SOP specifications there is

need to take error free customer’s SOP from client. In the current state of software

engineering, business analyst and designer use many customer’s SOP gathering

techniques but for error free customer’s SOP, there is need to understand which

customer’s SOP gathering technique is correct and most suitable. Hence in this research,

researcher has focused mainly on analysis of different customer’s SOP gathering

techniques and its impacts on software testing process. Along with different customer’s

SOP gathering techniques, researcher has also analysed different factors which may lead

to failure of software customer’s SOP gathering process. These factors have to consider

taking correct actions by the customer’s SOP engineer to make error free customer’s SOP

specifications and in turn to develop error free software product. Failure of customer’s

SOP gathering process always affects all the phases of SDLC process and hence in this

research, researcher has thrown light on how poor, incorrect and incomplete customer’s

SOP gathering process affects the software testing process.

Chapter 1: Introduction

 58

Karl E. Wiegers has mentioned following truths of software customer’s SOP in his book

“More About Software Customer’s SOP: Thorny Issues and Practical Advice(Microsoft

Press, 2006; ISBN 0-7356-2267-1)Chapter 2: Truths About Software Customer’s SOP,

which are considered as problem statement for the research topic , which could have

impact on software testing.[23]

1. Truth #1: If you don’t get the customer’s SOP right, it doesn’t matter how

well you execute the rest of the project.

2. Truth #2: Customer’s SOP development is a discovery and invention

process, not just a collection process.

3. Truth #3: Change happens.

4. Truth #4: The interests of all the project stakeholders intersect in the

customer’s SOP process.

5. Truth #5: Customer involvement is the most critical contributor to

software quality

6. Truth #6: The customer is not always right, but the customer always has a

point.

7. Truth #7: The first question an analyst should ask about a proposed new

customer’s SOP is, “Is this customer’s SOP in scope?”

8. Truth #8: Even the best customer’s SOP document cannot— and should

not—replace human dialogue

9. Truth #9: The customer’s SOP might be vague, but the product will be

specific.

10. Truth #10: You’re never going to have perfect customer’s SOP.

1.2.1 Focus of research and motivation

Literature shows that the collecting proper SOP from customer has impact on its

business of software development process and the factors responsible for development

process [5] [6]. Customer’s SOP to SDLC transition is defined as the most severe among

Chapter 1: Introduction

 59

different software information leaks between development phases [7]. Relative expense

for fixing defects, introduced in customer’s SOP, are three times higher if found during

architecture phase and five to ten times higher if found during construction phase of

development of the system [8]. But I could not find any empirical example of the impact

of poor (missing and incomplete) customer’s SOP on software testing process, in terms of

effort, time etc. This motivates us to look into the impact of missing, incorrect and

incomplete customer’s SOP and customer’s SOP’ attributes’ information during SDLC

process and its impact on Software testing.

C. J. , Fuller, Tremblay, & Berndt found accurately capturing system customer’s SOP is

the major factor in the failure of 90% of large software projects,” echoing earlier work by

Lindquist who concluded ”poor customer’s SOP management can be attributed to 71

percent of software projects that fail.[25]

Without a clear understanding of the problem, the tasks of formulating and prioritizing

solutions are likely to lead to wrong conclusions. Wrong conclusions result in

unnecessary solutions to wrong or non-existent problems. The resulting software

products are unmarketable and/or unusable.

Although there are some differences, the common element to any definition of

customer’s SOP analysis is the understanding of the user problem that the proposed

software project aims to resolve. As an example, Peter Horan defines customer’s SOP

analysis in terms of problem solving, and indicates that problem solving may be viewed

as a sequence of steps. A neat acronym, attributed to Bransford8, outlines five steps

involved in solving a problem, the first two of which

- Identify the problem and define the problem - constitute customer’s SOP analysis, as

shown in the following steps, while the last three usually involve customer’s SOP

management [18]

1. Identifying the problem to be solved

2. Defining the problem

3. Exploring alternatives

4. Acting on. Selected solution methods

5. Learning about the outcome of the chosen method

Chapter 1: Introduction

 60

Karl E. Wiegers defines customer’s SOP as "a specification of what should be

implemented.

[Customer’s SOP] are descriptions of how the system should behave, or of a system

property or attribute. They may be a constraint on the development process of the

system.[19]

Ralph Young describes the goals of customer’s SOP analysis as identifying incorrectly

elicited assumptions, ensuring consistency, increasing compliance, reducing

misunderstandings between organizations and individuals, improving the responsiveness

of suppliers, improving the satisfaction of all customers, writing good customer’s SOP,

and emerging the real Customer’s SOP. [21]

1.3 Basic terms used in Research Topic [Annexure-II]

Definitions

1) Customer’s SOP

The software customer’s SOP are description of features and functionalities of the

target system. Customer’s SOP convey the expectations of users from the

software product. The customer’s SOP can be obvious or hidden, known or

unknown, expected or unexpected from client’s point of view.

A customer’s SOP is a capability to which a project outcome (product or service)

should conform. The purpose of customer’s SOP management is to organize

customer’s SOP documents and allow the users to view and/or edit the customer’s

SOP. Customer’s SOP management begins with the analysis and elicitation of the

objectives and constraints of the software system. [24]

A software customer’s SOP specification is a description of a software system to

be developed. It lays out functional and non-functional customer’s SOP.

Software customer’s SOP specification establishes the basis for an agreement

between customers and contractors or suppliers (in market-driven projects, these

roles may be played by the marketing and development divisions) on what the

software product is to do as well as what it is not expected to do. Software

customer’s SOP specification permits a rigorous assessment of customer’s SOP

https://en.wikipedia.org/wiki/Software_system
https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirements

Chapter 1: Introduction

 61

before design can begin and reduces later redesign. It should also provide a

realistic basis for estimating product costs, risks, and schedules. [26]

2) Customer’s SOP Analysis

 Customer’s SOP analysis in systems engineering and software

engineering, encompasses those tasks that go into determining the

customer’s SOP or conditions to meet for a new or altered product or

project, taking account of the possibly conflicting customer’s SOP of the

various stakeholders, analysing, documenting, validating and

managing software or system customer’s SOP[22]

 Customer’s SOP analysis is important because "If you do not have the

correct Customer’s SOP, you cannot design or build the correct product,

and consequently the product does not enable the users to do their work

[20]

3) Customer’s SOP Analyst Responsibilities

 Fig. 1.2 Customer’s SOP Analyst Role.

 Understand and help the project manager create the project’s business case by

making sure all the high level customer’s SOP are listed in the project scope

https://en.wikipedia.org/wiki/Systems_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Stakeholder_(corporate)

Chapter 1: Introduction

 62

 Conduct a cost-benefit analysis to justify the feasibility of the proposed solution.

In this analysis, a comparison is made between the money that is being spent on the

project and the benefits obtained from it. Obviously, it must be studied whether the

project will be profitable before committing any time and resources for it.

 Identify the involved stakeholders by either getting the stakeholders list from

the initial stakeholders or conducting a study to analyze who all will be

involved/affected by the project. Sometimes, a combination of both these

techniques may also be used.

 Gather customer’s SOP from the key stakeholders by using customer’s SOP

elicitation techniques like brainstorming, customer’s SOP workshops, focus groups

and others.

 Validate customer’s SOP by cross-referencing then with other stakeholders and

try to get a buy in. It’s important to achieve a consensus against the customer’s

SOP before actually start building the solution.

 Analyze and interpret customer’s SOP for their viability against the business

objective. The last thing any client will want is ‘a fully functional product/service

that is not able to solve the problem the project was built for’.

 Recommend workarounds, value additions and remove solution bottlenecks for

the stakeholders. Since a Business Customer’s SOP Analyst is having knowledge

of both business and technology, he is able to propose solutions other might not

think of.

 Document customer’s SOP by creating use cases, functional and customer’s

SOP specifications documents. Also, Categorize customer’s SOP as functional

(contains the features required by the end-users), non-functional (customer’s SOP

for the performance and usability of the project) operational (operations that are

carried out in the background) and technical and accordingly segregate them in

different types of documents

 Not all customer’s SOP may be important and feasible considering the scope and

schedule of a project and thus these customer’s SOP customer’s SOP to be

managed and prioritized by the Business Customer’s SOP Analyst by working

closely with the business owners

 Prototype and model customer’s SOP – An important step towards letting the

end users ‘feel’ what they might get at the end of the project completion. Also,

prototyping aids in solution verification, error identification and getting an early

feedback regarding the user interface of the project.

Chapter 1: Introduction

 63

 Gain customer’s SOP sign-off from the key stakeholders by making sure all of

them are on the same level of understanding against the customer’s SOP and then

getting a written approval from them on the customer’s SOP to be developed.

 Overall, be the Customer’s SOP Gatekeeper and validate any new customer’s

SOP for their effect and impact on the existing customer’s SOP set of the project.

 Aid in development and testing of the product – Business Customer’s SOP

Analysts are frequently seen doing the unit testing of the features of their projects

and are also assisting the testing team in test case preparation

 Be a part of the Change Control Board – An optional responsibility where in an

event of any change to the customer’s SOP/s, the Business Customer’s SOP

Analysts is required to first assess the need of the change, deduce the impact of the

change to the complete project, propose any workarounds if possible and then

along with other board members (usually the Business representative, PM,

technical lead) collectively decide whether to go ahead with the change or not.

 Prepare end user documentation/manuals – An optional task which the

Business Customer’s SOP Analyst may have to do in case a formal Technical

Writer is not available

 Give client presentations, show and tell sessions, Overview sessions – Again, an

optional task which customer’s SOP to be covered by a Business Customer’s SOP

Analyst in case the Project Manager or Project Coordinator is not available

4) Software- Software means computer instructions or data. Anything that can

be stored electronically is software. Software is a collection of instructions that

enable the user to interact with a computer, its hardware, or perform tasks.

5) Software Testing [Annexure – II]

Software Testing is evaluation of the software against customer’s SOP gathered

from users and system specifications. Testing is conducted at the phase level in

software development life cycle or at module level in program code. Software

testing comprises of Validation and Verification.

Software testing describes the process of interacting with a piece of software with

the aim of revealing errors. The actual type of software to be examined has a large

influence on how this testing is performed.

http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/I/instruction.html
http://www.webopedia.com/TERM/D/data.html
http://www.webopedia.com/TERM/S/store.html
http://www.computerhope.com/jargon/c/compinst.htm

Chapter 1: Introduction

 64

Software Testing Basics

Software testing is performed as a means of validation and verification.

Validation describes the process of determining whether the right software is

built. For this, customer’s SOP documents describe what the software is supposed

to do. In contrast, verification describes the process of determining whether the

software is built right, i.e., if it is correct with regard to its design. As software

testing cannot be exhaustive in general it can never show the absence of errors.

Therefore, the aim of testing is to detect as many errors in the software as

possible.

Common terms such as error, fault, failure, bug or defect are sometimes

inconsistently used. The available literature is full of different definitions of such

terms.

A failure is defined as a deviation of the software from its expected delivery or

service, while the cause of such a failure is a fault (Grindal and Lindström, 2002).

The term error is used synonymously to fault.

A fault can have many different faces. For example, Goodenough and Gerhart

(1975) distinguish between performance and logical errors, where the former is a

problem of wrong timing and the latter is a problem of wrong functionality.

Goodenough and Gerhard further suggest distinction between different kinds of

logical errors, whether an implementation does not conform to a specification

whether a specification does not correctly represent the design, whether a design

does not fulfil the customer’s SOP, and so on. A well-known, detailed taxonomy

of faults is given in Beizer’s classical book on software testing (Beizer, 1990).

Each of these error types can manifest in different ways.

Some faults are more complex than others, and the effects of some faults might be

more severe than the effects of other faults. Testing usually does not have to focus

on one specific kind of fault, because the coupling effect (DeMillo et al., 1978)

states that complex faults are linked to simpler faults. Consequently, it is

sufficient to test for simple faults in order to detect complex faults.

Chapter 1: Introduction

 65

1.4. Proposed Solution for Problem

1.4.1. Data collection and Analysis:

 Thus in this research, Survey has been conducted where investigated at

what extent poor customer’s SOP impacts during the SDLC process and impact of that

poor (missing/incorrect) customer’s SOP on Software testing process. The main focus

behind to conduct the survey is to collect real and actual information from the

experienced people of different software companies. After collecting all information,

researcher has done pilot study on collected data to check the reliability of the data. Using

Cronbach's Alpha technique reliability of the data is 0.713. As result is 0.713 it proves

that collected data is reliable.

 In this survey, data has been collected based on gender, education, work

experience in terms of total number of years, designation as a to collect personal front

information. Research has been conducted on the employees who work in company

residing in PMC and PCMC areas of Pune city. For these employees, researcher has

targeted to collect General Background information of each employee. In term of general

background, researcher has considered so many points like Designer and Tester of

different software companies with respect to their Gender, Age, Education, Occupation

and office location in pune city.

 After general back ground information, researcher has focused on current

customer’s SOP gathering process that is getting executed in software industry. Under

this section, researcher has collected information like from whom and how customer’s

SOP analyst or designer collects customer’s SOP. And which kind of customer’s SOP

they are collecting in how much duration? Based on employees response researcher has

analyzed the types of customer’s SOP gathering ways and also analyzed the time duration

required to gather customer’s SOP from client or customer. Along with time duration and

type of process gathering techniques, researcher also collected information related to the

involvement of different people in customer’s SOP gathering process and interaction with

end user while doing customer’s SOP gathering. In this section researcher mainly focused

on different type of individuals from organization like designer, developer, tester,

manager among them who actually frequently getting involved in the customer’s SOP

gathering process and gathering actual customer’s SOP from client. After getting actual

Chapter 1: Introduction

 66

responsible person for customer’s SOP gathering, which kind of customer’s SOP

documents are useful for business analyst or designer or customer’s SOP engineers like

functional customer’s SOP document, customer customer’s SOP document, business

customer’s SOP document, component design specification etc.

This kind of documents always helps to all the teams of software industry.

Functional Customer’s SOP Document (FRD) is most important document as per most of

respondents. As FRD is created for the functionality of proposed software and it is useful

for Testing, development and designer team as well. Hence, most preference has been

given to this document. FRD always contains the detail information about integrated

functionality of proposed software and customer’s demands or customer’s SOP in the

technical language.

Hence, FRD should always be in sync with updated customer’s SOP and updated

functionality of domain. Component design document (CDD) actually contains the

information about technical, business functionality developed component of proposed

software, and hence this document is mainly useful for development and testing team.

Testing team uses CDD document just to understand business functionality in technical

terms. Component Specification Document (CSD) is needed for designer and

development team and hence employees from both these teams have given preference to

this document. Test Case Document (TCD) is mainly important document for testing

team and hence this document should be in sync with FRD that is the business

functionality of proposed document. Customer Customer’s SOP Document (CRD) is the

base for all documents.

 This document actually created by customer itself and accordingly business analyst

and designer creates BRD, FRD, and other documents. CRD always contains customer’s

specific demands or customer’s SOP and it is available in the customer’s understanding

language. BRD is created by considering CRD and it contains only business functionality

of proposed software. It does not have technical functionality and hence this document is

only helpful for business analyst and system architecture team.

There are different kinds of customer’s SOP gathering techniques like Personally

Meeting, Through Documents, and Online-Automated etc. Means using any of these

three customer’s SOP gathering techniques, business analyst and designer can collect

Chapter 1: Introduction

 67

error free customer’s SOP from client. Personally Meeting with client is the best

customer’s SOP gathering technique as it is nothing but face to face communication with

client and using this technique business analyst can easily clarify all the doubts regarding

customer’s SOP specification.

By using “Through Document” technique, business analyst can get customer’s SOP

in written and hence in future there will not be misunderstanding between client and

business analyst.

Online-Automated technique is useful when shared server is available for client as

well as software product provider. Therefore, that in one place all customer’s SOP can be

stored and client as well business analyst can access it at any time.

For correct resource allocation and management, researcher also collected the

information about the Business Analyst’s time consumption on non-customer’s SOP

gathering activities. In many organizations, it has been seen that due to workload,

business analyst need to work on non-customer’s SOP gathering activities as well.

Hence, due to this extra workload, business analyst could not focus on his/her actual

customer’s SOP gathering activities, which in turn leads to incorrect, incomplete

customer’s SOP.

 Following are the main activities that designer / customer’s SOP engineer does as

non-customer’s SOP activity

 Writing Customer’s SOP Documents

 Reviewing FRD/BRD

 Client Customer Interaction and Conducting Training for Testers and

Developers etc.

After collecting customer’s SOP gathering related information, researcher mainly

focused on due to which reasons software project gets failed and hence information has

been collected on this base line.

To analyze why software projects are getting failed, researcher has to consider

following factors

 Lack of user involvement

 Long or unrealistic time scale

 Poor or No Customer’s SOP

Chapter 1: Introduction

 68

 Inadequate Documentations

 Scope Creep

 No Change Control System

 Poor testing

 Lack of foresight in building efficiency markets

 poor managerial decisions

 Cost overrun

 Lack of an experienced project manager

 Well-defined Schedules etc.

After analyzing different factors responsible, which lead to failure of software

project, researcher has focused on erroneous or failed software project. Because non-

qualitative software project can also lead to failure of software and this plays important

role in the qualitative functionality.

To analyze the quality of product software testing plays major role in software

industry. In addition, in Software industry, testing is a branch where verification of

software’s functionality is happening.

Once development team complete their development and submit product to testing

team, then testing team start verification of functionality of software via test cases

execution. However, most of time software has too much issues or errors because of

many factors. Hence, it is quite important to understand which factors are responsible to

make software erroneous.

In this research following list of factors are considered

 Logic Design

 Documentation

 Human

 Environment

 Data

 Interface

 Customer’s SOP Errors etc.

Chapter 1: Introduction

 69

These factors are mainly responsible to create errors in software project. Hence,

in this research, researcher has recommended to overcome on these issues so

that the rate of software project failure will be reduced.

As we know that Customer’s SOP gathering is the process to collect demands,

customer’s SOP, or customer’s SOP from client. After collecting such customer’s

SOP, business analyst customer’s SOP to store and manage these collected

customer’s SOP. In software industry, many tools are available to collect record

and manage customer’s customer’s SOP. For this research, following number of

customer’s SOP gathering tools have been considered and analyzed.

1. Visual Paradigms

2. Project Management Software

3. Microsoft-Package

4. Data Dictionary

5. Use Cases and User Stories

6. ReqHarbor

7. MindTool

8. IBM Rational Doors

To major the effect of customer’s SOP gathering process’s failure, researcher has also

consider the involvement of different people in the customer’s SOP gathering process.

Software tester is the main focus in the analysis of people involvement in customer’s

SOP gathering process. As Customer’s SOP gathering covers many pros and cons like if

customer’s SOP is error free then there is lots of possibility of success of software project

but if anything miss by business analyst then it leads to error in customer’s SOP. Only

person might be miss few important points or alternation while collecting customer’s

SOP.

There is big possibility of lack knowledge about existing system or product and that lead

to incorrect or incomplete customer’s SOP collection from client. Hence, instead of only

one person like business analyst is not enough for correct customer’s SOP collection.

There is need to involve many people like Senior management team, senior architecture

team, testers, developers, clients, end users and subscribers in the discussion of

customer’s SOP gathering meeting or session. Because if any person misses any

Chapter 1: Introduction

 70

important point or not from the customer’s SOP gathering discussion then another might

catch that point and likewise correct and complete customer’s SOP can get collected from

client. Also due to involvement of senior management, project management, testers and

developers all the aspects of system (to be developed) are getting covered and considered.

After studying and analyzing different factors customer’s SOP gathering process,

researcher has focused on different factors of software testing process. Because the main

aim of this research is to analyze the impact of incorrect/incomplete customer’s SOP

gathering process on software testing process.

Software Testing is a process used to help identify the correctness, completeness and

quality of developed computer software. Testing is a process of executing a program with

the intent of finding an error. [8] Testing is a process rather than a single activity. This

process starts from test planning then designing test cases, preparing for execution and

evaluating status till the test closure.[9]

There are two types of software testing process has been considered i.e. manual and

automated testing. In manual testing, tester customer’s SOP to create test case, test data

and manually execute test cases with dummy data on particular software component but

in case of automated testing, test cases and dummy data has been created by testing tool

itself. From the analysis of these two types of testing researcher has recommended

automated testing is most useful testing in many software companies and other software

tester should use the automated testing to increase the productivity of software project.

Along with different types of software testing types, researcher has also considered

whether tester are using software testing tool or not. Many software testers responded to

use testing tools to make software testing process easy.

How testers are utilizing their complete daytime for test cases execution. As we know that

automated testing is quite easier, faster and increase the productivity of testing team, test

cases execution per day by using automated testing also increases the count of testing.

 But using manual testing as it is manual process and requires lots of human intervention,

hence, test cases execution using manual testing giving quite low count.

 Hence in this research survey has been carried out mainly on the test cases execution per

day using automated testing mode. Total number of test case execution per day also plays

important role in maintaining quality if software. As per 1 resource 4 test cases are

http://istqbexamcertification.com/what-is-a-software-testing/

Chapter 1: Introduction

 71

executed per day which is quite low number of agreed view of employee. But maximum

around 360 employees are agreeing that up to 8 test cases can be executed per day. And

yes it is correct count because 8 test cases executed per day it is standard count of

software testing. So as per survey it is recommended that execution of 8 test cases per day

using automated testing mode is best practice for software testing process. But in case of

testing scenarios are easy or there is urgency from client then in that case tester can test up

to 16 or 20 test cases in one day.

Testing team uses different documents to verify the product functionality and hence in this

research, researcher has analyzed the significance of different documents like

 Customer Customer’s SOP Document (CRD),

 Business Customer’s SOP Document (BRD),

 Functional Customer’s SOP Document (FRD),

 Component Specification Document (CSD),

 Component Design Document (CDD),

 Test Case Document (TCD) etc.

To analyze the impact of poor customer’s SOP gathering and analysis process there is

need to know how productivity of software testing team can be increased and what are the

hurdles that can be minimizes the success rate of software testing phase of SDLC process.

 Hence in this research, researcher has considered cost factor which is most important

factor for the failure or success of software project.

Cost is being calculated based on the following list of factors i.e. Resources, software,

Hardware, Network, Infrastructure (electricity, rent etc.).

 From the analysis researcher has concluded that Hardware, resources are two important

factors that software testing customer’s SOP to focus because these two factors affects

success rate of software project.

Finally yet importantly, to complete the main objective of this research, researcher has

focused on different factors of customer’s SOP gathering process that are actually

affecting the software testing process. As we know that Poor customer’s SOP gathering is

nothing but issues present in the collected customer’s SOP from client or customer.

A poor customer’s SOP is nothing but erroneous customer’s SOP. As we saw in the

section of failure of software process, poor customer’s SOP always affect complete

Chapter 1: Introduction

 72

SDLC cycle and hence in software testing point of view, there is need to understand what

kind of work actually getting affected mainly in software testing team.

Software testing team mainly deal with following list of tasks:

 Addition of test case

 Deletion of test case

 Modification of test case

 Re-execution of test case

 Verification of newly added functionality due to customer’s SOP change

 Test results creation for newly added customer’s SOP etc.

If there is change in customer’s SOP or customer’s SOP is incorrect then it might affect

to the complete list of above tasks. Test case creation, review and update in test cases is

basic activity of software testing team.

While writing test cases, test team follows Functional Customer’s SOP Document (FRD)

and as we know that FRD is nothing but one of the customer’s SOP document created by

customer’s SOP team. But if FRD is incorrect or incomplete then test cases created by

testing team can also be incorrect because incorrect FRD obviously lead to incorrect or

incomplete test cases. Incorrect or incomplete customer’s SOP means poor customer’s

SOP and if customer’s SOP is poor then definitely it affects on the work of software

testing team.

 Along with different factors of customer’s SOP gathering process, which actually

leads to failure in software testing process, researcher also studied and analyzed different

overheads of software testing process due to poor customer’s SOP gathering process. Due

to issues present in customer’s SOP, many overheads can occur in software testing

process.

For this research, researcher has considered following list of overheads:

 GAP in Testing,

 Increase in System Failures,

 System Testing Delay,

 Inaccurate Testing Estimation,

 Test Team Credibility,

 Delay Benefit Realization.

Chapter 1: Introduction

 73

An overhead is the extra burden on testing team and it always decreases the productivity

of testing team. Above listed overheads are mostly found as factors which affects

software testing productivity. Hence, it is quite important to understand which overhead

is faced by testing team most. After analyzing different overheads researcher has

recommended that Gap in Testing is the major overhead that software testing team is

facing due incorrect customer’s SOP gathering process.

Software testing process also gets impacted due to some common issues present in

customer’s SOP gathering process. Software is developed according to Clients

Customer’s SOP. Here some customer’s SOP issues are discussed with software

developer and tester, which may affect software-testing process.

Design or customer’s SOP issues can occur in any phase of SDLC process. The

possibility of rework due to customer’s SOP issues or defect can be minimum if these

issues are getting solved in customer’s SOP or development phase itself but if customer’s

SOP issues comes in testing phase then it affects testing, customer’s SOP and

development phase as well.

In this research, following parameters has been considered as software testing issues like

 Absence and Incompleteness,

 Incorrectness, Ambiguity and Vagueness,

 Volatility, Traceability etc.

After analyzing these issues, researcher has recommended that ‘Absence and

Incompleteness’ is the major factor which leads to failure of software testing process.

1.4.2. Model Design for Customer’s SOP Management to Reduce Software Failures

Considering the present state of impact of poor customer’s SOP gathering process

on software testing, a model to reduce software failure in testing phase need to design

through the present research work. This new model is designed named as Customer’s

SOP Management to Reduce Software Failures (RMRSF). The main functionality of

RMRSF model is to provide better software testing actions for corresponding poor

customer’s SOP. Model has 3 phases like input, processing and output [9, 10]. RMRSF

model integrates the functionality of different modules like Input module, processing

module and output module

Chapter 1: Introduction

 74

1.4.2.1.Input Phase

Input phase will contain input module which deals with input data collection from the end

user and this input data will be in the form of functional customer’s SOP document

(FRD) or Customer Customer’s SOP Document (CRD). In this phase, Customer’s SOP

document can get from your local computer drive. Main functionality of this phase is to

get exact type and customer’s SOP document and call the processing module for further

analysis.

1.4.2.2.Processing Phase

Processing phase deals with integrated functionality of Reading Customer’s SOP

document, analyzing customer’s SOP document by call Customer’s SOP Management

Engine (RA Engine) and Execution of Output module to generate list of Issues, Impacts

and Actions for particular type of customer’s SOP issue. Processing phase contains

processing module which will deal with integrated functionality of Reading Customer’s

SOP document, analyzing customer’s SOP document by call Customer’s SOP

Management Engine (RA Engine) and Execution of Output module to generate list of

Issues, Impacts and Actions for particular type of customer’s SOP issue.

In processing phase, RM Engine gets call to analyze exact requirment issue type.

Customer’s SOP Analysis Engine (RA Engine) will be the major part of processing

module and will be developed based on the customer’s SOP issues responded by

respondent from different software companies. For RM Engine, following customer’s

SOP issues will be considered [11].

1. Incomplete/Absent

2. Incorrect

3. Ambiguity & Vagueness

4. Volatility

5. Traceability

RAEngine is heart of RMRSF module. Without RAEngine, RMRSF can not do anything.

RAEngine is basically works on if else ladder concept. It first checks what is exact

requirment issue present in provided requirment document and based on that decide type

of customer’s SOP issue. For deciding appropriate customer’s SOP issue, RAEngine

Chapter 1: Introduction

 75

analyze requirment document by compairing it with software system architechure

document and tries to provide exact customer’s SOP issue. RAEngine takes Requirment

document as an input and generates customer’s SOP issue type by considering many

isssues present in provided customer’s SOP document.

 As metioned above, RAEngine maninly focuses on five type of requirment issues

like incomplete,incorrect, Ambuiguity,vaguess, volatility and traceability etc. [4]. Based

on different conditions like if track table is missing or improper change control process

found then its mark customer’s SOP issue as traceability issue. If functional or non-

functional customer’s SOP are missing then it marks requirment issue type as incorrect. If

there is change between old requirment document and new customer’s SOP document

then it marks requriement issue as volatility. If customer’s SOP followed poor customer’s

SOP definitoin then it marks customer’s SOP issue as Ambiguity and Vagueness. Like

wise it checks for Incomplete/Absence customer’s SOP issue. Here using if syntax

RAEngine verifies many conditions to decides appropriate requirment issue.

 Once requirment issue is identified by RAEngine, it returns that customer’s SOP

issue back to processing module and then processing module works on further analysis.

1.4.2.3. Output generation phase

Output phase deals with generation of output based on input argument as a

customer’s SOP issue type provided by processing phase. Output phase has module

named as Output Module and this module is basically gets executed by Processing

module. Main functionality of output module is to get customer’s SOP type issue as an

input and based on this input query to database to fetch corresponding list of Issues,

Impacts and Action points. This module is displaying list of Issues, Impacts and Actions

based on corresponding customer’s SOP issue type.

Output module deals with database to fetch records from three different tables named

as Issue, Impact and Action. The perquisite of this model is these tables should get

created with data in database.

Chapter 1: Introduction

 76

1.5. Thesis Organization

Chapter 2 discusses the importance, scope, objectives and hypothesis of the study. It also

describes the research methodology and research design with primary and secondary data

collection. Along with Data collection, it also explains different data collection methods.

It also contains the limitation of the study and chapter schemes.

 Chapter 3 discusses the relevant background literature and research gap.

 Chapter 4 presents the data analysis, results and interpretations.

 Chapter 5 Gives Conclusion and Suggestions which provides model with detail design

Customer’s SOP Management to Reduce Software Failures Model (NMRSF)

Reference:

1. The Standish Group Report (CHAOS). (2003). Retrieved November 2013, from

:http://www.projectsmart.co.uk/docs/chaos-report.pdf.

2. Boehm, B., & Bose, P. (1994). A collaborative spiral software process model based

on Theory W. Third International Conference on the Software Process, pp. (59-68).

3. Cao, L., & Ramesh, B. (2008). Agile Customer’s SOP Engineering Practices: An

Empirical Study. IEEE Software, 25 (1), pp. (60-67).

4. 2013, Md Rounok Salehin “Missing Customer’s SOP Information and its Impact on

Software Architectures:A Case Study” The School of Graduate and Postdoctoral

Studies The University of Western Ontario,London, Ontario, Canada

5. Gross, A., Doerr, J. (2012). What do software architects expect from customer’s SOP

specifications? results of initial explorative studies. IEEE First International

Workshop on Twin Peaks of Customer’s SOP and Architecture, IEEE Software, pp.

(41-45).

This chapter deals with introduction about the research. It explains the research

problems in details. Also provide the proposed solution for the research problem. It

also explains the motivation behind this research. It also listed the list of chapters this

thesis will have.

Chapter 1: Introduction

 77

6. Lee, S., & Rine, D. (2004). Missing Customer’s SOP and Relationship Discovery

through Proxy Viewpoints Model. 19th annual ACM Symposium on Applied

Computing, pp. (1513-1518). Nicosia, Cyprus.

7. George, B., Bohner, S. A., & Prieto-Diaz, R. (2004). Software information leaks: A

complexity perspective. Ninth IEEE International Conference on Engineering

Complex Computer Systems (ICECCS'04), pp. (239-248). Florence, Italy: IEEE

Computer Society.

8. Gumuskaya, H. (2005). Core Issues Affecting Software Architecture in Enterprise

Projects. Proceedings of World Academy of Science, Engineering And Technology,

volume 9, pp. (35-41)

9. Thomas Kiihne , “What is Model?” Darmstadt University of Technology, Darmstadt,

Germany.

10. http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

11. Kirsten Kiefer, “The Impact of Customer’s SOP issues on testing”, Software

Education associates Ltd

12. Brooks, F. 1987. No Silver Bullet: Essence and Accidents of Software Engineering.

IEEE Computer, Vol. 20, No. 4, April 1987, 10-19.

13. Jayaswal, B. K., Patton, P. C. 2006. Design for Trustworthy Software: Tools,

Techniques, and Methodology of Developing Robust Software, 1st Edition.

(September 2006), Prentice Hall edition.

14. Zowghi, D. 2002. A Study on the Impact of Customer’s SOP Volatility on Software

Project Performance. Proceedings of Ninth Asia-Pacific SE Conference (APSEC‟

2002), IEEE Computer Science.

15. Taghi, M., Khoshgoftaar, N., Sundaresh, N. 2006. An empirical study of predicting

software faults with case-based reasoning. (June 2006), Software Quality Control.

16. Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating fault prediction models.

(October 2008), Empirical Software Engineering.

17. Vera Berenbaum The Effect of software customer’s SOP analysis on project success

and product quality in Rochester Institute of Technology RIT Scholar Works

18. Bransford, J. D. and Stein, B. S., The IDEAL Problem Solver, Freeman, 1984.

http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

Chapter 1: Introduction

 78

19. Wiegers, Karl E., "When Telepathy Won't Do: Customer’s SOP Engineering Key

Practices", Process Impact, www.processimpact.com/articles/telepathv.html [Wiegers

attributes the definition to Ian Sommerville and Pete Sawery, Customer’s SOP

Engineering: A Good Practice Guide. Wiley, 1997.]

20. Suzanne and James Robertson, Mastering the Customer’s SOP Process. ACM Press,

1999

21. Ralph R. Young, Effective Customer’s SOP Practices. Addison-Wesley, 2001, page

108.

22. Kotonya, G. and Sommerville, I. 1998. Customer’s SOP Engineering: Processes and

Techniques Chichester, UK: John Wiley and Sons.

23. Karl E. Wiegers More About Software Customer’s SOP: Thorny Issues and Practical

Advice(Microsoft Press, 2006; ISBN 0-7356-2267-1)Chapter 2: Truths About

Software Customer’s SOP

24. Henry Johnson, An approach to software project management through customer’s

SOP engineering, At Texas Tech University, Henry Johnson, December 2010

25. Davis , C.J, Fuller, R.M. Tremblay, M.C. & Berndt, D.J. (2006). Communication

Challenges in customer’s SOP elicitation and the use of the repertory grid

technique. Journal of computer information Systems, 78

26. Bourque, P.; Fairley, R.E. (2014). "Guide to the Software Engineering Body of

Knowledge (SWEBOK)". IEEE Computer Society. Retrieved 17 July 2014

27. http://technosoftwares.com/software-development-life-cycle

28. http://www.jamasoftware.com/blog/change-impact-analysis-2

http://www.computer.org/portal/web/swebok/v3guide
http://www.computer.org/portal/web/swebok/v3guide
http://technosoftwares.com/software-development-life-cycle

79

 Chapter 2

Research Design and Methodology

2.1 Introduction

 In chapter 1 introduction of title is explained and frequently used basic

terminology has been explained. Chapter 1 gives information about research problem,

proposed solution of research problem, Suggested Model for problem.

 The study is related to the Collecting needs from customer which is termed as

SOP for software product development. Survey based research methodology has been

used to carry out this research. Data collection for this research is done using purposive

and convenience sampling methods. This is out of necessity because it was almost

impossible to obtain a perfect random sample. PMC and PCMC study area has been

considered in the scope of this research. Software companies reside in Hinjewadi,

Kharadi, Viman Nagar, EION IT Park, SB Road area visited to collect sample data. It

was not possible to identify the perfect sample population, due to the unavailability of

complete and reliable data about. The method of selection of the sample is described in

this chapter and after that the nature of primary data and secondary data is explained.

2.2 Statement of the Problem

A good set of needs of SOP are the base for any software development process.

Collecting needs from customer is playing main role to estimate cost and schedule as well

as developing design and testing specifications. [1, 2] Hence quality of needs playing

Chapter 2: Research Design and Methodology

80

main role in the success of any software project. Even though Customer’s SOP needs are

freezed in initial phase of software project but it may got change throughout the software

development lifecycle. Change in need means it can be addition, deletion or modification.

Such kind of change in need during SDLC (Software Development Life Cycle) [9]

always impacts the cost, schedule and quality of software product [2]. The reason to fail

any software product is mainly depends upon the quality of collected needs. Hence, a

good set of customer’s needs mentioned in SOP are needed for any software project, to

be successful. But if customer’s needs are not specified clearly, correctly against what the

system should do, then many projects will fail in this case. In fact, many systems have

just been given a deadline for delivery, a budget to spend, and a vague notion of what it

should do.

2.3 Importance of the Study

To make life easy there is need of automation and automation is possible only due to

computerization of most of electronic appliances. Computerization is nothing but

integration of hardware and software. Software plays most important role in the

automation in most of electronic appliances. Hence, demand for qualitative softwares

increasing highly to make electronic appliances. However, some pitfalls may lead to

create failures in softwares. Collecting needs from customer process is one of the major

factor to create failures in software development. Collecting needs from customer process

is the base for software development lifecycle (SDLC) process. To develop any software

there is need to have correct and complete customer needs then only quality software

product will produce. Quality of Software or Software Quality is a term deals with

Chapter 2: Research Design and Methodology

81

verification of developed software and developed software should meet the customer

satisfaction [7]. Most of developers from MNCs make their primary goal to produce

qualitative system that meets the needs of the user. Hence, to develop quality software,

developers should focus on correct and complete needs from customers. Along with

correct and complete needs, verification and validation of software product should be

mandatory. Validation and verification of software product functionality is being done by

testing team. Tester from Software Testing should also concentrate on qualitative

customer needs. If customer needs are incorrect, incomplete then it is definitely going to

impact of Software development process and business also.

Following are the few characteristics of needs related points which may responsible

for the failure of software product.

1. Absent and incomplete requirement

2. Incorrect Requirements

3. Ambiguity and vagueness

4. Volatility

5. Traceability

If customer’s need is incomplete or important part is absent in requirement

document then it might lead to failure in all the phases of SDLC. Incomplete customer’s

need always lead to incomplete functionality and delay in project delivery to client. The

reason behind incomplete customer’s need is delay from customer or business analyst

may have lack of product knowledge. Hence as per most of respondent Incomplete or

absent customer’s need is the root cause of software failure. Hence, researcher of this

Chapter 2: Research Design and Methodology

82

research recommends that customer’s need should be complete or should not be missing

any important part.

Volatility is nothing but changes in customer’s need. Volatility mainly happens due to

changes in customer’s demands or lack of product knowledge of requirement analyst.

Customer’s need plays base role for all phases like development, testing etc. Because

development team works on the base of requirement document but if, requirement

document frequently is changed then development team need to rework according to

changes in requirement document. Changes in customer’s need also affect the testing

phase as well. If customer’s need gets changed then testing team also need to retest all the

test cases and need to verify updated functionality. Most of time testing team needs to add

test cases as well for updated customer’s need. Hence, updated customer’s need always

lead to rework for development and testing team. In turn, volatility leads to increase the

workload for development and testing team, and it leads to decrease productivity of both

teams. If productivity decreases then it increases failure in software productivity.

Incorrectness is also important factor in customer’s need issues. Incorrectness

generally happens due to inadequate knowledge of business analyst. Business analyst does

not understand complete functionality of software product and hence they cannot map

customer’s demands and software product functionality. Most of time, Incorrectness

occurs due to incomplete of customer’s need or missing or absent of important part in

requirement document. Incorrect customer’s need always lead to development and

verification of incorrect functionality and in turn it affects to productivity of development

and testing team.

Chapter 2: Research Design and Methodology

83

Ambiguity and vagueness issue occur due to lack of product knowledge. Most of

business analyst having less experience and hence they don’t aware about the complete

functionality of software product. Hence, they can not map customers’ demands with

functionality of their software product. Due to lack of product knowledge, customer’s

need becomes vague and ambiguice. But if customer’s need becomes vague and

ambiguice then development and testing team needs to consume more time on their work.

It requires more time for customer’s need understanding and implementation. Testing

team also need to consume more time on customer’s need understanding and test cases

creation.

If customer’s need is volatile then there is need to keep track of each and every

change for the betterment of SDLC process. So that testing and development team can

verify component functionality as per latest changes made in requirement document. To

keep such changes there is need to have common place so that requirement, development

and testing team can have easy access of this place. In software engineering such place is

know as traceability. Traceability always gets updated by requirement team if requirement

gets change. But if any change is getting miss in the traceability sheet then it might lead to

incompleteness of customer’s need and as we saw above, incompleteness of customer’s

need leads to failure of software product.

2.4 Scope of the Study

The study is related to the collecting needs from customer for software development

process and its impact on business of IT companies. Pune city has been considered for this

Chapter 2: Research Design and Methodology

84

research work. As this research mainly focused on collecting needs from customer for

software development process and its impact on business of IT companies.

The scope of this research is software companies resides in

1. PMC area

2. PCMC area

Pune is the second largest city in Maharashtra and well known for educational facilities,

research institutes and software industry. Due to the good educational facilities, Pune is

called as "The Oxford of the East" and hence students from all over the world are getting

attracted towards pune city. Due to big software industry, pune is transforming into

vibrant modern city with bubbling activities in the IT and Hi-Tech sectors. Thousands of

software companies can be found in pune city. And as there are software development

industries, SDLC process surely gets followed by all software companies.

During the course of the present study the researcher has focused on collecting

needs from customer for software development process and its impact on business of IT

companies.. Also it is focused on provision of model which will help to reduce the failures

of software product due to customer’s needs collecting process. This model has been

designed by considering parameters like cost, time etc. The researcher has also done

analysis of current scenarios of software development process and tools used in software

industries.

 The geographical location of Pune city and software companies present in PMC

and PCMC are indicated by the map 2.1, 2.2 and 2.3 as follows.

Map 2.1 Map of Pune city

Chapter 2: Research Design and Methodology

85

Map 2.2 Map of the software companies present in PMC area

Map 2.3 Map of the software companies present in PCMC area

Figure 2.1.Source: http://www.mapsofindia.com/maps/maharashtra/pune.htm (23/7/2008)
[3]

Chapter 2: Research Design and Methodology

86

Figure 2.2 : http://www.mapsofindia.com/pune/software-company-pune.html[4]

http://www.mapsofindia.com/pune/software-company-pune.html

Chapter 2: Research Design and Methodology

87

Figure 2.3 :Source : https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-

8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:

0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=cl

assic&dg=brw[5]

2.5 Objectives of the study

To study collecting needs process in software development and its impact on business

of software development. With this main objective, the other objectives are as

follows:

1. To study various task undertaken for software development process in IT

Companies.

2. To Study the various tools and techniques used in collecting initial needs for the

software product development.

Chapter 2: Research Design and Methodology

88

3. To identify various factors responsible for the software development.

4. To study impact of Collecting needs from customer on business of IT

companies.

5. To draw conclusion and suggestions.

2.6 Hypothesis of the Study

In consistent with the objectives, the researcher formed following hypotheses:

Hypothesis 1: There are hurdles in collecting customer needs in software

development.

Hypothesis 2: IT Industry follows standard practices to use licensed or well-known

tools to collect initial needs from customer in software development.

Hypothesis 3: If collected needs are not freezed, then it has impact on business.

2.7. Research Methodology

The researcher has used survey based research methodology to carry out this

research. The study is related to verify the impact of poor requirement analysis on

software testing. The researcher has considered the Pune and PCMC area for the

study. This study is primarily focused on awareness of various tools used during

development of software and problems face by testers in software companies in Pune

and PCMC.s that is why primary data was collected from employees of Software

Company in Pune. Researcher has used interview and questionnaire technique for

data collection. Researcher has collected data from software companies from

Hinjewadi, Magarpatta (Hadapsar) ,Shivaji Nagar and Kharadi.

Chapter 2: Research Design and Methodology

89

Table No.2.1 Software Companies

Type of Industry Total Companies 5 % Sample of

Companies

Software

Companies

424 21

Sr. No. Company Name No. of Employees

1 Accenture 7

2 Amdocs 24

3 Atos 46

4 Davachi 7

5 BMC 6

6 Capegemini 53

7 Citi Bank 6

8 Congnizant 9

9 Hummingbird 9

10 Calsoft 16

11 Neptune Inf Tech 2

12 IBM 4

13 KPIT Cummins 38

14 Patani 7

Chapter 2: Research Design and Methodology

90

 Table No. 2.2 Number of Employees Company wise

By applying purposive sampling, Total 21 companies have been identified for study

which has more than 250 cr. Turnover. [93-98]

By applying Quota sampling, Researcher has divided respondents in 3 categories

Business Analyst, Designer, Testers.

This research study is related to study the collecting needs from customer for software

development process. It utilizes both primary and secondary data. The secondary data

utilizes already available information both published as well as unpublished. For primary

data however such a facility is not available and it has to be collected by using the survey

method. The scope of research is limited; the survey is undertaken by obtaining a

purposive and quota sample. The description of the research methodology required for

the process of obtaining a sample as well as the nature and size of sample should be

adequately explained. Purposive and convenience sampling techniques involves the

selection of respondents based on the important characteristics under study such as where

15 Persistent 9

16 Principal Optima 4

17 CLSA 7

18 Sigma Soft 51

19 Symphony 51

20 Tech Mahindra 34

21 Wipro 10

Chapter 2: Research Design and Methodology

91

they work, position in organization, specific knowledge related to the research problem

etc.

To study various factors affected if client SOP (Statement of Purpose) keep on changing

during software development Process, researcher has collected data from 10 Companies.

From each company 5 clients data has been gathered for measuring impact if client is

asking for changes in SOP frequently during software development process.

Sr.No Company Name

1 KPIT Cummins

2 SAP

3 TechHighway

4 Harmony

5 Intelizign

6 L & T Infotech

7 ATOS

8 Zensar

9 CLSA

10 Davachi

 Table No. 2.3 List of Companies selected for analyzing SOP

Chapter 2: Research Design and Methodology

92

2.7.1 Primary data

Primary data are obtained through a survey. Such data is first hand and original in

nature. Several methods are used for collecting primary data like telephone survey/e-mail

survey, mail questionnaire, personal observation and interviews. Particularly in survey,

the important ones are – observation, interview, questionnaire, schedules, e-mail survey,

telephone survey etc. Each method has its advantages and disadvantages. The primary

data collected by the researcher is explained in the following manner:-

2.7.1.1 Selection of the city

For the present research work Purposive sampling method has used to select the Pune

city as Universe of the study. Pune city is also known as “The Oxford of the East" and a

center of IT activity. In this research, Pune city is defined as a scope for the study of

impact poor requirement gathering on software testing and designing of model to reduce

software product failures.

The type of research is Exploratory Design in which the Survey Method used for data

collection; the focus is given to the aspects of tester’s problem in software companies.

2.7.1.2 Universe of the Study

For the present study Software companies located at Pune and PCMC area has been

treated as a universe of study by using purposive sampling method.

2.7.1.3 Unit of the Study

21 Software Companies considered a sample for conducting review to understand the

basic problems and technical problems while testing the software.

Chapter 2: Research Design and Methodology

93

2.7.1.4 Sampling procedure:

The study units (Hinjewadi , Hadapsar, Kharadi, ShivajiNagar) approximately covers

400 testers.

 2.7.1.4 Sample size and Groups:

As per Krejcie and Morgan’s law(1970) if population is in between 75,000 and upto

10,00,000 then 384 sample size should considered so here in research researcher has

considered it as 400.

In this research, 400 samples are collected from Business Analyst, Designer and

Tester from different software companies they reside under PMC and PCMC area. They

are shown in Table No.2.3

Sr.

No.

Constituents Number of Sample points in the sample

from employees of software companies

1 Employees 400

Table No. 2.4: Selection of Sample

2.7.1.5 Parameters of Development:

 Data collection :

Primary Data Collection: Primary data for various samples has been collected in the

following ways:-

a. Information has been collected from Business Analyst, Designer, and testers through

the Questionnaire and interview schedule.

Chapter 2: Research Design and Methodology

94

b. Data also has been collected through personal field visits to companies and focus

group discussions with end users, who are using software for various uses.

 Secondary Data Collection: The secondary data will be collected from books, journal

articles and websites, newspapers and conferences souvenir.

 Data Analysis

The collected data has been analyzed by quantitative and qualitative ways. The SPSS

(Statistical Package for Social Science Research) is used for quantitative analysis.

2.7.2. Secondary Data

 The Secondary data is used to study the awareness and usage of SDLC

models and impact of software requirement gathering process on software testing with

the help of earlier research studies made by others. It is also used to find out the merits

and demerits and limitations of different SDLC models and awareness of collecting

needs from customer’s process with the help of available data. It is helpful to study the

objectives and hypotheses framed for the present study.

The secondary data is collected from reputed journals and magazines, newspapers,

articles, internet websites and archives. For collecting this data the researcher has visited

various libraries. A few of these libraries are Jaykar Library (SPPU University),

Yashada, British Library, Indira College of Science Library and Indsearch Library.

2.8 Statistical tools used for this research

For the current research, primary data has collected by visiting software

companies. As explained above secondary data has been collected from existing journals,

books etc. For this research, primary and secondary data has been analyzed with the help

Chapter 2: Research Design and Methodology

95

of software like Microsoft Excel, SPSS (Statistical Package for Social Science) with

version 19.0. Statistical techniques like Percentage, Average, Cross tabulation, the

techniques of hypotheses testing etc. are also used. Charts and graphs are also prepared

and used to support the analysis of the data wherever necessary.

2.9 Time Budgeting

Duration from 2012 to 2014 is considered for a study collecting needs from customer’s

for software development process and its impact on business

2.10 Limitation of the Study

The scope of research is limited to the data published and sources available from different

software companies located in PMC and PCMC area of Pune City. Technical details of

the system do not covered in the scope of this research. Most of part of this research is

carried out based on secondary data. While selecting secondary data for model designing

to reduce the software product failures, the data found as scattered in different software

companies. Total number of population of properties and population in respect of each

software company can not be exactly ascertained. However, an attempt to locate the

maximum number of employees from different software companies itself. The study

pertains to only PMC and PCMC area of Pune City.

2.11 Chapter Scheme

The chapter scheme for this thesis is as follows:-

Chapter No. Name of Chapter

1 Introduction

2 Research Design and Methodology

Chapter 2: Research Design and Methodology

96

3 Review of Literature

4 Data Analysis and Interpretation

5 Conclusions and Suggestions

 Appendices

Bibliography

 The first chapter is the introduction where the researcher has given a brief

background about the study.

The second chapter, Research Design and Methodology, has discussed the importance,

scope, objectives and hypothesis of the study. It also describes the research methodology

and research design.

The third chapter deals with the Review of Literature. It describes the review of the

existing available literature on the collecting needs process, awareness of different SDLC

models, and software testing process. It gives an insight into the history of the software

requirement engineering process, software testing process, SDLC model and impact of

collecting needs process on software development business.

 The fourth chapter presents the analysis of the data for Software testers, developers and

Designers. This chapter deals with the testing of hypothesis.

The fifth chapter provides detail design of model for the betterment of software

development process including enhancement of collecting needs process and summarizes

observations, conclusions, findings and suggestions of the present study.

References have been given at the end of each chapter themselves and a selected

bibliography is given at the end.

Chapter 2: Research Design and Methodology

97

Reference:

 [1] M.P.Singh, Rajnish Vyas, “Requirements Volatility in Software Development

Process” International Journal of Soft Computing and Engineering (IJSCE) ISSN:

2231-2307, Volume-2, Issue-4, September 2012

 [2] Zowghi, N. Nurmuliani, ―A study of the Impact of requirements volatility on

Software Project Performance, Proceedings of the Ninth Asia-Pacific Software

Engineering Conference , APSEC 2002, Gold Cost, Queensland, Australia,04-06

Dec 2002, pp:3-11.

[3] http://www.mapsofindia.com/maps/maharashtra/pune.htm (23/7/2008)

 [4] http://www.mapsofindia.com/pune/software-company-pune.html

 [5] https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-

8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hne

ar=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH

This chapter discusses the importance, scope, objectives and

hypothesis of the study. It also describes the research methodology and

research design with primary and secondary data collection. It has

explained different data collection methods. It also contains the limitation

of the study and chapter schemes.

http://www.mapsofindia.com/pune/software-company-pune.html
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw
https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw

Chapter 2: Research Design and Methodology

98

6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw

[6] Sr. S. P. Gupta, “Statistical Methods”, Sultanchand & Sons Publication, New

Delhi.

[7] Don Gotterbarn, “Reducing Software Failures: Addressing the Ethical Risks of the

Software Development Lifecycle” Australian Journal of Information Systems.

[8]

[9]

Research Methodology Methods and Techniques By C R Kothari and Gaurav

Garg. Pg 52-109

http://technosoftwares.com/software-development-life-cycle

https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrIL4Bw&ved=0CB4QtQM&output=classic&dg=brw
http://technosoftwares.com/software-development-life-cycle

99

Chapter 3

Review of Literature

3.1. Introduction

In second chapter research methodology has been explained and data collection and

sampling method is also explained in detail.

 In this chapter an extensive literature review has been done on the concepts and theories

related to the implication of software testing and requirement engineering. A review of

research papers and articles has been undertaken to take note of and acknowledge work

that has been don e in this field. The researcher has collected secondary data from reputed

journals and magazines, newspapers, articles, internet websites and archives. The

researcher has visited libraries in and around Pune City, to collect secondary data. The

researcher has identified research papers published in renowned journals and conference

proceedings along with articles published in newspapers on various topics such as

implementation of impact of poor requirement gathering process on SDLC phases and in

turn on software testing process etc. The review of available literature on each topic is

taken into account in this chapter.

The researcher has done a literature review on each and every criteria of software

Testing and impact of requirement engineering. These criteria focus mainly on various

aspects of Software requirement gathering, design, development, testing and software

maintenance like-

 Definition of Software

 Software Engineering Process

 Software Development Life Cycle

 Software Development Life Cycle Models

 Software Requirement

 Requirement Engineering

 Software Testing

 The Testing Spectrum

Chapter 3: Review of Literature RMRSF

 100

 Type of Software Testing

 Impact of Poor requirement gathering process on Software Testing Process

3.2. Definition of Software

1. Muhammad Naeem Ahmed Khan et.al., have published research paper on “Review

of Requirements Management Issues in Software Development” [1]

Muhammad Naeem Ahmed Khan and their friends have defined software as it is

more than just a program code. A program is an executable code, which serves some

computational purpose. Software is considered to be collection of executable

programming code, associated libraries and documentations. Software, when made for a

specific requirement is called software product.

3.3. Software Engineering Process

Along with definition of software, Muhammad Naeem Ahmed Khan has also

defined the process of software engineering. In his research article he said that software

requirement engineering is all about developing products, using well-defined, scientific

principles and methods [1].

Figure 3.1: Software Engineering Process

Software engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures. Software

engineering is a branch of software development management.

Chapter 3: Review of Literature RMRSF

 101

2. Hawkey has published the second chapter on Software Requirement Engineering in

SEBackground[2].

As per Hawkey, software engineering process is the model chosen for managing the

creation of software from initial customer inception to the release of the finished product.

The chosen process usually involves techniques such as[2].

• Analysis,

• Design,

• Coding,

• Testing and

• Maintenance

3.4. Software Development Life Cycle

3. Bender RPT has published his article on “Systems Development Lifecycle:

Objectives and Requirements. 2003”. [3]

 Bender RPT glossary described in his chapter that Software Development Life

Cycle (SDLC) is a process of building or maintaining software systems. Software

development life cycle is the most important element in software development. It depicts

the necessary phases in software development.

Software Development Life Cycle includes various phases from preliminary development

analysis to post-development software testing and evaluation. It also consists of the

models and methodologies that development teams use to develop the software systems,

which the methodologies form the framework for planning and controlling the entire

development process.

3.4.1. Phases of Software Development Life Cycle (SDLC)

4. Vanshika Rastogi has published her article on “Software Development Life Cycle

Models- Comparison, Consequences.2015” [4]

Vanshika Rastogi has defined the Software Development Life Cycle (SDLC) as it is a

framework that is used to understand and develop information systems and software

successfully. It is a process used by almost all developers and software development

Chapter 3: Review of Literature RMRSF

 102

companies as the standard in the software process development. SDLC has many models and

each model has its own strengths, weaknesses, advantages and disadvantages [4]. Software

Development Life Cycle (SDLC) is a process used by software industry to design,

develop and test high quality softwares. The SDLC aims to produce high quality software

that meets or exceeds customer expectations, reaches completion within times and cost

estimates.

Vanshika Rastogi also mentioned the following six phases are present in every Software

development life cycle model [4]:

1. Requirement gathering and analysis

2. Design

3. Implementation or coding

4. Testing

5. Deployment

6. Maintenance

1) Requirement gathering and analysis: Business requirements are gathered in this

phase. This phase is the main focus of the project managers and stake holders. Meetings with

managers, stake holders and users are held in order to determine the requirements like; who is

going to use the system? How will they use the system? What data should be input into the

system? What data should be output by the system? These are general questions that get

answered during a requirements gathering phase. After requirement gathering these

requirements are analyzed for their validity and the possibility of incorporating the

requirements in the system to be development is also studied. Finally, a Requirement

Specification document is created which serves the purpose of guideline for the next phase of

the model.

2) Design: In this phase the system and software design is prepared from the requirement

specifications which were studied in the first phase. System Design helps in specifying

hardware and system requirements and also helps in defining overall system architecture. The

system design specifications serve as input for the next phase of the model.

Chapter 3: Review of Literature RMRSF

 103

3) Implementation / Coding: On receiving system design documents, the work is

divided in modules/units and actual coding is started. Since, in this phase the code is

produced so it is the main focus for the developer. This is the longest phase of the

software development life cycle.

4) Testing: After the code is developed it is tested against the requirements to make

sure that the product is actually solving the needs addressed and gathered during the

requirements phase. During this phase unit testing, integration testing, system testing,

acceptance testing are done.

5) Deployment: After successful testing the product is delivered / deployed to the

customer for their use.

6) Maintenance: Once when the customers starts using the developed system then the

actual problems comes up and needs to be solved from time to time. This process where

the care is taken for the developed product is known as maintenance.

3.5. Software Development Life Cycle Models

5. Yogi Berra has published his article on “Software Development Life Cycle

(SDLC)” [5]

Yogi Berra defines about (software/system) life cycle model is a description of the

sequence of activities carried out in an SE project, and the relative order of these

activities.

There are various software development approaches defined and designed which are

used/employed during development process of software, these approaches are also

referred as “Software Development Process Models” (e.g. Waterfall model, incremental

model, V-model, iterative model, etc.). Each process model follows a particular life cycle

in order to ensure success in process of software development.

http://istqbexamcertification.com/what-is-a-software-testing/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/

Chapter 3: Review of Literature RMRSF

 104

6. Ms. Shikha maheshwari and Prof.Dinesh Ch. Jain 2012 have published article on

“A Comparative Analysis of Different types of Models in Software Development

Life Cycle” [6]

Ms. Shikha maheshwari and Prof.Dinesh Ch. Jain have descried different Software

life cycle models phases of the software life cycle and the order in which those phases are

executed. Each phase produces deliverables required by the next phase in the life cycle.

Requirements are translated into design. Code is produced according to the design which

is called development phase. After coding and development the testing verifies the

deliverable of the implementation phase against requirements.

Ms. Shikha maheshwari and Prof.Dinesh Ch. Jain are also provided information

about various software development life cycle models definition and desgin which are

followed during software development process. These models are also referred as

"Software Development Process Models". Each process model follows a Series of steps

unique to its type, in order to ensure success in process of software development.

Following are the most important and popular SDLC models followed in the industry:

1. Waterfall Model

2. Iterative Model

3. Spiral Model

4. V-Shape model

5. Big Bang Model

3.5.1. The Waterfall Model

7. Dr. Winston Royce mentioned in his article “Managing the development of larger

systems”[7]

In 1970 Royce introduce the waterfall model. It is the classic life cycle model. It is

widely known, understood and used. In some respect, waterfall is the”commonsense”

approach. Waterfall model is the simplest model of software development paradigm. It

says the all the phases of SDLC will function one after another in linear manner. That is,

when the first phase is finished then only the second phase will start and so on.

Chapter 3: Review of Literature RMRSF

 105

Figure 3.2: Waterfall Model

This model assumes that everything is carried out and taken place perfectly as planned in

the previous stage and there is no need to think about the past issues that may arise in the

next phase. This model does not work smoothly if there are some issues left at the

previous step. The sequential nature of model does not allow us go back and undo or redo

our actions.

This model is best suited when developers already have designed and developed similar

software in the past and is aware of all its domains.

The sequential phases in Waterfall model are:

 Requirement Gathering and analysis: All possible requirements of the system

to be developed are captured in this phase and documented in a requirement

specification doc.

 System Design: The requirement specifications from first phase are studied in

this phase and system design is prepared. System Design helps in specifying

hardware and system requirements and also helps in defining overall system

architecture.

 Implementation: With inputs from system design, the system is first developed

in small programs called units, which are integrated in the next phase. Each unit

is developed and tested for its functionality which is referred to as Unit Testing.

Chapter 3: Review of Literature RMRSF

 106

 Integration and Testing: All the units developed in the implementation phase

are integrated into a system after testing of each unit. Post integration the entire

system is tested for any faults and failures.

 Deployment of system: Once the functional and non functional testing is done,

the product is deployed in the customer environment or released into the market.

 Maintenance: There are some issues which come up in the client environment.

To fix those issues patches are released. Also to enhance the product some better

versions are released. Maintenance is done to deliver these changes in the

customer environment

3.5.2. Iterative Model

8. PK.Ragunath, S.Velmourougan, P. Davachelvan, S.Kayalvizhi, R.Ravimohan

have written article on “Evolving A New Model (SDLC Model-2010) For Software

Development Life Cycle (SDLC)” [8]

PK.Ragunath, S.Velmourougan, P. Davachelvan, ,S.Kayalvizhi, R.Ravimohan have

describer iterative model as this model leads the software development process in

iterations. It projects the process of development in cyclic manner repeating every step

after every cycle of SDLC process [8].

Figure 3.3: Iterative Model

Chapter 3: Review of Literature RMRSF

 107

The software is first developed on very small scale and all the steps are followed which

are taken into consideration. Then, on every next iteration, more features and modules

are designed, coded, tested and added to the software. Every cycle produces software,

which is complete in itself and has more features and capabilities than that of the

previous one.

After each iteration, the management team can do work on risk management and prepare

for the next iteration. Because a cycle includes small portion of whole software process,

it is easier to manage the development process but it consumes more resources.

Iterative process starts with a simple implementation of a subset of the software

requirements and iteratively enhances the evolving versions until the full system is

implemented. At each iteration, design modifications are made and new functional

capabilities are added. The basic idea behind this method is to develop a system through

repeated cycles (iterative) and in smaller portions at a time (incremental).

Iterative and Incremental development is a combination of both iterative design or

iterative method and incremental build model for development. "During software

development, more than one iteration of the software development cycle may be in

progress at the same time." and "This process may be described as an "evolutionary

acquisition" or "incremental build" approach."

In incremental model the whole requirement is divided into various builds. During each

iteration, the development module goes through the requirements, design,

implementation and testing phases. Each subsequent release of the module adds function

to the previous release. The process continues till the complete system is ready as per

the requirement.

The key to successful use of an iterative software development lifecycle is rigorous

validation of requirements, and verification & testing of each version of the software

against those requirements within each cycle of the model. As the software evolves

through successive cycles, tests have to be repeated and extended to verify each version

of the software.

Chapter 3: Review of Literature RMRSF

 108

3.5.3. Spiral Model

9. Seema, Sona Malhotra 2012 have published article on Analysis and tabular

comparison of popular SDLC models [9].

Seema and Sona Malhotra have defined Spiral model as it is a combination of both,

iterative model and one of the SDLC model. It can be seen as if you choose one SDLC

model and combine it with cyclic process (iterative model).

Figure 3.4: Spiral Model

This model considers risk, which often goes un-noticed by most other models. The

model starts with determining objectives and constraints of the software at the start of

one iteration. Next phase is of prototyping the software. This includes risk analysis.

Then one standard SDLC model is used to build the software. In the fourth phase of the

plan of next iteration is prepared.

The spiral model has four phases. A software project repeatedly passes through these

phases in iterations called Spirals.

 Identification: This phase starts with gathering the business requirements in the

baseline spiral. In the subsequent spirals as the product matures, identification of

system requirements, subsystem requirements and unit requirements are all done

in this phase.

Chapter 3: Review of Literature RMRSF

 109

This also includes understanding the system requirements by continuous

communication between the customer and the system analyst. At the end of the

spiral the product is deployed in the identified market.

 Design: Design phase starts with the conceptual design in the baseline spiral and

involves architectural design, logical design of modules, physical product design

and final design in the subsequent spirals.

 Construct or Build: Construct phase refers to production of the actual software

product at every spiral. In the baseline spiral when the product is just thought of

and the design is being developed a POC (Proof of Concept) is developed in this

phase to get customer feedback.

Then in the subsequent spirals with higher clarity on requirements and design

details a working model of the software called build is produced with a version

number. These builds are sent to customer for feedback.

 Evaluation and Risk Analysis: Risk Analysis includes identifying, estimating,

and monitoring technical feasibility and management risks, such as schedule

slippage and cost overrun. After testing the build, at the end of first iteration, the

customer evaluates the software and provides feedback.

Based on the customer evaluation, software development process enters into the next

iteration and subsequently follows the linear approach to implement the feedback

suggested by the customer. The process of iterations along the spiral continues

throughout the life of the software

3.5.4. V – Model

10. Sonali Mathur and Shaily Malik (2012) have published article on

“Advancements in the V-Model” [10]

Sonali and Shaily mentioned in their article about the major drawback of waterfall model is we

move to the next stage only when the previous one is finished and there was no chance to go back if

something is found wrong in later stages. They also mentioned that V-Model provides means of

testing of software at each stage in reverse manner [10].

Chapter 3: Review of Literature RMRSF

 110

Figure 3.5: V- Model

 V-Model provides means of testing of software at each stage in reverse manner.

At every stage, test plans and test cases are created to verify and validate the product

according to the requirement of that stage. For example, in requirement gathering stage

the test team prepares all the test cases in correspondence to the requirements. Later,

when the product is developed and is ready for testing, test cases of this stage verify the

software against its validity towards requirements at this stage.

Under V-Model, the corresponding testing phase of the development phase is planned in

parallel. So there are Verification phases on one side of the .V. and Validation phases on

the other side. Coding phase joins the two sides of the V-Model.

This makes both verification and validation go in parallel. This model is also known as

verification and validation model. Hence in this research, V-model has been selected,

studied and used for further research study.

3.5.4.1. Verification Phases

Following are the Verification phases in V-Model:

 Business Requirement Analysis: This is the first phase in the development

cycle where the product requirements are understood from the customer

perspective. This phase involves detailed communication with the customer to

understand his expectations and exact requirement. This is a very important

Chapter 3: Review of Literature RMRSF

 111

activity and need to be managed well, as most of the customers are not sure

about what exactly they need. The acceptance test design planning is done at this

stage as business requirements can be used as an input for acceptance testing.

 System Design: Once you have the clear and detailed product requirements, it’s

time to design the complete system. System design would comprise of

understanding and detailing the complete hardware and communication setup for

the product under development. System test plan is developed based on the

system design. Doing this at an earlier stage leaves more time for actual test

execution later.

 Architectural Design: Architectural specifications are understood and designed

in this phase. Usually more than one technical approach is proposed and based

on the technical and financial feasibility the final decision is taken. System

design is broken down further into modules taking up different functionality.

This is also referred to as High Level Design (HLD).

The data transfer and communication between the internal modules and with the

outside world (other systems) is clearly understood and defined in this stage.

With this information, integration tests can be designed and documented during

this stage.

 Module Design: In this phase the detailed internal design for all the system

modules is specified, referred to as Low Level Design (LLD). It is important that

the design is compatible with the other modules in the system architecture and

the other external systems. Unit tests are an essential part of any development

process and helps eliminate the maximum faults and errors at a very early stage.

Unit tests can be designed at this stage based on the internal module designs.

3.5.4.2. Coding Phase
The actual coding of the system modules designed in the design phase is taken up in the

Coding phase. The best suitable programming language is decided based on the system

and architectural requirements. The coding is performed based on the coding guidelines

and standards. The code goes through numerous code reviews and is optimized for best

performance before the final build is checked into the repository.

3.5.4.3. Validation Phases

Chapter 3: Review of Literature RMRSF

 112

Following are the Validation phases in V-Model:

 Unit Testing: Unit tests designed in the module design phase are executed on the

code during this validation phase. Unit testing is the testing at code level and

helps eliminate bugs at an early stage, though all defects cannot be uncovered by

unit testing.

 Integration Testing: Integration testing is associated with the architectural

design phase. Integration tests are performed to test the coexistence and

communication of the internal modules within the system.

 System Testing: System testing is directly associated with the System design

phase. System tests check the entire system functionality and the communication

of the system under development with external systems. Most of the software

and hardware compatibility issues can be uncovered during system test

execution.

 Acceptance Testing: Acceptance testing is associated with the business

requirement analysis phase and involves testing the product in user environment.

Acceptance tests uncover the compatibility issues with the other systems

available in the user environment. It also discovers the nonfunctional issues such

as load and performance defects in the actual user environment.

3.5.5. Big Bang Model

11. Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla have published research article

on “Evolving a New Software Development Life Cycle Model SDLC-2013 with

Client Satisfaction” [11].

Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla defined that Big Bang model is the

simplest model in its form. It requires little planning, lots of programming and lots of funds. This

model is conceptualized around the big bang of universe. As scientists say that after big bang lots of

galaxies, planets and stars evolved just as an event. Likewise, if we put together lots of programming

and funds, you may achieve the best software product [11].

Chapter 3: Review of Literature RMRSF

 113

The Big Bang model is SDLC model where we do not follow any specific process. The development

just starts with the required money and efforts as the input, and the output is the software developed

which may or may not be as per customer requirement.

Big Bang Model is SDLC model where there is no formal development followed and very little

planning is required. Even the customer is not sure about what exactly he wants and the requirements

are implemented on the fly without much analysis.

Usually this model is followed for small projects where the development teams are very small.

Figure 3.6: Big Bang Model

For this model, very small amount of planning is required. It does not follow any process, or at times

the customer is not sure about the requirements and future needs. So the input requirements are

arbitrary. This model is not suitable for large software projects but good one for learning and

experimenting.

3.6. Software Requirement

12. G. Kotonya and I. Sommerville, (1998), have published article on “Requirements

Engineering: Processes and Techniques”, in the book published by Chichester, UK:

John Wiley & Sons[12]..

Chapter 3: Review of Literature RMRSF

 114

G. Kotonya and I. Sommerville have given details information about how software

requirements play a vital role in software development. They have defined a requirement

is a statement of what a system is required to do and the constraints under which it is

required to operate role that is baseline for every software project and having capability

to which a system confirm to. Actually of the scope of customer work is defined by

requirement only [1]. A requirement deals with objects or entities, the states they can be

in, and the functions that are performed to change states or object characteristics [7].

3.7. Requirement Engineering

As we have seen earlier, Muhammad Naeem Ahmed Khan and et.all explained the

definition of requirement engineering in his research paper. As per his paper,

Requirement engineering is nothing but group of activities to elicit, analyze, specify,

verify, validate and manage requirements [1]. Requirements engineering plays an

important role in the software development projects.

13. Ramos Rowel and Kurts Alfeche (1998) have written chapter on “Requirements

Engineering A good practice guide” John Wiley and Sons, 1998[13]

Ramos Rowel and Kurts Alfeche stated in the above mentioned book that requirement

gathering is the practice of collecting the requirements of a system from users, customers

and other stakeholders [13].Requirements gathering practices include interviews,

questionnaires, user observation, workshops, brainstorming, use cases, role-playing and

prototyping.

3.7.1. Requirements Elicitation:

G. Kotonya and I. Sommerville have explained in Engineering processes and

Techniques that requirement elicitation is first phase of requirements engineering process

and its purpose is to discover requirements for the system being developed. Requirements

http://en.wikipedia.org/wiki/Brainstorming
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Software_prototyping

Chapter 3: Review of Literature RMRSF

 115

are elicited from customers, end-users and other stakeholders such as system developers

[12].

3.7.2. Requirements Analysis and Specification:

14. I. Sommerville and P. Sawyer (1997), Requirements Engineering: A Good Practice

Guide, New York: John Wiley & Sons,.

I. Sommerville and P. Sawyer say in their book that requirements analysis is one of the

first phases in requirements engineering and its purpose is to analyze the elicited

requirements. Once the requirements have been gathered, then the conflicts, overlaps,

omissions and inconsistencies need to be analyzed [14].

3.7.3. Requirements Specification

In this process, the requirements (both functional and non-functional) are documented.

On the basis of the accumulated requirements, SRS document is created to which both

the parties should agree upon.

3.7.4. Requirements Validation

This phase relates to the process of examining the requirements document to ensure that

it pertains to the intended development of the right system (i.e., the system that the users

expect) [12]. In this sense, validation processes purely commensurate to the functional

requirements (FR).

3.7.5. Requirements Verification:

As per IEEE glossary[15], requirement engineering is the process by using any software

company meets the customer’s requirements, or needs and expectations.

16. K. E. Wiegers (2003) has published in the booked named as “Software

Requirements”, 2nd ed., Redmond, W A: Microsoft Press, 2003[16].

K. E. Wiegers says that Requirements engineering is the degree to which a system,

component or process meets specified requirements (i.e., FR) as well as the

Chapter 3: Review of Literature RMRSF

 116

customer/user needs or expectations (i.e., NFR). It is the process of ensuring that the

requirements’ statements are accurate and complete as well as demonstrate the desired

quality characteristics [16]. Hence, it pertains to non-functional requirements (NFR).

3.7.6. Requirements Management:

G. Kotonya and I. Sommerville have also explained about the Requirements

management process and as per them it is the process of administers changes to the

agreed requirements, relationships between requirements and dependences between the

requirements document as well as other documents produced during the entire system and

software engineering process [12].

3.8. Software Testing

Muhammad Naeem Ahmed Khan has defined the Software testing as it is a most

often used technique for verifying and validating the quality of software [1].

17. Author has published detailed review of literature review in “Literature Survey”

chapter.[17]

As per this chapter, Software testing is the procedure of executing a program or

system with the intent of finding faults [17].

18. Donald Firesmith, has published article on “Common Requirements Problems,

Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”.[18]

As per Donald Firesmith, Software testing is the process of exercising or

evaluating a system or system components by manual or automated means. It is used to

validate specified requirements or to identify differences between expected and actual

results. Testing is the measurement of software quality. The difficulty in software testing

stems from the complexity of software field: A process and program cannot completely

test with moderate complexity. The purpose of testing can be quality assurance,

verification and validation, or reliability estimation. The complete testing is infeasible or

impossible. As described earlier, there are two major areas of testing, i.e., correctness

Chapter 3: Review of Literature RMRSF

 117

testing and reliability testing. Correctness is the minimum requirement of software, the

necessary purpose of testing. Correctness testing will require some type of database

query, to tell the true behavior from the false one. As described in [18], Software

reliability refers to the probability that software system will operate without failure and is

related to main aspects of software including the testing process.

The main objective of software testing is to affirm the quality of software system

by systematically testing the software in carefully controlled circumstances, another

objective is to identify the completeness and correctness of the software, and finally it

uncovers undiscovered errors. Software testing is measured to be labour intensive and

expensive, which accounts for > 50 % of the total cost of software development [18]. Hi

defined Software testing as it is a significant activity of the software development life

cycle (SDLC). It helps in developing the confidence of a developer that a program does

what it is intended to do so. In other words, we can say it’s a process of executing a

program with intends to find errors.

19. Olga Liskin , et al. 2012, have published article on “Supporting Acceptance

Testing in Distributed Software Projects with Integrated Feedback Systems:

Experiences and Requirements” [19]

Olga Liskin, et al have defined that in the language of Verification and Validation

(V&V), black box testing is often used for validation (i.e. are we building the right

software?) and white box testing is often used for verification (i.e. are we building the

software right?) [19]]. In his research, his study emphasizes the need to investigate

various testing techniques in software testing field; we have conducted a literature review

to obtain the reviews from state-of-art.

3.9. The Testing Spectrum

20. Vishawjyoti, Sachin Sharma, have published research article on “Study and

Analysis of automation testing techniques”.

Chapter 3: Review of Literature RMRSF

 118

Vishawjyoti, Sachin Sharma says in his paper that software testing is involved in each

stage of software life cycle, but the way of testing conducted at each stage of software

development is different in nature and it has different objectives.

 Unit testing is a code based testing which is performed by developers, this testing

is mainly done to test each and individual units separately. This unit testing can be

done for small units of code or generally no larger than a class.

 Integration testing validates that two or more units or other integrations work

together properly, and inclines to focus on the interfaces specified in low-level

design.

 System testing reveals that the system works end-to-end in a production-like

location to provide the business functions specified in the high-level design.

 Acceptance testing is conducted by business owners, the purpose of acceptance

testing is to test whether the system does in fact, meet their business requirements.

 Regression Testing is the testing of software after changes has been made; this

testing is done to make sure that the reliability of each software release, testing

after changes has been made to ensure that changes did not introduce any new

errors into the system.

 Alpha Testing Usually in the existence of the developer at the developer’s site

will be done.

 Beta Testing Done at the customer’s site with no developer in site.

 Functional Testing is done for a finished application; this testing is to verify that

it provides all of the behaviors required of it.

3.10. Type of Software Testing

21. Antonia Bertolino has published his research article on “Software testing research

and practice”

Antonia Bertolino has defined Software as testing is classified based on each

stage of software life cycle. This sections give details about different types software

testing that are getting executed through out SDLC process. In this paper, Antonia

Bertolino also mentioned the following types of software testing process.

Chapter 3: Review of Literature RMRSF

 119

 Manual Testing

22. Vivek Kumar (2012) has published his article on “Comparison of Manual and

automation testing”

A test team is spending most of its time running test cases but is executing the tests

slowly. It takes as much as a day just to test one new feature of a system, and often the

tests fail due to system time-outs. Executing full regression tests has been so expensive

that the team avoids doing so whenever possible. Needless to say, the test execution is

manual.

 Automated Testing

23. R. M. Sharma (2014), has published his article on “Quantitative Analysis of

Automation and Manual Testing” [23]

R. M. Sharma has defined Automation testing as, it is also known as Test Automation, is

when the tester writes scripts and uses another software to test the product. This process

involves automation of a manual process. Automation Testing is used to re-run the test

scenarios that were performed manually, quickly, and repeatedly. Automated software

testing is the best way to increase the effectiveness, efficiency and coverage of software

testing.

 Black box testing

24. Harsh Bhasin, at.el. (2014), have published research article on “Black Box Testing

based on Requirement Analysis and Design Specifications” [24]

Harsh Bhasin and his friends have given details of Black Box Testing which is also called

functional testing. According to the strategy it does not need any knowledge of internal

design or code structure etc. The author said that this strategy is totally based/focused on

the testing for requirements and functionality of the work product/software application.

Black Box testing strategy is totally based on external structure of the code. The author

listed the various testing types like: functional testing, stress testing, recovery testing,

volume testing, User Acceptance Testing , system testing, Sanity or Smoke testing, load

Chapter 3: Review of Literature RMRSF

 120

testing, Usability testing, Exploratory testing, ad-hoc testing, alpha testing, beta testing

etc.

 White box testing

25. Mirza Mahmodd Baig, Burnstein I (2009) has published done research on topic,

“New Software testing strategy”[25]

Myers G. J. and Burnstein I. present the White box testing strategy also called as

structural, glass, and clear box testing strategy. The authors said that the strategy is based

on internal logic and structure of the code. In White box testing integrating coverage of

the code and also have knowledge of internal working of the code. The author also gave

the advantages of the white box strategy i.e. it is easy to find out which type of input /data

can help in testing, effectively, optimizing the code, and removing the spare lines of code.

The main disadvantage of this testing strategy is that, it increases the cost and time and

also impossible to find out hidden errors.

 Grey box testing [Annexure-II]

26. Mohd. Ehmer Khan , Farmeena Khan have published research article on “A

Comparative Study of White Box, Black Box and Grey Box Testing Techniques”[26]

In this research article, Mohd. Ehmer Khan , Farmeena Khan have defined grey-box

testing is as it is a technique to test the application with having a limited knowledge of

the internal workings of an application. [26]

 Functional testing [Annexure-II]

27. Paul C. Jorgensen (2013) published book on “Software testing: a craftsman's

approach” CRC Press[27]

Paul C. Jorgensen present functional tests, or black box testing. Functional testing

is a quality assurance process used to verify that an application’s end user functionality,

i.e. ability to log in and complete transaction etc. He describes that functionality works

accurately, reliably, predictably and securely. Functional testing engages either manual or

automated testing methods. The author said that manual testing is boring and time

http://books.google.co.in/books?hl=en&lr=&id=6WlmAQAAQBAJ&oi=fnd&pg=PP1&dq=Functional+software+testing&ots=Jsj-K3Okg0&sig=bb-ub8PKu4lB48sFdndwxm25Fgs
http://books.google.co.in/books?hl=en&lr=&id=6WlmAQAAQBAJ&oi=fnd&pg=PP1&dq=Functional+software+testing&ots=Jsj-K3Okg0&sig=bb-ub8PKu4lB48sFdndwxm25Fgs

Chapter 3: Review of Literature RMRSF

 121

consuming process as compared to automated testing. Its efficiency accelerates the

testing cycle and promotes software quality. Automated functional testing can optimizes

software quality and efficiency by verifying the accuracy and reliability of an

application’s end user functionality in pre-production. Functional testing which ensure

that simple or even complex enterprise applications are deployed on time and on cost.

Today, the main interest of testers and companies around the world is achieving target on

time and on cost.

Functional Testing covers: [27]

 The determination of the functionality that the intended application is meant to

perform.

 The creation of test data based on the specifications of the application.

 The output based on the test data and the specifications of the application.

 The writing of test scenarios and the execution of test cases.

 The comparison of actual and expected results based on the executed test cases.

 Non-Functional testing

28. Wasif Afzal et al. (2008) have published research article on “A Systematic Mapping

Study on Non-Functional Search-based Software Testing” [28]

Wasif Afzal et al described about the non-functional software testing. This section is

based upon testing an application from its non-functional attributes. Non-functional

testing involves testing a software from the requirements which are non-functional in

nature but important such as performance, security, user interface, etc.[28]

 Integration testing

29. W. K. Chan et al (2002), have published article on “An Overview of Integration

Testing Techniques for Object-Oriented Programs” [29]

Chapter 3: Review of Literature RMRSF

 122

W. K. Chan defined Integration testing as it is the testing of combined parts of an

application to determine if they function correctly. Integration testing can be done in two

ways: Bottom-up integration testing and Top-down integration testing. [29]

 Bottom-up integration

 Top-down integration

 System testing

30. Shivkumar Hasmukhrai Trivedi, (2012), has published research article on

“Software Testing Techniques”[30]

Shivkumar Hasmukhrai Trivedi stated that system testing tests the system as a whole.

Once all the components are integrated, the application as a whole is tested rigorously to

see that it meets the specified Quality Standards. This type of testing is performed by a

specialized testing team.[30]

 Regression Testing [Annexure-II]

31. Leung, H.K.N (1989) has published article on “Insights into regression testing”

Leung has mentioned in his research article that whenever a change in a software

application is made, it is quite possible that other areas within the application have been

affected by this change. Regression testing is performed to verify that a fixed bug hasn't

resulted in another functionality or business rule violation. The intent of regression

testing is to ensure that a change, such as a bug fix should not result in another fault

being uncovered in the application.[31]

 Acceptance Testing

32. M. Fagan, has published research article on “Design and Code Inspections to

Reduce Errors in Program Development”

M. Fagan provided detail about how acceptance testing is arguably the most important

type of testing, as it is conducted by the Quality Assurance Team who will gauge

whether the application meets the intended specifications and satisfies the client’s

requirement. The QA team will have a set of pre-written scenarios and test cases that will

be used to test the application.[32]

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leung,%20H.K.N..QT.&newsearch=true

Chapter 3: Review of Literature RMRSF

 123

 Alpha testing

33. Hitesh Tahbildar at. el. (2011). “Automated software test data generation:

Direction of research”

Hitesh Tahbildar defines alpha testing as it is the first stage of testing and will be

performed amongst the teams (developer and QA teams). Unit testing, integration testing

and system testing when combined together is known as alpha testing.[33]

 Beta Testing

34. Rishabh Softwares (2011) posted one article on “The Importance of Beta Software

Testing in QA”

Rishabh softwares posted research articles about beta testing and they have mentioned

about beta testing is: it is performed after alpha testing has been successfully performed.

In beta testing, a sample of the intended audience tests the application. Beta testing is also

known as pre-release testing.[34]

 Performance Testing

35. Ms. S. Sharmila (2014), has published research article on “Analysis of Performance

Testing on Web Applications”

Ms. S. Sharmila has defined performance testing as it is mostly used to identify any

bottlenecks or performance issues rather than finding bugs in a software. It is mostly used

to identify any bottlenecks or performance issues rather than finding bugs in a

software.[35]

 Load Testing

36. Pooja Ahlawat (2013) has published research article on “A Comparative Analysis

of Load Testing Tools Using Optimal Response Rate”

Pooja Ahlawat has defined load testing as it is a process of testing the behavior of a

software by applying maximum load in terms of software accessing and manipulating

Chapter 3: Review of Literature RMRSF

 124

large input data. It can be done at both normal and peak load conditions. This type of

testing identifies the maximum capacity of software and its behavior at peak time.[36]

3.11. Impact of Poor requirement gathering process on Software Testing

Process

37. Josef H. (2001), has written chapter 4 in the book named as ‘Capturing the Requirements’.

Josef has mentioned that quality of requirements can have a lot of impact on the

outcome of the project. One high profile project which was significantly affected by the

requirements management process was the Chrysler Comprehensive Compensation

System which was supposed to handle paychecks for Chrysler’s 87,000 employees but

was shut down after several years of development [37].

The impact is magnified as the BA moves from high-level requirements towards

functional and non-functional requirements. The cost of rework of functional

requirements is the highest because these requirements define the technical specification

and design of the solution [37]

38. Md Rounok Salehin has published article on “Missing Requirements Information

and its Impact on Software Architectures:A Case Study”

Md Rounok Salehin has provided the detail literature review for some past project

failures mentioned from existing literature which shows the severity of the problems

caused by poor (missing or incomplete) requirements in industries.

He has also studied and found a striking 74% project failure rate, while 28% of

projects were cancelled completely and top reasons of failure was lack of user input, lack

of a clear statement of requirements in specifications.

He has taken Siemens project as the case study and the root cause analysis done

by Siemens Corporate Research (SCR) showed that 40% of the defects were caused by

incomplete or not at all recorded requirements in documents.

Chapter 3: Review of Literature RMRSF

 125

39. Mohd. Ehmer Khan, has published article on “Different Forms of Software Testing

Techniques for Finding Errors,”

Mohd. Ehmer Khan provided detail study about survey was conducted in 63

software companies in Malaysia. The companies cited problems like incomplete

requirements (79.4%), misplaced requirements in a requirements document (37.1%) as

some of the reasons behind late delivery of products (76.2%), budget overruns (58.7%)

and poor quality products (44.4%).

In June 1991 to September 1991, three surveys on 39, 41 and 44 software

maintenance professionals (with overlapping participants) were conducted and 19 major

problems in software maintenance were identified [17]. Incomplete information in system

documentation was ranked number 3 amongst them.

As per the report [59], industry data suggests that approximately 50% of product

defects originate in the requirements. Perhaps 80% of the rework effort on a development

project can be traced to requirements defects. These defects are the cause of over 40% of

accidents involving safety critical systems.

40. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Requirements

Elicitation".

Christel, Michael and Kyo C. Kang mentioned the issues in requirement

elicitation like “Lack of mechanism of validation and verification” and as per them this is

one of the major cause of software project failure. Because system development and

testing is probably the most critical phase of any software development project. Adequate

programming and testing methods and techniques need to be adopted. The use of unstable

and sometimes incompatible software and hardware platforms may pose significant risk

to the project. Tools needed for testing and verifying the application or product are

indispensable for a successful implementation and deployment of the software. If correct

tools are not available on time, it may delay the deployment, thus affecting the overall

project schedule [40].

Christel, Michael and Kyo C. Kang also stated that poor requirement happens

due to the problems that indicate the challenges for requirements gathering [15].

http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm

Chapter 3: Review of Literature RMRSF

 126

Following are few challenges that we need to consider while doing requirement

gathering.

 'Problems of scope'. The boundary of the system is ill-defined or the

customers/users specify unnecessary technical detail that may confuse, rather than

clarify, overall system objectives.

 Problems of understanding. The customers/users are not completely sure of

what is needed, have a poor understanding of the capabilities and limitations of

their computing environment, don’t have a full understanding of the problem

domain, have trouble communicating needs to the system engineer, omit

information that is believed to be “obvious,” specify requirements that conflict

with the needs of other customers/users, or specify requirements that are

ambiguous or untestable.

 Problems of volatility. The requirements change over time. The rate of change is

sometimes referred to as the level of requirement volatility

41. Donald Firesmith, has published research article on “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help

Solve Them”. [41]

Donald Firesmith, focused on impact of poor requirement gathering process on

software testing. In his research article his mentioned that requirement collection from

client is one of the basic and important task of requirement gathering process. He also

explained how inadequate information from client lead to low performance of software

project. Due to inadequate knowledge of business or functional requirement, business

analyst can collect incorrect requirements from client. Inadequate information collected

from client definitely going to impact of software development and software testing

process. There are many software product failures examples in the world because of

incorrect, incomplete requirements. Literature review has shown the many reasons for IT

project failure in all over the world. Out of 100% project success rates were only 34%

with the rest of project being either “challenged” in some way or failing outright. The

failure in software project means there is loss in productivity, revineo of Software

Chapter 3: Review of Literature RMRSF

 127

Company and these losses are very significant. For example, British food retailer

Sainsbury had to write off its $526 million investment in an automated supply-chain

management system. The U.S. Federal Aviation Administration spent $2.6 billion

unsuccessfully trying to upgrade its air traffic control system in the 1990s. Ford Motor

Company abandoned its purchasing system in 2004, after spending $400 million. In the 8

years since, things probably haven't changed much.

Donald Firesmith provided few causes that leads to poor requirement gathering [41]:

1. Poor Requirements Quality

2. Over Emphasis on Simplistic Use Case Modeling

3. Inappropriate Constraints

4. Requirements Not Traced

5. Excessive Requirements Volatility including Unmanaged Scope Creep

6. Inadequate Verification of Requirements Quality

7. Inadequate Requirements Validation

8. Inadequate Requirements Management

9. Inadequate Requirements Process

10. Inadequate Tool Support

11. Unprepared Requirements Engineers

42. Indika Perera, has published research article on “Impact of Poor Requirement

Engineering in Software Outsourcing: A Study on Software Developers’

Experience”

Indika Perera also thrown light on how poor requirement gathering process

impacts complete life cycle of software project. She has mentioned main reason of such

project failure is incomplete software requirement which in turn happened due to poor

requirement gathering. In SDLC process, most of time it is impossible to have complete

and finalized set of requirements at the beginning of a project. This leads requirement

Chapter 3: Review of Literature RMRSF

 128

changes to happen during the latter stages of the project and create conflicts with the

software process been practiced [13].

43. Ramos Rowel and Kurts Alfeche (1997) has published article on “Requirements

Engineering A good practice guide”, John Wiley and Sons, 1997

Ramos Rowel and Kurts Alfeche defined requirement gathering as it is the

practice of collecting the requirements of a system from users, customers and other

stakeholders. [14] Requirements gathering practices include interviews, questionnaires,

user observation, workshops, brainstorming, use cases, role playing and prototyping.

One of the root causes of poor requirement gathering in SDLC is the only role for

users is in specifying requirements, and that all requirements can be specified in advance.

Unfortunately, requirements grow and change throughout the process and beyond, calling

for considerable feedback and iterative consultation. Due to this frequently changing

requirements gathering process, many developers complain about inadequate, non-

freezing requirements and its impact on their work, software productivity and time

consuming overhead. This non-freezable requirement gathering process not only affects

developer’s work but also affecting Tester, maintenance and management team. Non-

Freezable requirement leads to poor software requirement gathering and in turn leads to

non-qualitative software product. Poor requirement gathering mostly happens due to

business problem, and not a technology problem.

The non-freezable requirements for software, as delivered by typical business

analysts, designer is not sufficiently clear, insightful, or well understood to develop

software systems that meet the needs of business users.

To overcome this problem, there is need to understand root cause of poor software

requirements gathering process and find out the corrective solution for the same.

44. Rahul Thakur and Subhajit Dasgupta have published research article on

“impact of software requirement volatility pattern on project dynamics: evidences

from a case study” International Journal of Software Engineering & Applications

(IJSEA), Vol.2, No.3, July 2011

http://en.wikipedia.org/wiki/Requirements_elicitation#cite_note-1
http://en.wikipedia.org/wiki/Brainstorming
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Software_prototyping

Chapter 3: Review of Literature RMRSF

 129

In this paper authors have investigated the impact of requirement volatility pattern

on project performance. Various types of efforts are considered through case study, in

which authors have shown that effect of volatility of requirements has impact on project,

because employees have to put extra efforts for redo task of software development

process.

45. “Best Practices for Change Impact Analysis” article on Impact Analysis for

Requirement change by Karl Wiegers at Jama Software’s on February 19, 2014.

 In this article author has explained the concept of requirement change and if

change is given by client, how impact analysis technique can be used. In this article he

has explained the format of recording change in the document termed as “Proposed

Change” and technique termed as Impact Analysis discussed and then total efforts

calculated based on proposed change document.

 References:

1. Muhammad Naeem Ahmed Khan and et.all (2013), “Review of Requirements

Management Issues in Software Development” I.J.Modern Education and Computer

Science, 2013, 1, 21-27, Published Online January 2013 in MECS

(http://www.mecs-press.org/) DOI: 10.5815/ijmecs.2013.01.03

2. https://web.cs.dal.ca/~hawkey/3130/SEBackground4.pdf

3. Systems Development Lifecycle: Objectives and Requirements. Bender RPT Inc.

2003

This chapter provides detail literature review about the software, software

engineering process, and different types of software development life cycle

models. It also gives detail literature review on software testing process

and type of software testing. Literature review on Impact of poor

requirement gathering process on software testing process is also given in

detail.

https://web.cs.dal.ca/~hawkey/3130/SEBackground4.pdf

Chapter 3: Review of Literature RMRSF

 130

4. Vanshika Rastogi (2015), “Software Development Life Cycle Models- Comparison,

Consequences” IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 6 (1) , 2015, 168-172

5. Software Development Life Cycle (SDLC) Yogi Berra presentation

6. Ms. Shikha maheshwari and Prof.Dinesh Ch. Jain 2012 “A Comparative Analysis of

Different types of Models in Software Development Life Cycle” International

Journal of Advanced Research in Computer Science and Software Engineering,

Volume 2, Issue 5, May 2012

7. Royce, Winston (1970), "Managing the Development of Large Software Systems"

(PDF), Proceedings of IEEE WESCON 26 (August): 1–9

8. PK.Ragunath, S.Velmourougan, P. Davachelvan, ,S.Kayalvizhi, R.Ravimohan

(2010) “Evolving A New Model (SDLC Model-2010) For Software Development

Life Cycle (SDLC)” IJCSNS International Journal of Computer Science and

Network Security, VOL.10 No.1, January 2010

9. Seema, Sona Malhotra 2012 “Analysis and tabular comparision of popular SDLC

models” International Journal of Advances in computing and Information

Technology.

10. Sonali MAthur and Shaily Malik (2010), “Advancements in the V-Models”,

International Journal of Computer Applications (0975-8887) Volume 1- No.12

11. Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla “Evolving a New Software

Development Life Cycle Model SDLC-2013 with Client Satisfaction”

 International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-3, Issue-1, March 2013

12. G. Kotonya and I. Sommerville, (1998), have published article on “Requirements

Engineering: Processes and Techniques”, in the book published by Chichester, UK:

John Wiley & Sons.

13. Requirements Engineering A good practice guide, Ramos Rowel and Kurts Alfeche,

John Wiley and Sons, 1997

14. I. Sommerville and P. Sawyer (1997), Requirements Engineering: A Good Practice

Guide, New York: John Wiley & Sons,.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

Chapter 3: Review of Literature RMRSF

 131

15. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=948567&url=http%3A%2F%

2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D948567

16. K. E. Wiegers, Software Requirements, 2nd ed., Redmond, W A: Microsoft Press,

2003.

17. http://prr.hec.gov.pk/Chapters/369S-2.pdf (Software Testing reference)

18. Donald Firesmith, Software Engineering Institute, U.S.A “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help

Solve Them”. http://www.jot.fm/issues/issue_2007_01/column2/

19. Olga Liskin , et al., “Supporting Acceptance Testing in Distributed Software Projects

with Integrated Feedback Systems: Experiences and Requirements” 2012 IEEE

Seventh International Conference on Global Software Engineering

20. Vishawjyoti, Sachin Sharma, “Study and Analysis of automation testing techniques”

, Journal of global research in computer science, Volume 3, No. 12, December 2012,

ISSN-2229-371

21. Antonia Bertolino has published his research article on “Software testing research

and practice”

22. Vivek Kumar (2012) has published his article on “Comparison of Manual and

automation testing” International Journal of Research in Science And Technology,

(IJRST) 2012, Vol. No. 1, Issue No. V, Apr-Jun, ISSN: 2249-0604

23. R. M. Sharma (2014), “Quantitative Analysis of Automation and Manual Testing”

International Journal of Engineering and Innovative Technology (IJEIT) Volume 4,

Issue 1, July 2014

24. Harsh Bhasin, at.el. (2014), have published research article on “Black Box Testing

based on Requirement Analysis and Design Specifications”

25. MIRZA MAHMOOD BAIG (2009), “NEW SOFTWARE TESTING STRATEGY”

N.E.D. University of Engineering & Technology

26. Mohd. Ehmer Khan , Farmeena Khan “A Comparative Study of White Box, Black

Box and Grey Box Testing Techniques”, (IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 3, No.6, 2012

http://prr.hec.gov.pk/Chapters/369S-2.pdf
http://www.jot.fm/issues/issue_2007_01/column2/

Chapter 3: Review of Literature RMRSF

 132

27. Paul C. Jorgensen (2013) published book on “Software testing: a craftsman's

approach” CRC Press

28. Wasif Afzal et al. (2008) “A Systematic Mapping Study on Non-Functional Search-

based Software Testing” paper available at

http://www.researchgate.net/publication/221391274

29. W. K. Chan et al (2002), have published article on “An Overview of Integration

Testing Techniques for Object-Oriented Programs” Proceedings of the 2nd ACIS

Annual International Conference on Computer and Information Science (ICIS 2002),

International Association for Computer and Information Science, Mt. Pleasant,

Michigan (2002)

30. Shivkumar Hasmukhrai Trivedi, (2012), has published research article on “Software

Testing Techniques” International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 2, Issue 10, October 2012

31. Leung, H.K.N (1989) has published article on “Insights into regression testing”

Software Maintenance, 1989., Proceedings., Conference on

32. M. Fagan, “Design and Code Inspections to Reduce Errors in Program

Development,” IBM Systems Journal, vol. 38, no. 2/3, pp. 258–287, 1999.

33. Hitesh Tahbildar at el(2011). “Automated software test data generation: Direction of

research” International Journal of Computer Science & Engineering Survey

(IJCSES) Vol.2, No.1, Feb 2011

34. http://www.rishabhsoft.com/blog/beta-testing-the-importance (2011)

35. Ms. S. Sharmila, “Analysis of Performance Testing on Web Applications”

International Journal of Advanced Research in Computer and Communication

Engineering Vol. 3, Issue 3, March 2014

36. Pooja Ahlawat (2013) “A Comparative Analysis of Load Testing Tools Using

Optimal Response Rate” International Journal of Advanced Research in Computer

Science and Software Engineering. Volume 3, Issue 5, May 2013

http://books.google.co.in/books?hl=en&lr=&id=6WlmAQAAQBAJ&oi=fnd&pg=PP1&dq=Functional+software+testing&ots=Jsj-K3Okg0&sig=bb-ub8PKu4lB48sFdndwxm25Fgs
http://books.google.co.in/books?hl=en&lr=&id=6WlmAQAAQBAJ&oi=fnd&pg=PP1&dq=Functional+software+testing&ots=Jsj-K3Okg0&sig=bb-ub8PKu4lB48sFdndwxm25Fgs
http://www.researchgate.net/publication/221391274
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leung,%20H.K.N..QT.&newsearch=true
http://www.rishabhsoft.com/blog/beta-testing-the-importance

Chapter 3: Review of Literature RMRSF

 133

37. Chapter 4 ‘Capturing the Requirements’, http://www.cse.msu.edu/~chengb/RE-

491/Papers/atlee-chapter4.pdf

38. 2013, Md Rounok Salehin “Missing Requirements Information and its Impact on

Software Architectures:A Case Study” The School of Graduate and Postdoctoral

Studies The University of Western Ontario,London, Ontario, Canada

39. Mohd. Ehmer Khan, “Different Forms of Software Testing Techniques for Finding

Errors,” IJCSI, Vol. 7, Issue 3, No 1, pp 11-16, May 2010

40. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Requirements

Elicitation". Technical Report CMU/SEI-92-TR-012. CMU / SEI. Retrieved January

14, 2012.

41. Donald Firesmith, Software Engineering Institute, U.S.A “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help

Solve Them”. http://www.jot.fm/issues/issue_2007_01/column2/

42. Indika Perera, “Impact of Poor Requirement Engineering in Software Outsourcing: A

Study on Software Developers’ Experience”. Int. J. of Computers, Communications

& Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 2 (June), pp.

337-348

43. Requirements Engineering A good practice guide, Ramos Rowel and Kurts Alfeche,

John Wiley and Sons, 1997

44. “Impact of software requirement volatility pattern on project dynamics: evidences

from a case study” International Journal of Software Engineering & Applications

(IJSEA), Vol.2, No.3, July 2011

45. http://www.jamasoftware.com/blog/change-impact-analysis-2/

http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.jot.fm/issues/issue_2007_01/column2/

134

Chapter 4

Data Analysis and Interpretation

4.1 Introduction

In chapter 3 researcher has focused on literature review, in which researcher has

given the information about the summarized points about various research journals

papers, and designed questions for data collection.

 The study is related to the analysis of impact of poor collecting SOP process on

software testing. Survey based research methodology has been used to carry out this

research.

This research is related to the study of impact of collecting SOP on business with

special reference in Software companies of Pune city. The researcher has tested

positively the hypotheses of this research study, with the help of primary and secondary

data.For the purpose of the study, samples have covered all software companies present

under PMC and PCMC area. Hence, the researcher has selected one sample viz. software

companies present under PMC and PCMC area and collected data from the employees

working in these software companies.

Chapter 4: Data Analysis and Interpretation

 135

4.1.1 Distribution of employees from different software companies present under

PMC and PCMC area

Sr.

No.

Office

Location

Number of Employees form different

Software Companies in Pune City

1 PMC 190(47.5%)

2 PCMC 210(52.5%)

Table 4.1. Employees from Software companies present in PMC and PCMC

Above table gives information about employees from PMC and PCMC area of pune.

Distribution of No. of Software Companies under

PMC and PCMC Area

190

210

180

185

190

195

200

205

210

215

PMC PCMC

Area

N
o

.o
f

S
o

ft
w

ar
e

C
o

m
p

an
ie

s

Graph 4.1: Software companies present in PMC and PCMC

Chapter 4: Data Analysis and Interpretation

 136

As discussed above, 400 samples are collected from different software companies

resids in PMC and PCMC area. Among 400 samples, 190 employees i.e 47.5 %

employees of sample belongs to software companies resides in PMC area and 210

employees i.e 52.5% employees of sample belongs to software companies resideds in

PCMC area.

 The primary data about 400 employees from 21 software companies of Pune city

has been collected by the researcher. An analysis is carried out in six broad headings as

follows. This analysis is mainly done in the point of view of Business Analyst, Designer

and Tester.

4.2 Data Analysis

 The data for employees of Software companies is collected through interviews &

questionnaires then compiled in 32 tables. Statistical parameters and graphics have been

used wherever necessary and useful. The data analysis of this data is as follows:-

1. General Background of Respondents
 Designer and Tester of different software companies with respect to

their Gender, Age, Education, Occupation and office location in pune

city.

2. Current state of collecting SOP from customer process in Software industry

 From whom and how requirement analyst or designer collecting SOP.

And which kind of SOP they are collecting in how much duration?

 Involvement of different people in collecting SOP process and

interaction with end user while doing collecting SOP.

Chapter 4: Data Analysis and Interpretation

 137

 Useful requirement documents for business analyst and requirement

engineers.

 Beneficial collecting SOP techniques and significance of requirement

documents.

 Business Analyst’s time consumption on non-collecting SOP activities.

3. To study the impact of SOP which are not freezed on business in software

development.

 Factors responsible for failure of collecting SOP process.

 Responsible factors which makes software project erroneous

 Factors responsible for failure of software project

 Efforts carried out in case of volatility of SOP which has impact on

business.

 Factors affected if client SOP (Statement of Purpose) keep on changing

during software development Process.

4. To analyze various tools used in software companies:

 Useful tools for collecting SOP process.

5. To analyze the current scenario of software testing.

 Involvement of testing team throughout the SDLC process.

 Usage of Testing tools and type of testing like automated or

manual testing

 Number of test cases execution and rate of defect on requirement

document.

Chapter 4: Data Analysis and Interpretation

 138

6. To understand various hurdles in the software testing and testers problem.

 Cost involved in testing process in terms of project failure

 effect of poor SOP or requirement on software testing process

 Overheads in software testing

 Common SOP issues responsible to affect software testing process.

4.3. Gender Background of Respondents

In this point general background of respondents like qualification, occupation is

discussed.

Employee’s basic information like gender and their designation is collected

through questionnaire and then it is analyzed in the following table.

4.3.1 Gender and Occupation of Respondents:

Employee’s designation like Business Analyst, Designers and Testers, Business

Analyst is a term used for person in Software Company who analyses an organization or

business domain and documents its processes, assessing the business model or its

integration with technology.

Designer is people who develop the framework for software and interfaces for a

system. Tester is a technician who conducts tests on software programs and applications

prior to their implementation to ensure quality, design integrity and proper functionality.

For the understanding and awareness about collecting SOP process, researcher has

collected educational wise data from 400 employees of different software companies. For

this research, this analysis has been done based on gender of employees. From the

analysis, it has been seen that 28.5 percent male employees and 5 percent female

employees have designation as business analyst and 22.5 percent male and 7.5 percent

female employees having designation as Designer.

Chapter 4: Data Analysis and Interpretation

 139

Occupation

Gender

Total Male Female

Business Analyst 114

(28.5)

20

(5)

134

(33.5)

Designer 90

(22.5)

29

(7.25)

119

(29.75)

Tester 90

(22.5)

57

(14.25)

147

(36.75)

Total 294 106 400

 Table 4.2: Gender and Occupation wise Distribution of Employees

Graph 4.2: Gender and Occupation wise Distribution of Employees

Researcher also collected data for 22.5 percent male and 14.5 percent females

employees are working as a Tester. From this analysis, it has been seen that employees

are working as Business Analyst, Designer, and tester in different software companies.

Chapter 4: Data Analysis and Interpretation

 140

4.3.2 Qualification and Occupation wise Distribution of Employees

This table gives information about the employee’s qualification, like postgraduate and

graduate for software development. Here software engineer’s designation is as Business

Analyst, Designer and Tester.

Business Analyst are those who works as Project Manager who analyze all customer’s

SOP and prepare Customer requirement Documents.

Designer are those who prepares Logical Documents in which requirement specifications

are designed and Testers are those who prepares Test Cases for testing code developed by

software developers.

Occupation

Qualification

Total Post Graduate Graduate

Business

Analyst

112

(28)

22

(5.5)

134

(33.5)

Designer 95

(23.75)

24

(6)

119

(29.75)

Tester 84

(21)

63

(15.75)

147

(36.75)

Total 294 106 400

 Table 4.3: Qualification and Occupation wise Distribution of Employees

Chapter 4: Data Analysis and Interpretation

 141

Graph 4.3: Qualification and Occupation Distribution of Employees

For the understanding and awareness about collecting SOP process, researcher has

collected educational wise data from 21 of different software companies. For this

research, this analysis has been done based on qualification of employees. From the

analysis, it has been seen that 28 percent Postgraduate and 5.5 percent graduate

employees are Business Analyst. 23.75 percent postgraduate and 6 percent graduate

employees is Designer and 21 percent postgraduate and 15.75 percent graduate

employees are Testers. From this analysis, it has been seen that employees are graduate,

postgraduate qualified, and they are having knowledge about collecting SOP process with

designation wise experience.

Chapter 4: Data Analysis and Interpretation

 142

4.3.3. Distribution of Employees from different software companies present under

PMC and PCMC area

Researcher has collected data from various software companies located in and around

pune. Mainly from Hinjewadi Infotech Park and Hadapsar IT park located nearby pune

has maximum software companies.

Sr.

No.

Office

Location

Number of Employees from different

Software Companies in Pune City

1 Hadapsar 49 (12.25%)

2 Hinjewadi 210(52.5%)

3 Kharadi 36(9%)

4 Shivaji Nagar 105(26.25%)

Table 4.4: Employees from different software companies present in different areas of pune city

Distribution of No. of Employees from different

office Location

49

210

36

105

0

50

100

150

200

250

Hadapsar Hinjewadi Kharadi Shivaji nagar

Office Location

N
o.

 o
f E

m
pl

oy
ee

s

Graph 4.4: Employees from different software companies present in different areas of pune city

Chapter 4: Data Analysis and Interpretation

 143

For this research, 400 employees are responded from different software

companies. These employees are belongs to different software companies with different

office locations. As we have considered PMC and PCMC areas from Pune city,

Hadapsar, Kharadi and Shivaji nagar office locations belongs to PMC area and Hinjewadi

belongs to PCMC area. Hence from the data analysis, it has been seen that 49 employees

are from Software companies which are located in Hadapsar area, 210 employees from

Hinjewadi area, 36 from Kharadi and 105 from Shivaji Nagar.

4.3.4. Distribution of Employees in different software companies

In above section we saw, there are four office locations present in pune city and

employees from these offices are distributed as per there companies name. Following

table shows that number of employees belongs to 21 software companies.

Sr.

No. Company Name

No. of

Employees

1 Accenture 7

2 Amdocs 24

3 Atos 46

4 Davachi 7

5 BMC 6

6 Capegemini 53

7 Citi Bank 6

Chapter 4: Data Analysis and Interpretation

 144

8 Congnizant 9

9 Hummingbird 9

10 Calsoft 16

11 Neptune Info

Tech

2

12 IBM 4

13 KPIT Cummins 38

14 Patani 7

15 Persistent 9

16 Principal Optima 4

17 CLSA 7

18 Sigma Soft 51

19 Symphony 51

20 Tech Mahindra 34

21 Wipro 10

 Table 4.5: Distribution of Employees in different software companies

Chapter 4: Data Analysis and Interpretation

 145

Distribution of Employees in Software Companies

7

24

46

16

6

53

6
9 9 7

2 4

38

7 9
4

7

51 51

34

10

0

10

20

30

40

50

60

A
cc

en
tu

re
A
to

s

B
M

C

C
iti
 B

an
k

C
TO

E
rd

as

K
P
IT

 C
um

m
in
s

P
er

si
st

an
t

S
C

S
ym

ph
on

y

W
ip

ro

Software Companies

N
o

.
o

f
E

m
p

lo
y
e
e
s

Graph: 4.5: Distribution of Employees in different software companies

4.4 Current state of Collecting SOP Process in Software Industry

4.4.1. Collecting SOP Techniques used in Software Industry:

Customer’s SOP analysis, also called customer’s SOP engineering, is the process of

determining user expectations for a new or modified product. These features, called

customer’s SOP, must be quantifiable, relevant and detailed. In software engineering,

such customer’s SOP are often called functional specifications. Customer’s SOP analysis

is an important aspect of project management.

Customer’s SOP analysis involves frequent communication with system users to

determine specific feature expectations, resolution of conflict or ambiguity in customer’s

http://searchsoa.techtarget.com/definition/software
http://searchsoftwarequality.techtarget.com/definition/functional-specification
http://searchcio-midmarket.techtarget.com/definition/project-management

Chapter 4: Data Analysis and Interpretation

 146

SOP as demanded by the various users or groups of users, avoidance of feature creep and

documentation of all aspects of the project development process from start to finish.

 In today’s IT world, more and more software applications and tools are used. If these

applications or tools do not work properly according to the customer requirement

specifications then it will lead to the failure of software product. To meet the customer

requirement specifications there is need to take error free requirement from client. In the

current state of software engineering, business analyst and designer use many collecting

SOP techniques but for error free customer’s SOP, there is need to understand which

collecting SOP technique is correct and most suitable.

 Hence in this research, survey has been done to identify better and suitable collecting

SOP technique. In this survey basically three collecting SOP techniques has been

considered:

1. Personally Meeting

2. Through Documents

3. Online-Automated

 Personally Meeting is the technique in which client, end user and development team

discusses the customer’s SOP and prepares requirement document.

 Through Documents is the techniques in which existing documents have been

observed like existing reports format, data sheets through customer’s SOP can be

gathered.

 Online – Automated is a technique through which customer’s SOP are uploaded on a

shared server, from where customer’s SOP can be gathered.

http://searchcio.techtarget.com/definition/feature-creep

Chapter 4: Data Analysis and Interpretation

 147

Means using any of these three collecting SOP techniques, business analyst and designer

can collect error free requirement from client.

From the analysis of respondent views, it has been shown that, Personally Meeting with

client is the best collecting SOP technique as it is nothing but face to face communication

with client and using this technique business analyst can easily get clarified all the doubts

regarding requirement specification. Hence, maximum around 369 respondents provided

positive vote for “Personal Meeting” collecting SOP technique. Some of respondents are

also given preference to “Through Document” and “Online-Automated” techniques. As

using “Through Document” technique, business analyst can get requirement in written

and hence in future there will not be misunderstanding between client and business

analyst. Two hundred and Eighty nine people are saying Through Document is a good

technique to use for collecting SOP process. Online-Automated technique is useful when

shared server is available for client as well as software product provider. Therefore, that

in one place all customer’s SOP can stored and client as well business analyst can access

it at any time. Hence, around 342 respondents agreed for use of Online-Automated tool.

Collecting SOP

Techniques Yes No Percent

Personally Meeting 369 31 92.3

Through

Document

289 111 72.3

Online-Automated 342 58 85.5

Table 4.6: Collecting SOP Technique used in Software Industry

Chapter 4: Data Analysis and Interpretation

 148

Employee's View about Requirement Gathering

Techniques
Yes, 369

Yes, 289

Yes, 342

No, 31

No, 111

No, 58

0

50

100

150

200

250

300

350

400

Personally Meeting Through Document Online-Automated

Requirement Gathering Techniques

Em
p

lo
ye

e'
s

V
ie

w

Yes

No

Graph 4.6: Collecting SOP Technique used in Software Industry

4.4.2. Types of customer’s need to use for betterment of software project

As we have seen in chapter 3 that collecting SOP is the process of collection of

demands, expectations from the end user or customer to build up a quality product. But in

general these customer’s SOP should be categorized in high level types like how business

analyst or designer can collect requirement from customer. In this research, broad

category of requirement types has been defined and they are as follow [2]:

1. Scope Clarification for Domain

2. Input Processes

3. Reporting Procedures

4. Number of Users: Number of users going to be uses proposed software or system.

Chapter 4: Data Analysis and Interpretation

 149

5. Data Collection : Input data required to be processed and output generated by

proposed software or system

In this research, survey has been done on 400 employees of software companies to

identify which of the requirement collection method is correct and most suitable for

successful software project [See Table 4.7 and Graph 4.7].

Kind of Customer’s SOP Yes No Percent(Yes)

Scope Clarification for

Domain

21 379 5.3

Input Processes 7 393 1.8

Reporting Procedures 44 356 11.0

Number of Users 7 393 1.8

Data Collection 12 388 3

All of the Above 309 91 77.3

 Table 4.7: Types of customer’s SOP need to use for betterment of software project

Chapter 4: Data Analysis and Interpretation

 150

Distribution of Employee's View for Kind of Requirements

Yes, 21
Yes, 7

Yes, 44

Yes, 7 Yes, 12

Yes, 309

No, 379
No, 393

No, 356

No, 393 No, 388

No, 91

0

50

100

150

200

250

300

350

400

450

Scope Clarification for

Domain

Input Processes Reporting Procedures Number of Users Data Collection All of the Above

Kinds of Requirements

N
u

m
b

e
r
 o

f
 E

m
p

l
o

y
e

e
s

Yes

No

Graph 4.7: Types of customer’s SOP need to use for betterment of software project

4.4.3. Time Duration for Client interaction while collecting customer SOP.

Time duration is most important factor and playing vital role in the success or failure of

any software project. Time duration required to collect customer’s SOP/demands from

customer need to be considered in project management process.

Chapter 4: Data Analysis and Interpretation

 151

No of Weeks No. of Employee's View Percentage

2 Weeks 5 2

3 Weeks 110 19.6

4 Weeks 216 50.8

More than 4

weeks
69 27.6

Total 400 100

 Table 4.8: Time Duration for Client interaction while gathering customer’s SOP

Time Duration for Client Interaction

5

110

216

69

0

50

100

150

200

250

2 Weeks 3 Weeks 4 Weeks More than 4

weeks

Time Duration

N
o.

 o
f E

m
pl

oy
ee

's
 V

ie
w

No of Weeks

 Graph 4.8: Time Duration for Client interaction while gathering customer’s SOP

Chapter 4: Data Analysis and Interpretation

 152

To collect error free requirement from client, there is need to consume adequate

time for collecting SOP process. Very less time can lead to incomplete, incorrect

customer’s SOP but if we consider respondent point of view then in the survey or data

analysis we can recognize exact suitable and adequate time for collecting SOP process.

Among 400 employees of different software companies, 5 employees are saying 2 weeks

are very less time to collect customer’s SOP from client. However, for small scale

projects, 3 weeks are enough to collect customer’s SOP. However, maximum employees

are voting to 4 weeks time duration for collecting SOP process. As for large scale project,

business analyst SOP to attend many sessions and meeting with client to collect

customer’s SOP. Hence, 4 weeks time duration is quite adequate to attend sessions or

meetings with customer, their system architectures and management team. Around 216

employees are agreed with 4 weeks time duration for requirement collection. Also

business analyst need to explain requirement specification in detail to testing and

development team, so it also take time to finish actual requirement time and hence

sometime requirement phase takes more than four weeks to complete. Hence, 69

employees are saying more than 4 weeks are required to collect customer’s SOP from

client or customer.

4.4.4. Useful traps for collecting SOP process

In 5.4.1 section, we saw using different collecting SOP techniques like personally

meeting, Through Document and Online-Automated we can collect customer’s SOP from

client. But even though we follow these techniques properly still few mistakes can

happen by business analyst or designer and create incorrect, incomplete kind of

customer’s SOP.

Chapter 4: Data Analysis and Interpretation

 153

To avoid this incorrect and incomplete requirement issue, there is need to user few traps,

these traps are actually suggested by IBM and it SOP to take in practice of collecting

SOP process. Following are the traps SOP to be used while gathering customer’s SOP

from client.

1. Power up communications with Visuals: Need to give visual

presentation for better visibility of requirement understanding.

2. Use of standard templates to support collecting SOP work : Readymade

templates with best and standard practices of requirement engineering

should be available

3. Avoid common pitfalls: Need to avoid common mistakes that are happen

frequently while gathering customer’s SOP from client.

4. Need to use Tools : Need to use automated, online collecting SOP tools to

save time of requirement engineering process

Sr.

No. Useful Traps SA(5) A(4) N(3) D(2) SD(1) Avg

1

Power up Communication

with visuals 207 136 57 0 0 7.03

2

Use of standard template

to support your work 104 231 65 0 0 6.58

3 Avoid common pitfalls 88 255 57 0 0 6.55

4 Uses of tools 86 314 0 0 0 6.77

 Table 4.9: Useful traps for collecting SOP process

Chapter 4: Data Analysis and Interpretation

 154

In this research, 400 respondents responded for their view about useful traps for

the betterment of collecting SOP process. 207 employees are strongly recommending for

“Power up communication with visuals” because communications with visuals provides

more visibility in requirement understanding. 104 employees are strongly agreed for

“User of standard template to support collecting SOP work” as standard template is

designed after considering best practices for collecting SOP process and hence it is quite

useful for error free collecting SOP process. 88 employees strongly recommends “Avoid

common pitfalls” means common mistakes SOP to avoid while gathering customer’s

SOP from client. 86 employees are strongly responded “Use of Tools” option as using

automated collecting SOP tools saves more time and lead to increase the productivity of

requirement engineering team.

4.4.5. Involvement of different people in collecting SOP process

As we have discuss the various techniques used for collecting SOP and analysis,

personally meeting is one of the technique used for requirement collection , in which

many users are involved, so here we are discussing which all different users should

involve in collecting SOP process.

As we saw 4 week time duration quite fine for requirement collection from client, but

along with the time it is quite necessary to involve many people in the collecting SOP

process. As Collecting SOP covers many pros and cons like if requirement is error free

then there is lots of possibility of success of software project but if anything miss by

business analyst then it leads to error in customer’s SOP. Only person might be miss few

Chapter 4: Data Analysis and Interpretation

 155

important points or alternation while collecting customer’s SOP. There is big possibility

of lack knowledge about existing system or product and that lead to incorrect or

incomplete requirement collection from client. Hence, instead of only one person like

business analyst is not enough for correct customer’s SOP collection. There is need to

involve many people like Senior management team, senior architecture team, testers,

developers, clients, end users and subscribers in the discussion of collecting SOP meeting

or session. Because if any person miss any important point or not from the collecting

SOP discussion then another might be catch that point and likewise correct and complete

requirement can get collected from client. Also due to involvement of senior

management, project management, testers and developers all the aspects of system (to be

developed) are getting covered and considered.

From the survey, it has been shown that 392 employees are agreed for the involvement of

requirement team in the collecting SOP discussion/meeting. It but obvious that

requirement team is mandatory team to attend this meeting as these people mainly

responsible for requirement collection from client. In addition, 400 employees are

responded for the involvement of end user or client as it is also mandatory person as he is

actually giving business to Software Company. 58 employees are agreed for the

involvement of developers in the collecting SOP discussion. Here developer means

technical lead or team lead of software project as he should be capable to provide

technical functionality of software product and need to clarify technical issues at that

time. Also 72 people are saying tester involvement is mandatory in collecting SOP

discussion as testing team verifying and validating the actual business functionality with

developed software product. Testing team is responsible for the verification and

Chapter 4: Data Analysis and Interpretation

 156

validation of software product functionality and should fulfill the customer or end user

demands or customer’s SOP. Hence testing team is mandatory as a part of collecting SOP

discussion.

People involved Yes No

Senior Management 15 385

Project Manager 16 384

End User 400 0

Requirement Team 392 8

Developers 58 342

Testers 72 328

Scribes 7 393

Table 4.10: People Involvement in collecting SOP process

Chapter 4: Data Analysis and Interpretation

 157

Distribution of Various People Involvement in Requirement

Analysis Process

Yes, 72

Yes, 7

No, 328

No, 393

1615

400 392

58

0

385 384

8

342

0

50

100

150

200

250

300

350

400

450

Se
nio

r_
M

anage
m

ent

Pro
je

ct
 M

anag
er

End U
se

r

Require
m

ent T
eam

Deve
lo

pers

Teste
rs

Sc
rib

es

People

N
o

. o
f

Em
p

lo
ye

e'
s

V
ie

w
s

Yes

No

Graph 4.9: People Involvement in collecting SOP process

4.4.6. Time duration required to interact with end user for collecting SOP.

To estimate cost of any software project, time is bigger factor to consider. Cost is

always related to time of resources, hardware, software etc. Hence while doing

project management, management team need to consider time as important factor.

Time SOP in all phases of SDLC. Hence, in collecting SOP phase time required by

designer or business analyst to interact with client becomes most important factor. If

requirement is even though small but if it complex then business analyst may require

more time to get it from end user. If client interaction time gets more as compare to

estimated time then it may affect to delivery of software project or quality of project.

Hence, there is need to consider how much time designer or business analyst SOP to

Chapter 4: Data Analysis and Interpretation

 158

interact with client on daily basis. Interaction with client can be done using online

call, offline chat, writing mails etc.

In this research, [see table and graph] survey has been done and among 400

employees, 226 employees are strongly recommends daily 4 hrs required to interact

with client or end user to understand requirement or to clarify requirement related

queries.

Time Duration

Employee's

View Percent

Less than 2 Hrs. 68 17.0

3 Hrs. 49 12.3

4 Hrs. 226 56.5

More than 4 Hrs. 57 14.3

 Table 4.11: Time duration required to interact with end user for collecting SOP

Graph 4.10: Time duration required to interact with end user for collecting SOP

Chapter 4: Data Analysis and Interpretation

 159

Most of time, if discussion is bigger, then more than four hrs is also required and for

this point around 57 employees says yes. Sometime requirement discussion topic

quite small and hence 68 employees responded for less than 2 hrs option.49

employees are saying 3 hrs are enough to interact with client

1. The information from Table 4.6(Collecting SOP techniques proves the

second objective.), Table 4.7(Types of customer’s SOP need to use for

betterment of software project), Table 4.8(Time Duration for Client

interaction while gathering customer’s SOP), Table 4.9(Useful traps for

collecting SOP process), Table 4.10(People Involvement in collecting SOP

process), Table 4.11(Time duration required to interact with end user for

collecting SOP) proves First Objective “To study various task undertaken for

software development process in IT Companies”.

4.4.7. Significance of Different types of Requirement Documents.

In collecting SOP session or meeting, business analyst SOP to take customer’s SOP

verbally from client and then he/she SOP to record or write requirement in specific

document. Recording customer’s SOP somewhere in document is a need of an hour

because for further changes or future use we need base of requirement. Hence, to record

such customer’s SOP, software engineering designed and defined different documents

like:

1. Customer Requirement Document (CRD)

2. Business Requirement Document (BRD)

3. Functional Requirement Document (FRD)

Chapter 4: Data Analysis and Interpretation

 160

4. Component Specification Document (CSD)

5. Component Design Document (CDD)

6. Test Case Document (TCD)

It is quite important to understand, among six documents which document is

playing most vital role in the success of software project. Table No. 4.12 shows the

various documents used in SDLC process. To meet the objective a questionnaire has been

designed by using various documents, which define the various documents responsible

for success of any software project. It is observed that for each document the average

scale is in between 1 to 5 that is in between strongly disagree to strongly agree. In fact all

the values are above 3.5 which mean that with respect to all the parameters much

approval is observed. In a 5-point Likert scale, having categories like strongly agree,

agree, neutral, disagree and strongly disagree clubbed into three categories. The reason

for using Likert scale is that the responses by the respondents should not become

monotonous while answering the questions. Hence researcher has also applied 5-point

Likert scale and calculates weighted average value. There is very less difference between

the comparative value of rank order average value and 5-point Likert scale value. [1]

It is seen that the highest average value is 7.71 for the ‘Functional Requirement

Document (FRD)’ followed by ‘Component Design Document (CDD)’ that is 7.32 and

‘Component specification document (CSD)’ and ‘Test Case Document (TCD)’ which are

7.29 and 7.02. The average value for factor ‘Customer Requirement Document (CRD)’ is

6.78 followed by ‘Business Requirement Document (BRD)’ is 6.63. It is clear from the

average values that Functional Requirement Document (FRD) is most important

document as per most of respondents. As FRD is created for the functionality of a

Chapter 4: Data Analysis and Interpretation

 161

proposed software and it is useful for Testing, development and designer team as well.

Hence, most preference has been given to this document. FRD always contains the detail

information about integrated functionality of proposed software and customer’s demands

or requirement in the technical language. Hence, FRD should always be in sync with

updated requirement and updated functionality of domain. Component design document

(CDD) actually contains the information about technical, business functionality

developed component of proposed software, and hence this document is mainly useful for

development and testing team. Testing team uses CDD document just to understand

business functionality in technical terms. Component Specification Document (CSD) is

needed for designer and development team and hence employees from both these teams

have given preference to this document. Test Case Document (TCD) is mainly important

document for testing team and hence this document should be in sync with FRD that is

the business functionality of proposed document. Customer Requirement Document

(CRD) is the base for all documents. This document actually created by customer itself

and accordingly business analyst and designer creates BRD, FRD, and other documents.

CRD always contains customer’s specific demands or customer’s SOP and it is available

in the customer’s understanding language. BRD is created by considering CRD and it

contains only business functionality of proposed software. It does not have technical

functionality and hence this document is only helpful for business analyst and system

architecture team.

Chapter 4: Data Analysis and Interpretation

 162

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1) Avg

1

Customer Requirement

Document (CRD) 160 183 42 15 0 6.78

2

Business Requirement

Document (BRD) 162 126 112 0 0 6.63

3

Functional Requirement

Document (FRD) 334 51 15 0 0 7.71

4

Component Specification

Document (CSD) 223 170 7 0 0 7.29

5

Component Design Document

(CDD) 229 164 7 0 0 7.32

6 Test cases Document (TCD) 190 169 41 0 0 7.02

 Table 4.12: Significance of Different types of Requirement Documents

4.4.8. Time consumption of Business Analyst on sub activity of collecting SOP

from customer.

As we saw, different factors like inadequate resources and inadequate time are responsible

for the failure of collecting SOP process. Hence, for time and resources management there

is needed to consider work schedule and number of activities performed by collecting

SOP team members. In many organizations, it has been seen that due to workload,

business analyst need to work on non-collecting SOP activities as well. Hence, due to this

extra workload, business analyst could not focus on his/her actual collecting SOP

activities, which in turn leads to incorrect, incomplete customer’s SOP.

Chapter 4: Data Analysis and Interpretation

 163

In this research, following factors has been considered as non-requirement activities

performed by business analyst and designer.

1. Writing Requirement Documents

2. Reviewing FRD/BRD

3. Client Customer Interaction

4. Conducting Training for Testers and Developers

 Writing Requirement Documents is the process in which collected customer’s

SOP are stored in the specific format by business analyst and these documents are

distributed for next phase of software development.

 Reviewing FRD/BRD in this function requirement document or business required

document is verified for checking customer’s customer’s SOP.

 Client Customer Interaction, in this periodically meetings must be conducted with

client or customer for showing progress of development of product and for

verifying customer’s SOP.

To get views from respondents, data is divided in different ranges of percentage like 0-25,

25-50, 50-75, 75 and above. From the survey, it has been seen that higher percentage

range value for ‘Writing Requirement Document’ is 129.

Chapter 4: Data Analysis and Interpretation

 164

 Percentage

Factors 0-25 25-50 50-75 75 and above

Writing Requirement Document 138 133 129 0

Reviewing FRD/BRD 265 135 0 0

Client Customer Interaction 15 160 210 15

Conducting Training for Testers and Developers 306 62 32 0

Table 4.13: Time consumption of Business Analyst on non-collecting SOP activities

4.5 To Study the Impact of SOP which are not freeze in

Software Development

4.5.1 Failure of Collecting SOP process

Some factors are responsible for failure of collecting SOP process which is discussed

below.

 Lack of knowledge about the business context means, when initially customer’s

SOP which gather from client are consider as business context, if developer team

has less knowledge about domain, it is considered as lack of knowledge about

business context.

 Lack of understanding of Business -: Customer SOP or demands are nothing

but problems or opportunities and business analyst, designer SOP to find out

solutions for those problems. But if business analyst or designer will have lack

understanding about the business problems then how he will find out exact

Chapter 4: Data Analysis and Interpretation

 165

solutions for those problems. Hence Understanding of Business

problems/opportunities is most important factor to reduce failures in collecting

SOP process.

 Missing of gaps to be bridged-: In software development process at various

stages or phases software is developed so there must be communication at every

stage about development of software so that some missing customer’s SOP can be

carried out in development process.

 Inadequate number of Resources -: is the term used for supportive resources

like time, knowledge, tools which used for collecting SOP process.

 Inadequate Time-: Here if business analyst spends adequate (satisfactory) time

for collecting SOP process then here less chance of gathering wrong or missing

customer’s SOP.

Strongly Agree (SA)-5, Agree(A)-4, Neutral(N)-3, Disagree(D)-2, Strongly Disagree(DS)-1

Sr.

No

. Factors SA(5)

A(4

)

N(3

)

D(2

) SD(1) Avg

a) Lack of Knowledge about the business

context

280 113 7 0 0 7.52

b) Lack of Understanding of Business

problems/opportunities

252 148 0 0 0 7.44

c) Missing of gaps to be bridged 187 213 0 0 0 7.18

d) Inadequate number of Resources 116 250 34 0 0 6.76

e) Inadequate Time 181 185 34 0 0 7.02

Chapter 4: Data Analysis and Interpretation

 166

Table 4.14: Factors affecting on collecting SOP

A collecting need is the process of collection of demands, expectations from the

end user or customer to build up a quality product. Collecting SOP is the basic and

important step of requirement engineering stream. The main goal of collecting SOP

process to get exact demands SOP from the end user or customer in detail without

missing any minor note.

But during collecting SOP process many challenges can encounter like Changing

nature of customer’s SOP, inadequate communication, problem of scope, incomplete

customer’s SOP, ambiguous customer’s SOP, wrong selection of stake holders,

inappropriate selection techniques, conflicting customer’s SOP are some of the problems

[3]. 90% of large software projects are failing due to poor collecting SOP process [4].

Hence, researchers has designed question, which is focused on different factors

responsible for failure of collecting SOP process. Because collecting SOP process

playing most vital role in the success or failure of software project.

 Table No. 4.14 shows the various factors responsible for failure of collecting SOP

process. To meet the objective a questionnaire has been designed by using various

factors, which define the various points responsible for success of any software project. It

is observed that for each factor the average scale is in between 1 to 5 that is in between

strongly disagree to strongly agree. In fact all the values are above 3.5 which mean that

with respect to all the parameters much approval is observed. In a 5-point Likert scale,

having categories like strongly agree, agree, neutral, disagree and strongly disagree

clubbed into three categories. The reason for using Likert scale is that the responses by

the respondents should not become monotonous while answering the questions. Hence

Chapter 4: Data Analysis and Interpretation

 167

researcher has also applied 5-point Likert scale and calculates weighted average value.

There is very less difference between the comparative value of rank order average value

and 5-point Likert scale value. [1]

It is seen that the highest average value is 7.52 for the ‘Lack of knowledge about the

business context’ is followed by ‘Lack of understanding of Business

problems/opportunities’ is 7.44, followed by ‘Missing of gaps to be bridged’ that is 7.18,

followed by Inadequate Time’ is 7.02 and ‘Inadequate number of Resources’ is 6.76.

It is clear from the average values that ‘Inadequate number of Resources’ is most

responsible for the failure of collecting SOP process. As per most of average like 6.76 of

respondents are specifying inadequate number of resources means crunch of business

analyst or designer in the requirement team and due to this one business analyst need to

do work of 2 or 3 hours and hence it impacts on quality of work in turn quality of

customer’s SOP. Hence, researcher is strongly recommends that adequate number of

Resources is the need of an hour for the success of collecting SOP process and in turn

success of any software project.

Along with adequate number of resources, business analyst should have knowledge

about business context. Knowledge about business context is the basic stuff for any

collecting SOP process. If business analyst does not have knowledge about business

context then it may lead to incorrect collecting SOP and will in turn lead to failure in

collecting SOP process. Hence, each business analyst or designer should be trained for

the knowledge of business context before attending the collecting SOP meeting.

7.44 percentage of respondents are saying ‘Lack of understanding of Business

problems/opportunities’ is the again responsible factor for the failure of collecting SOP

Chapter 4: Data Analysis and Interpretation

 168

process. Customer SOP or demands are nothing but problems or opportunities and

business analyst, designer SOP to find out solutions for those problems. But if business

analyst or designer will have lack of understanding about the business problems then how

he will find out exact solutions for those problems. Hence Understanding of Business

problems/opportunities is most important factor to reduce failures in collecting SOP

process.

If business analyst understands problems or opportunity provided by customer then

he SOP to understand whether Software Company’s product can provide solutions for

customer’s problems. If his product can not support functionality demanded by customer

then he SOP to understand gaps between customer demands and product functionality. If

business analysts miss any important point in customer’s SOP gathering meetings then it

is leading to gap to be bridged. 7.18 respondents agreed that ‘Missing of gaps to be

bridged’ leads to failure in collecting SOP process. Hence, researcher recommends that

business analyst or designer should identify gaps that to be bridged throughout SDLC

process.

Time is the biggest factor for any work to be successful. Hence, for software project

also to be successful there is need to have adequate time to finish work. But most of time,

due to project cost overrun, cost cutting is taken place in time and it is always bothering

requirement team to finish collecting SOP process within very short period of time and

this kind of inadequate time in collecting SOP work lead to incorrect, incomplete and

non-qualitative customer’s SOP. Such kind of inadequate time factor affects to the

quality of software product and in turn leads to failure of software product. Hence, this

research recommends that adequate time should be allocated to collecting SOP work to

Chapter 4: Data Analysis and Interpretation

 169

collect qualitative customer’s SOP. As requirement is the base for overall software

product quality, hence need to consider qualitative customer’s SOP.

2. Information from Table 4.12 (Significance of Different types of

Requirement Documents), Table 4.13 (Time consumption of Business

Analyst on non-collecting SOP activities), Table 4.14 (Factors affecting on

Collecting SOP) proves third objective “To identify various factors

responsible for the software development”.

4.5.2. Factors responsible to make software erroneous

Software testing is a branch where verification of software’s functionality is happening.

Once development team complete their development and submit product to testing team,

then testing team start verification of functionality of software via test cases execution.

However, most of the time software having too much issues or errors because of many

factors. Hence, it is quite important to understand which factors are responsible to make

software erroneous. In this research following list of factors are considered

1. Logic Design-: ‘Logic Design’ is one of the factors responsible for erroneous

software product. Design of logic generally comes into Component design

document and Functional Requirement Document (FRD).

2. Documentation-: Requirement, development and testing mainly relay on

document to complete their work. Requirement team relay on Customer

Requirement Document (CRD) to complete Functional Requirement

Document (FRD), Business Requirement Document (BRD) and Component

Specification document (CSD).

Chapter 4: Data Analysis and Interpretation

 170

3. Human-: Human is responsible factor to make software error as in most of

manual processes human makes mistakes and it leads to failure of software.

4. Environment-: Environment is nothing but hardware on which software is

getting executed.

5. Data-: ‘Data’ factor is also responsible to make software erroneous because

software testing is getting done by using dummy data

6. Interface-: ‘Interface’ is nothing but rule or protocol by using that two systems

are communicating or sending messages to each other.

7. Requirement Errors-: factor to make software product erroneous because as

we know that requirement is the base for all the phases of SDLC process. If

base is incorrect or incomplete then obviously it affects the flow of SDLC

process. Requirement errors always affect the productivity of development,

testing team.

Above listed factors are mostly found as errors in software product. Hence, it is

quite important to understand which factor is most responsible to make software product

erroneous. Table No. 4.15 shows the various factors responsible for erroneous software.

To meet the objective a questionnaire has been designed by using various erroneous

factors which makes software product erroneous. It is observed that for each factor has

the average scale in between 1 to 5 that is in between strongly disagree to strongly agree.

In fact all the values are above 3.5 which mean that with respect to all the parameters

much approval is observed. In a 5-point Likert scale, having categories like strongly

agree, agree, neutral, disagree and strongly disagree clubbed into three categories. The

Chapter 4: Data Analysis and Interpretation

 171

reason for using Likert scale is that the responses by the respondents should not become

monotonous while answering the questions. Hence researcher has also applied 5-point

Likert scale and calculates weighted average value. There is very less difference between

the comparative value of rank order average value and 5-point Likert scale value. [1]

It is seen that the highest average value is 4.73 for the ‘Requirement Errors’

followed by ‘Logic Design’ is 4.34. The average value of ‘Documentation’ is 4.26

followed by ‘Data’ and ‘Environment’ that is 3.74. The average value of ‘Interface’ is

3.58 followed by ‘Human’ that is 3.16.

As per 4.73 percentage of respondents ‘Requirement Errors’ is most responsible

factor to make software product erroneous because as we know that requirement is the

base for all the phases of SDLC process. If base is incorrect or incomplete then obviously

it affects the flow of SDLC process. Requirement errors always affect the productivity of

development, testing team. To make software error free there is need to consider error

free customer’s SOP. Hence, researcher recommends that before starting development of

any software, validate customer’s SOP with zero percentage of error.

Most of time even though requirement is error free or correct but design logic

mentioned in requirement document is incorrect then it leads to development of incorrect

functionality of software product. Around 4.34 percentage of respondents are saying

‘Logic Design’ is one of the factor responsible for erroneous software product. Design of

logic generally comes into Component design document and Functional Requirement

Document (FRD). However, if these two documents are incorrect then it always affects to

logic of design of functionality. Logic of Design is nothing but of mapping of customers’

demands and functionality of software. If this mapping is incorrect then development

Chapter 4: Data Analysis and Interpretation

 172

team cannot implement exact demand of customer. Hence, researcher recommends that

Logic of design is important factor to consider making software error free.

Requirement, development and testing mainly relay on document to complete their

work. Requirement team relay on Customer Requirement Document (CRD) to complete

Functional Requirement Document (FRD), Business Requirement Document (BRD) and

Component Specification document (CSD). Development team also relay on Functional

Requirement Document (FRD) to complete their development work and testing team

relay on Customer Requirement Document (CRD) to complete Functional Requirement

Document (FRD), Business Requirement Document (BRD) to complete their test cases.

But suppose all these documents are incorrect then requirement, development and testing

will lead to incorrect functionality of software product. Hence, around 4.26% of

respondents are saying ‘Documentation’ is one of the factors that also make software

erroneous. Hence, researchers of this research recommend that Documentation of any

software project should update, latest and should cover all the functionality of proposed

software product.

 ‘Data’ factor is also responsible to make software erroneous because software

testing is getting done by using dummy data. Most of time software component

communicate with other software, machine and for this communication they requires

specific data and to make such work possible testing team uses dummy data just make a

feel of end to end flow of a software system. Also most of time to validate the

functionality of third party device there is need to use correct or appropriate data, and if

this data is incorrect then test case might failed for incorrect data. Hence, due to Data

factor most of test cases are getting failed. Hence as per around 3.74 percent of

Chapter 4: Data Analysis and Interpretation

 173

respondents are agrees that Data is one of the responsible factor to make software

erroneous. Researcher of this research recommends that Data should always be correct

and appropriate to start with software testing.

Environment is nothing but hardware on which software is getting executed.

Around 3.74 percentages of respondents are saying environment is also one of the factors

responsible for erroneous software. If environment of software is not good then it always

fails execution of software. E.g. if there is lack of prerequisite list of softwares or

hardware required for proposed software System then in first attempt only software gets

failed.

Factors SD D N A SA Total Avg

Wt.Avg(Likert

Scale)

Logic Design

0 0 17 232 151 400 4.34 4.33

0 0 4.25 58 38

Documentation

0 0 64 168 168 400 4.26 4.26

0 0 16 42 42

Human

0 0 336 64 0 400 3.16 3.16

0 0 84 16 0

Environment

0 0 168 168 64 400 3.74 3.74

0 0 42 42 16

Data

0 0 168 168 64 400 3.74 3.74

0 0 42 42 16

Interface 0 0 168 232 0 400 3.58 3.58

Chapter 4: Data Analysis and Interpretation

 174

 0 0 42 58 9

Requirement Errors

0 0 16 77 307 400 4.73 4.76

 4 19.3 76.8

Table 4.15: Factors responsible to make software erroneous

‘Interface’ is nothing but rule or protocol by using that two systems are

communicating or sending messages to each other. 3.58 percentages of respondents are

saying ‘Interface’ is a factor which may make software erroneous. Sometime tester can

send incorrect message by using such interfaces and in such case software gets failed.

Hence test should be aware the format of message or data that interface requires.

‘Human’ is also factor which makes mistakes in understanding, developing and

testing of software product. 3.16 percent of people are saying ‘Human’ is responsible

factor to make software error as in most of manual processes human makes mistakes and

it leads to failure of software. Researcher of this research recommends that Resources or

Humans should be well trained and skilled to complete the implementation of software

product.

4.5.3. Failure of Software Project

21st century known for computerization of all manual works, that human being

was doing so far. Computerization made man life easy and this computerization become

possible because of integration of hardware and software. Software plays most important

role in the automation of most of electronic appliances. Hence, in current market, demand

for all types of softwares is increasing day by day. This demand leads to development of

thousands of software applications in turn increase in software industries.

Chapter 4: Data Analysis and Interpretation

 175

Sr.

No Factors SA(5) A(4) N(3) D(2) SD(1) Avg

1 Lack of user involvement 275 91 34 0 0 7.39

2 Long or unrealistic time scale 201 199 0 0 0 7.23

3 Poor or No Customer’s SOP 237 156 7 0 0 7.35

4 Inadequate Documentations 158 198 44 0 0 6.88

5 Scope Creep 181 219 0 0 0 7.15

6 No Change Control System 172 191 37 0 0 6.97

7 Poor testing 231 169 0 0 0 7.35

8 Lack of foresight in building

efficiency markets

222 141 37 0 0 7.17

9 poor managerial decisions 206 178 16 0 0 7.19

10 Cost overrun. 184 200 16 0 0 7.1

11 Lack of an experienced project

manager:

141 236 15 8 0 6.87

12 Lack of methodology in the

process

163 230 7 0 0 7.05

13 Well-defined Schedules 238 155 7 0 0 7.35

Table 4.16: Factors responsible for failure of software project

Every year many software industries are spending billion on IT application

development. Statistically, 31% of projects will be cancelled before they ever get

completed. 53% of projects will cost twice as of their original estimates, overall, the

success rate is less than 30% [2]. Why did the project fail? From symptom to root cause -

http://en.wikipedia.org/wiki/Cost_overrun

Chapter 4: Data Analysis and Interpretation

 176

what are the major factors that cause software projects to fail? What are the key

ingredients that can reduce project failure?

Following are the points are considered in this research for the project failure.

1. Lack of user involvement-: In collecting SOP process mainly user involvement is

important to gather correct customer’s SOP.

2. Long or unrealistic time scale-: Project must be delivered and developed on

schedule; if it is too long schedule software can be in failure state.

3. Poor or No Customer’s SOP-: If gathered customer’s SOP are incorrect or

ambiguous then developed software can be in failure state.

4. Inadequate Documentations-: In early phase of software development all

customer’s SOP and designs must be written in proper format called as

documentation.

5. Scope Creep -: It is term used for trimming or missing of customer’s SOP during

development process of software.

6. No Change Control System-: If changes are suggested by client during

development phase and if those are cultivated without change control system, then

there is a chance of failure of software.

7. Poor testing-: Proper testing must be there to avoid errors or bugs in software.

8. Lack of foresight in building efficiency markets-: standard must be maintained in

other development companies for developing quality product.

9. poor managerial decisions-: Some time wrong managerial decisions are also one

of reason for failure of software.

10. Cost overrun-: Unexpected increased cost in budget.

Chapter 4: Data Analysis and Interpretation

 177

11. Lack of an experienced project manager-: Experience of project manager matters

of developing quality product.

12. Well-defined Schedules.-: If software is developed in proper defined Schedule

then project can be successful.

It is quite important to understand the factors responsible for software project

failure. Table No. 4.16 shows the various factors, which are responsible for software

project failure. To meet the objective a questionnaire has been designed by using various

factors which define the various points responsible for failure of any software project. It

is observed that for each document the average scale is in between 1 to 5 that is in

between strongly disagree to strongly agree. In fact all the values are above 3.5 which

mean that with respect to all the parameters much approval is observed. In a 5-point

Likert scale, having categories like strongly agree, agree, neutral, disagree and strongly

disagree clubbed into three categories. The reason for using Likert scale is that the

responses by the respondents should not become monotonous while answering the

questions. Hence researcher has also applied 5-point Likert scale and calculates weighted

average value. There is very less difference between the comparative value of rank order

average value and 5-point Likert scale value. [1]

It is seen that the highest average value is 7.39 for the ‘Lack of user involvement’

followed by ‘Poor or No Customer’s SOP’, ‘Poor Testing’ and ‘Well-defined Schedules’

which are 7.35. The average value for factor ‘Long or unrealistic time scale’ is 7.23

followed by ‘poor managerial decisions’ is 7.19. The average value of ‘Lack of foresight

in building efficiency markets’ is 7.17, followed by ‘Scope Creep’ is 7.15. The average

Chapter 4: Data Analysis and Interpretation

 178

value of ‘Cost overrun’ is 7.1 followed by ‘Lack of methodology in the processes is 7.05.

The average value of ‘No Change Control System’ is 6.97 and ‘Inadequate

Documentations’ is 6.88 followed by ‘Lack of an experienced project manager’ is 6.87.

As per most of respondents, it is clear that ‘Lack of user involvement’ followed by

‘Poor or No Customer’s SOP’ is most important factor responsible for the failure of

software project. Off course, user means end user involvement is most important as end

user only going to tell his demands or request to business analyst and if end user only

unavailable in the collecting SOP meeting then there is no point to discuss anything,

anymore. Average 7.39 respondents are agreed to have end user in the collecting SOP

meetings or sessions.

Even if end user is available in collecting SOP meeting or session but customer’s

SOP quality remains poor then also it leads to failure of software project. Poor

customer’s SOP can get collected if business analyst having less domain knowledge.

Also if end user does not have understanding what exactly he wants then also quality of

requirement becomes poor. Poor or non-qualitative requirement can become base for any

software project and it creates failure throughout SDLC process. Hence, in this research

7.39 responds recommended to have good quality of customer’s SOP.

If end user is available and quality of requirement is also good but if testing team

executes test cases wrongly then also it creates failures in software project. As per 7.39

respondents, testers should always execute test cases based on the business functionality

and customer’s SOP written in Functional Requirement Document (FRD). Hence, in this

research recommendation SOP to provide to testing team to follow testing best practices

for the test case execution and in turn to reduce software failures.

Chapter 4: Data Analysis and Interpretation

 179

Project management is the key factor for the success or failure of any software

project. For qualitative project management, well-defined schedule is mandatory factor.

If project will have well- defined schedule then all the teams like requirement team,

development team, designer team, testing team etc. will follow the same time lines to

meet the project success. Hence, 7.39 respondents agreed to have well-defined schedule

to reduce failure in software project.

As we saw well-defined schedule for software project plays vital role in the success

of project, but well-defined schedule mean short and realistic. If project schedule

becomes long and unrealistic then it surely leads to failures in software project. About

7.23 respondents agreed to this point and hence researcher strongly recommends that

project schedule time scale should be short and realistic.

In software project execution, many situations can come where managerial level

people need to take decision and provide answer to client. If project goes in RED

situation where customer is not happy and he is demanding software in very short period

of time then in that case managerial decision plays very important role to keep customer

calm and happy. But if managerial decision becomes poor then customer won’t allow us

to work and can take break deal with Software Company. Hence, as per average 7.19

people poor managerial decision leads to failures in software project and therefore, there

is need to improve managerial decision skills to increase success rate of software project.

If we developed any product then for selling that product marketing plays vital role.

But if we don’t have foresight about our project efficiency then in the market product

won’t get sell. The average 7.17 respondents saying ‘Lack of foresight in building

efficiency markets’ is most important factor and software companies need to focus on

Chapter 4: Data Analysis and Interpretation

 180

this point. Also there is need to have future knowledge about the market of developed

software project.

Around average 7.15 respondents are giving importance to ‘Scope Creep’ factor.

Scope creep means project scope should not get trim if we are dealing with success of

software project. Scope creep generally happens if project schedule is long and

unrealistic. Hence, as discussed above to avoid scope creep there is needed to have well-

defined, short and realistic project schedule.

If there is lots of changes in customer’s SOP or development team created faulty

software component or taken too much time to developed software product, also testing

team could not finish testing within specified time then project cost can get overrun. The

average 7.1 respondents agreed that ‘Cost overrun’ could lead to failures in software

project. Hence, project management or team led SOP to focus on work status of

requirement, development and testing team. Need to resolve all the issues coming

throughout SDLC phase so that it cannot overrun cost of the software project.

For error free SDLC process there is standard defined by software engineering for

each phase. Requirement team should follow the best standard practices for requirement

engineering process, development team should follow best development practices for the

coding of software components, and testing team should follow the best testing practices.

But if there is lack of methodology present in these best practices then it will lead to

project cost overrun and in turn lead to failure of software project. Average 7.05

respondents are agreed with ‘Lack of methodology in the process’ lead to failure of

software project and hence this research recommends best practices and methodology

should be followed throughout SDLC process.

Chapter 4: Data Analysis and Interpretation

 181

To record the changes taken place in customer’s SOP by the end user or customer,

software management should create change control system and update it as and when

required. The average 6.97 respondents agreed that ‘No Change Control System’ always

lead to failure of software project. If project management do not use Change Control

System then it won’t be possible to record changes made in customer’s SOP and it will

miss out few important functionality in proposed software project. Hence this research

recommends that change control system should be mandatory and gets updated as and

when required.

Documentation throughout SDLC process plays vital role to transfer knowledge from

one team to another. If requirement team does not provides adequate documents to

development team then development team cannot come up with component design and

specification documents appropriately and if development team does not provides FRD,

component design and specification documents to testing team, then testing cannot come

up with appropriate testcases. Hence, each team should provide adequate documents to

other team. Because Inadequate Documentation can lead to the failure of software project

and in survey around average 6.88 respondents agreeing that ‘Inadequate

Documentations’ lead to software failures and there is need to have adequate

documentation throughout SDLC process.

Experienced resources always play vital role in the success of software project. If

resources are fresher or new joiners then they don’t have product/domain knowledge and

hence they cannot understand business functionality easily and quickly. Experienced

person can easily communicate with customer on the domain knowledge, business

functionality issues etc. Hence, around average 6.87 respondents are agreeing that ‘Lack

Chapter 4: Data Analysis and Interpretation

 182

of an experienced project manager’ lead to software failure. Therefore, there is need to

have experienced resources in the all the teams of software company.

Information from Table 4.15: Factors responsible to make software erroneous and

1. Table 4.16: Factors responsible for failure of software project proves third

objective “To identify various factors responsible for the software

development”.

4.6. To analyze various tools used in software companies

4.6.1. Useful tools for collecting SOP process.

Collecting SOP is the process to collect demands, SOP, or requirement from client. After

collecting such requirement, business analyst SOP to store and manage these collected

customer’s SOP. In software industry, many tools are available to collect record and

manage customer’s customer’s SOP. For this research, following number of collecting

SOP tools have been considered:

1. Visual Paradigms

2. Project Management Software

3. Microsoft-Package

4. Data Dictionary

5. Use Cases and User Stories

6. ReqHarbor

7. MindTool

8. IBM Rational Doors

9. Jira

10. Rally

Chapter 4: Data Analysis and Interpretation

 183

11. Taleo

12. Quality Center

From the survey, it has been seen that 379 respondents are agreeing that ‘IBM Rational

Doors’ is the best collecting SOP tool. Because it supports multiple functionalities for

customer’s SOP like Collecting SOP, Software Design, Task Management and

Collaborative Modeling [10] etc. As IBM Rational Doors all the required functionalities

for collected customer’s SOP, therefore single software perform the functionality of

different software’s and hence maximum respondents are agreeing to use ‘IBM Rational

Doors’ tool for collecting SOP, managing and analysis.

The above mentioned information about collecting SOP tools from Table 4.17 and

Table 4.6 Collecting SOP techniques proves the second objective.

Collecting SOP Tools Yes No

Visual Paradigms 336 64

Project Management Software 238 167

Microsoft-Package 235 165

Data Dictionary 166 234

Use Cases and User Stories 160 240

ReqHarbor.com 357 43

MindTool 221 179

IBM Rational Doors 379 21

Jira 146 254

Rally 124 276

http://www.reqharbor.com/

Chapter 4: Data Analysis and Interpretation

 184

Taleo 150 250

Quality Center 318 82

 Table 4.17: Customer’s SOP gathering Tools

 Graph 4.11: Customer’s SOP gathering Tools

As pre 357 respondents, ReqHarbor is also very good collecting SOP tool as it is used to

store collection of descriptions of customer’s SOP and others who need to refer to them.

A first step in analyzing a system of objects with which users interact is to identify each

object and its relationship to other objects [7]. Data dictionary basically useful to save

requirement related data and anyone can use it for further analysis. Hence, Data

dictionary tool plays vital role in requirement collection.

Chapter 4: Data Analysis and Interpretation

 185

As per 160 respondents ‘Use Cases and User Stories’ is fundamental factor in requirement

management process. Once requirement is collected from client then business analyst

maps that requirement with Software Company’s product functionality and this mapping

is done with the help of usecases. Usecases are nothing but transaction wise functionality

of customer demands. User stories are basically segregation of customer demands as per

transactions or business functionality changes. Hence usecases and user stories are

interrelated to each other and playing most important role in the mapping of customer

demands and product functionality.

Around 235 respondents are agreeing that Microsoft-Package is also useful tool for

collecting SOP process. As we know that Microsoft-Package is the well-known software

package provided by Microsoft Company and it is basically used for documentation,

presentation and data analysis in xlsheet. Hence, without Microsoft-Package, most of

work of collecting SOP process remains incomplete and therefore almost all companies

are using this package to complete requirement analysis. As per 238 respondents,

‘Project Management Software’ plays vital role in collecting SOP process. Actually senior

management who deals with requirement management they use this tools. Hence, 162

respondents who are belongs to managerial category agree to use this tool for requirement

management in turn software project management.

4.7. To analyze the current scenario of software testing

 Software Testing is a process used to help identify the correctness,

completeness and quality of developed computer software. Testing is a process of

executing a program with the intent of finding an error. [8]

Chapter 4: Data Analysis and Interpretation

 186

Testing is a process rather than a single activity. This process starts from test planning

then designing test cases, preparing for execution and evaluating status till the test

closure.[9]

4.7.1. Type of Software Testing

Generally, in most of software companies, testing of software product is done with the

help of following two types:

1. Manual Testing

2. Automated Testing

In manual testing, tester SOP to create test case, test data and manually execute test cases

with dummy data on particular software component but in case of automated testing, test

cases and dummy data has been created by testing tool itself. Hence, in case of automated

testing, effort required for test cases execution is getting decrease automatically. Hence, to

increase the speed of test cases execution, there is need to use automated testing instead of

manual Testing. Hence, in this research survey has been carried out to understand how

many tester uses automated testing.

As per survey, total number of respondents who are doing Automated Testing is 239 and

the total number of respondents who are doing manual testing is 161.

Which testing type are you preferring? Yes

Automated Testing 239

Manual Testing 161

Table 4.18: Employee’s view about use of testing tools

http://istqbexamcertification.com/what-is-a-software-testing/

Chapter 4: Data Analysis and Interpretation

 187

Employee's View about use of Testing Tools

0

50

100

150

200

250

300

Automated Testing Manual Testing

Types of Testing

Em
p

lo
ye

e'
s

V
ie

w

Graph 4.12: Employee’s view about use of testing tools

4.7.2. Usage of Software Testing Tools:

As in previous section, researcher has recommended automated testing is good to

get better productivity of testing team, hence there is need to know whether testers are

using testing tools or not. From the table 4.19, it has been seen that 228 respondents are

using testing tools and 172 are still doing testing manually means they are not using

testing tools.

Usage Yes No

Usage of Testing

Tools 228 172

 Table 4.19: Employee’s view about usage of testing tools

Chapter 4: Data Analysis and Interpretation

 188

Distribution of Employee's Views for

Usage of Software Testing Tools

0

50

100

150

200

250

Yes No

Opinion about Software Testing Tools

Em
p

lo
ye

e'
s

V
ie

w

 Graph 4.13: Employee’s view about usage of automated testing tools

4.7.3. Test Cases

A test case is a set of conditions or variables under which a tester will determine whether

a system under test satisfies customer’s SOP or works correctly.

The process of developing test cases can also help find problems in the customer’s SOP

or design of an application.

Chapter 4: Data Analysis and Interpretation

 189

 Table 4.20 Test Case Sample

Test Suite ID The ID of the test suite to which this test case belongs.

Test Case ID The ID of the test case.

Test Case

Summary
The summary / objective of the test case.

Related

Requirement
The ID of the requirement this test case relates/traces to.

Prerequisites
Any prerequisites or preconditions that must be fulfilled prior to

executing the test.

Test Procedure Step-by-step procedure to execute the test.

Test Data
The test data, or links to the test data, that are to be used while

conducting the test.

Expected Result The expected result of the test.

Actual Result The actual result of the test; to be filled after executing the test.

Status
Pass or Fail. Other statuses can be ‘Not Executed’ if testing is not

performed and ‘Blocked’ if testing is blocked.

Remarks Any comments on the test case or test execution.

Created By The name of the author of the test case.

Date of Creation The date of creation of the test case.

Executed By The name of the person who executed the test.

Date of

Execution
The date of execution of the test.

Test

Environment

The environment (Hardware/Software/Network) in which the test was

executed.

Chapter 4: Data Analysis and Interpretation

 190

Execution per day

As we saw, Software Testing is done by following two ways: manual testing and

automated testing.

As we know that automated testing is quite easier, faster and increase the productivity of

testing team, test cases execution per day by using automated testing also increases the

count of testing. But using manual testing as it is manual process and requires lots of

human intervention, hence, test cases execution using manual testing giving quite low

count.

Hence in this research survey has been carried out mainly on the test cases execution per

day using automated testing mode. As per 1 resource 4 test cases are executed per day

which is quite low number of agreed view of employee. But maximum around 360

employees are agreeing that upto 8 testcases can be executed per day. And yes it is correct

count because 8 test cases executed per day it is standard count of software testing. So as

per survey it is recommended that execution of 8 testcases per day using automated

testing mode is best practice for software testing process. But in case of testing scenarios

are easy or there is urgency from client then in that case tester can test upto 16 or 20

testcases in one day.

No of Test Cases Yes No

Upto 4 1 399

Upto 8 360 40

Upto 16 18 382

Upto 20 21 379

 Table 4.21: Test cases execution per day

Chapter 4: Data Analysis and Interpretation

 191

Test Cases Execution Per Day

Yes, 1

Yes, 360

Yes, 18 Yes, 21

No, 399

No, 40

No, 382 No, 379

0

50

100

150

200

250

300

350

400

450

Upto 4 Upto 8 Upto 16 Upto 20

Frequency of Test Cases Execution

Em
p

lo
ye

e'
s

V
ie

w

Yes

No

Graph 4.14: Test cases execution per day

4.7.4. Defects raised by testing team per day

 A defect is an error or a bug, in the application which is created. A programmer while

designing and building the software can make mistakes or error. These mistakes or errors

mean that there are flaws in the software. These are called defects.

As we saw, using automated software testing mode, tester can execute 8 testcases per

day. However, complete execution of these 8 testcases is basically depends upon on their

test results. If test result is successful then it means there is no need to re execute test case

Chapter 4: Data Analysis and Interpretation

 192

but if test result is fail then re-execution becomes mandatory. If test cases are failed it

means testers are raising defects against these failed test cases. Moreover, per day how

many defects can be raised by testing team becomes important for management in terms

of project completion.

Table 4.22: Defects raised per day

Distribution of Defects Raised Per day

Yes, 132

Yes, 217

Yes, 400

Yes, 51

No, 268

No, 183

No, 0

No, 349

0

50

100

150

200

250

300

350

400

450

1 to 2 3 to 4 5 to 6 7 to 8
Number of Defects Occured

Em
pl

oy
ee

's
 V

ie
w

Yes

No

 Graph 4.15: Defects raised per day

 Frequency of

Defects raised per day Yes No

1 to 2 132 268

3 to 4 217 183

5 to 6 400 0

7 to 8 51 349

Chapter 4: Data Analysis and Interpretation

 193

In this research, survey has been done on testers who are doing automated software

testing as per 132 testers 1 to 2 defects can occur per day. Around 217 respondents are

saying 3 to 4 defects are occurring per day and maximum testers like almost all tester

means 400 testers are saying 5 to 6 defects are occurring per day. However, the chances

of occurring 7 to 8 defects per day are quite low as per 51 respondents. Hence, researcher

has recommended that tester should expect 5 to 6 defects per day in their software testing

process.

4.7.5. Significance of document in software testing process

As we saw in section 4.6, in collecting SOP session or meeting, business analyst

SOP to take customer’s SOP verbally from client and then he/she SOP to record or write

requirement in specific document. Recording customer’s SOP somewhere in document is

a need of an hour because for further changes or future use we need base of requirement.

Hence, to record such customer’s SOP, software engineering designed and defined

different documents likewise software testers also need to consider following list of

documents in the software testing process to cover the testing volatile functionality of

software product. Based on requirement documents Testers always need to create test

cases document and need to perform the testing as per test cases. Following are the

documents that testing team need to consider to enhance the performance of software

testing process.

1. Customer Requirement Document (CRD)

2. Business Requirement Document (BRD)

3. Functional Requirement Document (FRD)

4. Component Specification Document (CSD)

Chapter 4: Data Analysis and Interpretation

 194

5. Component Design Document (CDD)

6. Test Case Document (TCD)

It is quite important to understand, among six documents which document is

playing most vital role in the success of software testing. Table No. 4.23 shows the

various documents used in SDLC process. To meet the objective a questionnaire has been

designed by using various documents, which define the various documents responsible or

useful for software testers. It is observed that for each document the average scale is in

between 1 to 5 that is in between strongly disagree to strongly agree. In fact all the values

are above 3.5 which mean that with respect to all the parameters much approval is

observed. In a 5-point Likert scale, having categories like strongly agree, agree, neutral,

disagree and strongly disagree clubbed into three categories. The reason for using Likert

scale is that the responses by the respondents should not become monotonous while

answering the questions. Hence researcher has also applied 5-point Likert scale and

calculates weighted average value. There is very less difference between the comparative

value of rank order average value and 5-point Likert scale value. [1]

It is seen that the highest average value is 6 for the ‘Test Case Document (TCD)’

followed by ‘Functional Requirement Document (FRD)’ and ‘Component specification

Document (CSD)’ that is 5. The average value of ‘Component Design document (CDD)’

is 4.8 followed by Customer Requirement Document (CRD) that is 4.22. And last is

‘Business Requirement Document (BRD)’ that is 4.13.

It is clear from the average values that Test Case Document (TCD) is most

important document for testing team as per most of respondents. Test Case Document

Chapter 4: Data Analysis and Interpretation

 195

(TCD) is mainly important document for testing team only. But most of time designer

team creates this document for testing team. And once testing team finish their testing

then designer team verifies test results with test case document. For testing team test

cases document always plays very important role because it is the base on which whole

testing team actually works. Hence as per average 6 % respondents are saying that test

case document is most valuable document for testing team and playing significance role

in the failure of software product. Because test case document is created by referring

Functional Requirement Document (FRD) and hence test case document should always

be in sync with FRD. And if any test case is not getting matched with required

functionality written in FRD then it might lead to incorrect direction for software testing

process and lead to wastage of time. Hence in this research researcher recommends that

test case document should get created correctly and gets followed as per FRD. Also it

would be great if this document is created by designer team because designer team has

complete knowledge about client requirement and they can include complete

functionality scenarios in test case document.

As FRD is base for test case document and it is created to include the functionality

of proposed software and it is useful for Testing, development and designer team as well.

Hence, most preference has been given to this document. FRD always contains the detail

information about integrated functionality of proposed software and customer’s demands

or requirement in the technical language. Hence, FRD should always be in sync with

updated requirement and updated functionality of domain. Component design document

(CDD) actually contains the information about technical, business functionality

developed component of proposed software, and hence this document is mainly useful for

Chapter 4: Data Analysis and Interpretation

 196

development and testing team. Testing team uses CDD document just to understand

business functionality in technical terms. Component Specification Document (CSD) is

needed for designer and development team and hence employees from both these teams

have given preference to this document. Test Case Document (TCD) is mainly important

document for testing team and hence this document should be in sync with FRD that is

the business functionality of proposed document. Customer Requirement Document

(CRD) is the base for all documents. This document actually created by customer itself

and accordingly business analyst and designer creates BRD, FRD, and other documents.

CRD always contains customer’s specific demands or customer’s SOP and it is available

in the customer’s understanding language. BRD is created by considering CRD and it

contains only business functionality of proposed software. It does not have technical

functionality and hence this document is only helpful for business analyst and system

architecture team.

Documents SD D N A SA Total Avg Wt.Avg

Likert

Scale

Customer Requirement

Document (CRD)

0 15 42 183 160 400 4.22 4.3

0 (3.75) (10.5) (45.75) (40) 100

Business Requirement

Document

(BRD)

0 0 112 126 162 400 4.13 4.13

0 0 (28) (31.5) (40.5) 100

Functional Requirement

Document

0 0 0 0 400 400 5 5

0 0 0 0 (100) 100

Chapter 4: Data Analysis and Interpretation

 197

(FRD)

Component Spécification

Document

(CSD)

0 0 0 0 400 400 5 5

0 0 0 0 (100) 100

Component Design

Document

(CDD)

0 0 15 51 334 400 4.8 4.8

0 0 (3.75) (12.75) (83.5) 100

Test cases Document

(TCD)

0 0 0 147 253 400 6 4.63

0 0 0 (36.75) (63.25) 100

Total 0 0 169 507 1709

Avg. Percentage 0 0.63 7.04 21.13 71.21

 Table 4.23: Significant Documents used in Software testing process

4.8 To understand the various hurdles coming in the software testing

and testers problem.

4.8.1. Cost considered during software testing process

As we have saw, many factors are responsible for software project failure. Failure

of software project mainly being calculated based on its cost. If cost of software getting

decrease it means surely failure is there in software. Table No. 4.24 shows the various

factors, which are responsible for software cost and in turn project failure. To meet the

objective a questionnaire has been designed by using various factors, which define the

Chapter 4: Data Analysis and Interpretation

 198

various points responsible for cost of any software project. It is observed that for each

factor the average scale is in between 1 to 5 that is in between strongly disagree to

strongly agree. In fact all the values are above 3.5 which mean that with respect to all the

parameters much approval is observed. In a 5-point Likert scale, having categories like

strongly agree, agree, neutral, disagree and strongly disagree clubbed into three

categories. The reason for using Likert scale is that the responses by the respondents

should not become monotonous while answering the questions. Hence, researcher has

also applied 5-point Likert scale and calculates weighted average value. There is very less

difference between the comparative value of rank order average value and 5-point Likert

scale value. [1]

It is seen that the highest average value is 6.784 for the ‘Software’ followed by

‘Resources’ which is 6.02. The average value for factor ‘Hardware’ is 5.916 followed by

‘Network’ is 5.76. The average value of ‘Infrastructure’ is 4.884.

In this research, survey has been done and as per average values of respondents views

‘Software’ is the biggest cost considered during the failure in software testing process.

Software is nothing but product that is going to fulfill customer’s demands or customer’s

SOP and if due to failures in software testing off course software product deadly gets

affected and hence software SOP to be considered at high priority cost when there is

failure in software testing process. Failures in software testing process always affect the

quality of developed software and hence, software would become highest cost of

software failures.

After software, resources become next high priority cost factor to consider in failure

of software testing process. Because if software testing gets failed then it totally affects

Chapter 4: Data Analysis and Interpretation

 199

on the productivity of testing team and creates extra efforts for them and hence

respondents provided second highest priority for resources in term of software cost.

Factors (

utilization) SD(1) D(2) N(3) A(4) SA(5) Total Avg

Wt.Av

g

Lokert

Scale

Resources 0 1 19 64 316 400 6.02 4.74

 0 0.25 4.75 16 79 100

Software 0 1 41 219 139 400 6.784 4.25

 0 0.25 10.25 54.75 34.75 100

Hardware 0 1 198 122 79 400 5.916 3.7

 0 0.25 49.5 30.5 19.75 100

Network 0 1 178 101 100 380 5.76 3.61

 0 0.25 44.5 0.25 25 70

Infrastructu

re(electricit

y, rent etc) 0 41 197 62 60 360 4.884 3.26

 10.3 49.3 15.5 15

Total 0 45 633 568 694

Avg.

Percentage 0

31.6

6 23.4 34.7 74

 Table 4.24: Cost Factors involved in testing process in terms of project failure

Chapter 4: Data Analysis and Interpretation

 200

As shown in Table 4.24, the average value of Hardware factor followed by resources and

as per respondent around average 5.916 respondents are agreed that Hardware is also one

of the important factor to be consider as a cost in software failures. Because if any

software product gets failed then hardware also getting affected as number of resources

are uses these hardware to run their software. Hence, if software gets failed then

obviously it effects on the efficiency and productivity of hardware. Hence, while

considering cost of factors of software failure, management should consider hardware

also.

In software industry, network plays vital role in data transfer. And such data can be

transferred from client to software provider or from software provider to client. To use

network related data transactions, software industrialist always SOP to pay money to

internet service provider and if any developed software gets failed then off course it gets

affects to Network as well. Because if size of software becomes huge then it may be

create congestion in network traffic and lead to failed network flow. Hence while

considering software failure cost, network factor should also get considered. As per

around 5.76 respondents are agreeing to these points.

Last but not least, infrastructure also plays very important role in overall development of

software product and in turn software industry and hence it also gets affected when

particular software gets failed. Infrastructure covers overall need of software product and

hence it is quite important to consider in software failure. Around 4.884 respondents are

agreeing to this point.

Chapter 4: Data Analysis and Interpretation

 201

4.8.2. Impact of collecting SOP on software testing process

If collected SOP are not clear in the collected customer’s SOP from client or customer, is

nothing but erroneous requirement. As we saw in the section of failure of software

process, poor requirement always affect complete SDLC cycle and hence in software

testing point of view, there is need to understand what kind of work actually getting

affected mainly in software testing team. Software testing team mainly deals with

following list of tasks:

1. Addition of test case

2. Deletion of test case

3. Modification of test case

4. Re-execution of test case

5. Verification of newly added functionality due to requirement change

6. Test results creation for newly added requirement

Above listed tasks of testing team are well known in software industry. Hence, it is

quite important to understand, among six tasks which task is getting impacted most due

to poor customer’s SOP. Table No. 4.25 shows the various tasks performed by software

testing team. To meet the objective a questionnaire has been designed by using various

tasks of software testing team. It is observed that for each task has the average scale in

between 1 to 5 that is in between strongly disagree to strongly agree. In fact all the values

are above 3.5 which mean that with respect to all the parameters much approval is

observed. In a 5-point Likert scale, having categories like strongly agree, agree, neutral,

Chapter 4: Data Analysis and Interpretation

 202

disagree and strongly disagree clubbed into three categories. The reason for using Likert

scale is that the responses by the respondents should not become monotonous while

answering the questions. Hence researcher has also applied 5-point Likert scale and

calculates weighted average value. There is very less difference between the comparative

value of rank order average value and 5-point Likert scale value. [1]

It is seen that the highest average value is 4.62 for the ‘Addition of test cases’

followed by ‘Modification of test cases’ is 4.47. The average value of ‘re-execution of

modified test cases’ is 4.46 followed by ‘Test result creation for newly added test cases’.

The average value of ‘Deletion of test case’ is 4.16 followed by ‘Verification of Newly

added functionality due to Requirement Change’ that is 4.

Factors SD D N A SA Total Avg Wt.Av

g

(Likert

Scale)

Addition of Test Case

0 0 0 153 247 400 4.62 4.6

0 0 0 38.25 61.75

Deletion of Test Case

0 0 61 215 124 400 4.16 4.15

0 0 15 53.75 31

Modification of Test Case

0 0 0 214 186 400 4.47 4.46

0 0 0 53.5 46.5

Re-Execution of Modified

Test Cases

0 0 0 215 185 400 4.46 4.5

0 0 0 53.75 46.25

Chapter 4: Data Analysis and Interpretation

 203

Verification of Newly added

 functionality due to

Requirement

 Change

0 0 62 276 62 400 4 4

0 0 16 69 15.5

Test Results creation for

newly

added requirement

0 0 0 246 154 400 4.39 4.39

0 0 0 61.5 38.5

 Table 4.25: Work of Software testing process

If there is change in requirement or requirement is incorrect then it might affect to the

complete list of above tasks. Test case creation, review and update in test cases are basic

activity of software testing team. While writing test cases, test team follows Functional

Requirement Document (FRD) and as we know that FRD is nothing but one of the

requirement document created by requirement team. But if FRD is incorrect or

incomplete then test cases created by testing team can also be incorrect because incorrect

FRD obviously lead to incorrect or incomplete test cases. Incorrect or incomplete

customer’s SOP means poor requirement and if requirement is poor then definitely it

affects on the work of software testing team.

As per 4.62% of respondents saying that “Addition of test cases” is most frequent

task tester SOP

Chapter 4: Data Analysis and Interpretation

 204

to do when requirement is poor. Because when requirement is incomplete, then

testing team SOP to add test cases in the existing list of test cases to cover the newly

added customer’s SOP.

Also around 4.47% respondents are agreeing that “Modification of test cases” task is

frequent task done by testers when requirement is poor because if requirement is

incorrect then after correcting of requirement, testing team need to update existing test

cases as per updated customer’s SOP.

Along with test case addition or modification, around 4.46% respondents are

focusing on ‘Re-execution of modified test cases’ because once test cases added or

updated as per updated requirement then testing team starts re-execution of newly added

or updated test cases to verify the updated functionality mentioned in revised requirement

document.

Along with test cases creation, testing team always need to do test results as well.

Around 4.39% of respondents are saying after re-execution of newly added test cases,

testing team need to create test results as well.

Once addition, modification and re-execution of test cases done by testing team

then there is needed to verify all the executed test cases along with their test results.

Hence, around 4% or respondents are saying ‘Verification of Newly added functionality

due to Requirement Change’ is important work that designer and testing team lead need

to do due to poor customer’s SOP.

Researcher of this research recommends that designer team and management

always need to focus on to reduce errors in requirement documents so that further phase

of SDLC will not get impacted and it will not lead to failure of software project.

Chapter 4: Data Analysis and Interpretation

 205

4.8.3. If collected SOP are not freezed, it has impact on software development

process.

Above table 4.25 shows that change in need for software development has impact on

modifying test case. Modifying test case is again counted in terms of total efforts required

to this task, again efforts are nothing but it has impact on business.

For this, data is collected through from 400 employees regarding opinion about impact of

change in SOP on all task of software development process. Efforts required for task are

considered as Development effort, Rework effort, Quality Assurance effort, Testing

Effort.

“Best Practices for Change Impact Analysis” article on Impact Analysis for Requirement

change by Karl Wiegers at Jama Software’s on February 19, 2014.[13]

 In this article author has explained the concept of requirement change and if

change is given by client, how impact analysis technique can be used. In this article he

has explained the format of recording change in the document termed as “Proposed

Change” and technique termed as Impact Analysis discussed and then total efforts

calculated based on proposed change document.

Chapter 4: Data Analysis and Interpretation

 206

Fig. 4.1 Estimated Efforts for change in collected SOP

Software development effort estimation is the process of predicting the most realistic

amount of effort (expressed in terms of person-hours or money or resource cost) required

to develop or maintain software based on incomplete, uncertain and erroneous SOP from

customer. [12] .When SOP from customers are volatile or keep on changing then Efforts

of employees affected most because whichever task initially done by employees (earlier

efforts) must be changed, so again employees are doing same work as per suggestions

means development efforts i.e coding task , Rework effort i.e redesigning of product,

Quality Assurance effort i.e product must be measured for its better quality, Testing

efforts i.e whichever code has been changed by coder or programmer must be tested

Chapter 4: Data Analysis and Interpretation

 207

again by writing test cases again (Refer table 4.25) , means all these efforts must be

carried out for changes nothing but it has impact on cost which can be counted as “Impact

on Business”.

Table 4.26: Efforts carried out in case collected SOP are not freezed

In the above table 4.26 researcher found that most of the employees are strongly

agreed on Development and testing efforts must be carried out which requires

extra cost during development of software.

4.8.4. Overhead occurs in software testing due to incomplete or ambiguous

SOP collected from customer.

Collecting SOP is the process where incorrect, incomplete, ambiguity, vague, volatile

requirement issues can occur. Due to issues present in customer’s SOP, it always affects

to software testing team productivity because issues create discontinuity in software

testing process. Due to issues present in customer’s SOP, many overheads can occur in

Sr.No Efforts Yes No

1 Development Efforts 400 0

2 Rework Efforts 339 61

3 Quality Assurance Efforts 376 24

4 Testing Efforts 400 0

 Total 1515 85

 Avg 378.75 21.25

Chapter 4: Data Analysis and Interpretation

 208

software testing process. For this research, following list of overheads has been

considered:

1. GAP in Testing

2. Increase in System Failures

3. System Testing Delay

4. Inaccurate Testing Estimation

5. Test Team Credibility

6. Delay Benefit Realization

An overhead is the extra burden on testing team and it always decreases the productivity

of testing team. Above listed overheads are mostly found as factors which affects

software testing productivity. Hence, it is quite important to understand which overhead

is faced by testing team most. Table No. 4.27 shows the various overheads that software

testing team face. To meet the objective a questionnaire has been designed by using

various overheads that creates most burdens on software testing team. It is observed that

for each overhead has the average scale in between 1 to 5 that is in between strongly

disagree to strongly agree. In fact, all the values are above 3.5, which mean that with

respect to all the parameters much approval is observed. In a 5-point Likert scale, having

categories like strongly agree, agree, neutral, disagree and strongly disagree clubbed into

three categories. The reason for using Likert scale is that the responses by the

respondents should not become monotonous while answering the questions. Hence

researcher has also applied 5-point Likert scale and calculates weighted average value.

Chapter 4: Data Analysis and Interpretation

 209

There is very less difference between the comparative value of rank order average value

and 5-point Likert scale value. [1]

It is seen that the highest average value is 4.93 for the ‘Gap in testing’ followed by

‘inaccurate testing estimation’ is 4.27. The average value of ‘System Testing Delay’ is 4

followed by ‘Test Team Credibility’ is 3.8. The average value of ‘Increase in system

failures’ is 3.6 followed by ‘Delay benefit realization’ is 3.59.

If there is issue in requirement then it affects to the software testing as discontinuity

in their work. Because if testing finds issue in customer’s SOP then they are raising

defects in tracking system against requirement team and pause their work until testing

team got solution from requirement team and due to this issue ‘Gap in Testing’ occurs.

Same case can happen with development team. Around 4.93% of respondents are

agreeing that poor customer’s SOP always create in gap in testing work of testers.

 Gap in testing or discontinuity in tester work lead to wastage of time of testing

resources and it lead to Inaccurate testing estimation. Because if test manager provides

initial estimation by considering accurate SDLC process but once any issue comes in

customer’s SOP or development then it lead to time investment in issue recording,

discussion with requirement and development team. Ultimately, it affects of original

estimation provided by test manager and hence leads to inaccurate testing estimation.

Hence, around 4.27 % of respondents are saying inaccurate testing estimation is one of

the overhead that software testing team facing. Hence, researcher of this research

recommends that Test manager should keep buffer in testing effort estimation. Buffer is

nothing but extra time that test manager need to consider while providing test effort

estimation.

Chapter 4: Data Analysis and Interpretation

 210

Due to issues in customer’s SOP, most of time testing team SOP to revise their

testing plan. If many issues comes in customer’s SOP or development then for each and

every issue, tester need to create entry for the same in recording system, also they need to

communicate about issues with requirement and development team. After communication

of issue, testing team need to wait for the solution of raised issue. In this process, testing

team need to wait a lot and hence, such process leads to delay in System testing. In this

research, around 4 of respondents are saying ‘System Testing Delay’ is one of overhead

that testing team is generally facing and hence research recommends that higher manager

SOP to consider all the pitfalls that testing team actually facing.

As we saw, due to issues present in developed components, testing team need to

follow complete process of issue recording to discussion with corresponding team

members. To complete such process testing team need to consume lots of time and which

in turn leads to decrease in credibility of testing team. Hence, around 3.8% respondents

are saying Test team credibility is one of overhead that testing team always facing.

Hence, researcher of this research recommends that management should consider

credibility of testing team while providing test estimation plan.

As we saw, if collected SOP are wrong then it leads to failure of all the phases of

SDLC process. Failure in SDLC process means failures in overall software system. Every

time if requirement is incorrect or incomplete then it leads to increase in software system

failures. Hence around 3.6% agreeing that ‘Increase in system failures’ is also one of the

overhead that testing team is facing. Hence, researcher recommends that trained and

skilled business analysts should be hired.

Chapter 4: Data Analysis and Interpretation

 211

If there are issues in customer’s SOP or developed software components then it will

always lead to delay in software testing and in turn delay in project delivery. Once

software project got delayed then management miss the realization of product benefit.

And as per 3.59% of respondents are saying ‘Delay benefit realization’ is also one major

overhead that testing can face. Hence, researcher of this research recommends that

filtration of issues in customer’s SOP or development should be happened before delivery

of software product to testing team.

Overheads SD D N A SA Total Avg

Wt.Avg

GAP in Testing

0 0 0 27 373 400 4.93 4.93

0 0 0 6.75 93.25 100

Increase in System Failures

0 0 186 187 27 400 3.6 3.6

0 0 46.5 46.75 6.75 100

System Testing Delay

27 0 80 132 161 400 4 4.3

6.75 0 20 33 40.25 100

Inaccurate Testing

Estimation

0 0 80 134 186 400 4.27 4.26

0 0 20 33.5 46.5 100

Test Team Credibility

27 0 133 106 134 400 3.8 4

6.75 0 33.25 26.5 33.5 100

Delay_benefit_relaisation

54 27 54 160 105 400 3.59 4.26

13.5 7 13.5 40 26.5

Table 4.27: Overhead occurrences in software testing due to poor collecting SOP

Chapter 4: Data Analysis and Interpretation

 212

4.8.5. Common Requirement Issues that may affect Software Testing

Software is developed according to Clients Customer’s SOP. Here some

requirement issues are discussed with software developer and tester, which may affect

software-testing process. Design or requirement issues can occur in any phase of SDLC

process. The possibility of rework due to requirement issues or defect can be minimum if

these issues are getting solved in requirement or development phase itself but if

requirement issues comes in testing phase then it affects testing, requirement and

development phase as well. In this research, following parameters has been considered as

software testing issues.

1. Absence and Incompleteness

2. Incorrectness

3. Ambiguity and Vagueness

4. Volatility

5. Traceability

In table 4.27 all the above issue factors are mentioned and it is observed that for

each parameter the average scale is in between 1 to 5 that is in between strongly disagree

to strongly agree. In fact, all the values are above 3.5 which mean that with respect to all

the parameters much approval is observed. In a 5-point Likert scale, having categories

like strongly agree, agree, neutral, disagree and strongly disagree clubbed into three

categories. The reason for using Likert scale is that the responses by the respondents

should not become monotonous while answering the questions. Hence researcher has also

applied 5-point Likert scale and calculates weighted average value. There is very less

Chapter 4: Data Analysis and Interpretation

 213

difference between the comparative value of rank order average value and 5-point Likert

scale value.

Factors SD D N A SA Total Wt.

Avg

Wt.

Avg

(Likert

Scale)

Absence and

Incompleteness

0 0 0 110 290 400 4.73 4.72

 0 0 0 27.5 72.5

Incorrectness 0 0 60 70 260 400 4.4 4.4

 0 0 15 17.5 65

Ambiguity

and Vagueness

0 0 80 90 230 400 4.38 4.37

 0 0 20 22.5 57.5

Volatility 0 0 60 80 260 400 4.5 4.5

 0 0 15 20 65

Traceability 0 40 60 70 230 400 4.23 4.2

 0 10 15 17.5 57.5

Total 0 40 260 420 1270

 Table 4.28: Common Requirement Issues that may affect Software Testing

It is seen that the highest average value is 4.73 for the ‘Absence and

Incompleteness’ followed by ‘Volatility’ is 4.5. Average value of ‘Incorrectness’ is 4.4

Chapter 4: Data Analysis and Interpretation

 214

followed by ‘Ambiguity and Vagueness’ that is 4.38. In addition, the average value of

‘Traceability’ is 4.23.

Requirement issue always affects all the phases of SDLC process. As per research

survey ‘Absence and Incompleteness’ is the main factor considered by 4.73 percentages

of respondents. If requirement is incomplete or important part is absent in requirement

document then it might lead to failure in all the phases of SDLC. Incomplete requirement

always lead to incomplete functionality and delay in project delivery to client. The reason

behind incomplete requirement is delay from customer or business analyst may have lack

of product knowledge. Hence as per most of respondent Incomplete or absent

requirement is the root cause of software failure. Hence, researcher of this research

recommends that requirement should be complete or should not be missing any important

part.

Volatility is nothing but changes in requirement. Volatility mainly happens due to

changes in customer’s demands or lack of product knowledge of requirement analyst.

Requirement plays base role for all phases like development, testing etc. Because

development team works on the base of requirement document but if, requirement

document frequently is changed then development team need to rework according to

changes in requirement document. Changes in requirement also affect the testing phase as

well. If requirement gets changed then testing team also need to retest all the test cases

and need to verify updated functionality. Most of time testing team SOP to add test cases

as well for updated customer’s SOP. Hence, updated requirement always lead to rework

for development and testing team. In turn, volatility leads to increase the workload for

development and testing team, and it leads to decrease productivity of both teams. If

Chapter 4: Data Analysis and Interpretation

 215

productivity decreases then it increases failure in software productivity. Hence, most of

respondents are agreeing that volatility is the second most important factor or issue of

requirement. Researcher recommends that volatility need to consider for failure of

software project and need to ask customer to give requirement in one go only.

As per many respondents, incorrectness is also important factor in requirement

issues. Incorrectness generally happens due to inadequate knowledge of business analyst.

Business analyst does not understand complete functionality of software product and

hence they cannot map customer’s demands and software product functionality. Most of

time, Incorrectness occurs due to incomplete of requirement or missing or absent of

important part in requirement document. Incorrect requirement always lead to

development and verification of incorrect functionality and in turn it affects to

productivity of development and testing team. In addition, as we know decrease in

resources productivity always increases failures in software productivity. Hence,

researcher recommends here business analyst always need to verify customer’s SOP

correctness before delivering it to development and testing team.

Ambiguity and vagueness issue occur due to lack of product knowledge. Most of

business analyst having less experience and hence they don’t aware about the complete

functionality of software product. Hence, they cannot map customer’s demands with

functionality of their software product. Due to lack of product knowledge, requirement

becomes vague and ambiguity. But if requirement becomes vague and ambiguity then

development and testing team SOP to consume more time on their work. It requires more

time for requirement understanding and implementation. Testing team also need to

consume more time on requirement understanding and test cases creation. In this

Chapter 4: Data Analysis and Interpretation

 216

research, most of respondents are agreeing that ambiguity and vagueness are also

important requirement issue to be considered in the failure of software product and

software testing. Hence, researcher recommends that if requirement is ambiguity or

vague then tester should raise defect/voice against requirement team to revise

requirement document with mapping of correct customers demands and functionality of

software product.

If requirement is volatile then there is need to keep track of each and every change for the

betterment of SDLC process. So that testing and development team can verify component

functionality as per latest changes made in requirement document. To keep such changes

there is need to have common place so that requirement, development and testing team

can have easy access of this place. In software engineering such place is known as

traceability. Traceability always gets updated by requirement team if requirement gets

change. But if any change is getting miss in the traceability sheet then it might lead to

incompleteness of requirement and as we saw above, incompleteness of requirement

leads to failure of software product. Hence researcher recommends that traceability sheet

should always be in sync with updated requirement of customer. Also this sheet should

get review by team lead or development and testing manager time to time so that they can

catch missed requirement change.

Information from Table 4.21(Test cases execution per day), Table 4.22(Defects

raised per day),Table 4.23: Significant Documents used in Software testing process,

Table 4.25: Work of Software testing process, Table 4.26: Overhead occurrences in

software testing due to poor collecting SOP, Table 4.27: Common Requirement

Chapter 4: Data Analysis and Interpretation

 217

Issues that may affect Software Testing proves fourth objective “To study impact of

Collecting needs from customer on business of IT companies”.

4.8.6. Common SOP Issues that may affect Software business.

For this, researcher has collected data from 10 companies, where every company’s 5

clients details have been collected for measuring development time or duration span

during year 2015-2016.

According to SDLC phase, first phase where client’s SOP is finalized. 30 % to 35 % time

of total development time is only required to collect SOP and freezed it. [14]

From each company 5 clients data is collected and analyzed their SOP collection

duration. From table 4.29 researcher has observed that for each company out of 5 clients

atleast 3 clients are taking more time for SOP as their SOP is not freezed and eventually

it has impact on software business.

Sr.No

Company

Name

Client

Name

Total Project

Duration (in

Months)

Actual

Duratio

n

required

for SOP

(in

months)

% in months

duration only

for SOP

Impact on COST when SOP

is not freezed

Total

No of

Client

s took

extra

time

to

compl

ete

SOP

 upto

10%

upto

20%

upto

30%

upto

40%

3

1
KPIT

Cummins

Client A 10 4 40 Yes

Client B 15 5 33.33 Yes

Client C 24 10 41.66667 Yes

Client D 12 4 33.33333 Yes

Client E 8 4 50 Yes

 upto upto upto upto 5

Chapter 4: Data Analysis and Interpretation

 218

10% 20% 30% 40%

2 SAP

Client A 18 8 44.44444 Yes

Client B 10 5 50.00 Yes

Client C 36 15 41.66667 Yes

Client D 20 8 40 Yes

Client E 12 5 41.66667 Yes

upto

10%

upto

20%

upto

30%

upto

40%

3

3 Harman

Client A 15 4 26.66667

Client B 20 8 40.00 Yes

Client C 16 8 50 Yes

Client D 10 4 40 Yes

Client E 12 4 33.33333 Yes

upto

10%

upto

20%

upto

30%

upto

40%

3

4 Intelzign

Client A 10 4 40 Yes

Client B 18 6 33.33 Yes

Client C 24 11 45.83333 Yes

Client D 14 5 35.71429 Yes

Client E 12 5 41.66667 Yes

upto

10%

upto

20%

upto

30%

upto

40%

3

5
L & T

Infotech

Client A 12 4 33.33333 Yes

Client B 18 8 44.44

Yes

Client C 20 10 50 Yes

Client D 15 6 40

Yes

Client E 10 3 30 Yes

upto

10%

upto

20%

upto

30%

upto

40%

3

6 ATOS

Client A 24 10 41.66667 Yes

Client B 15 5 33.33 Yes

Client C 20 8 40 Yes

Client D 14 6 42.85714

Yes

Client E 10 3 30 Yes

upto

10%

upto

20%

upto

30%

upto

40%

2

7 Davachi

Client A 10 3 30 Yes

Client B 15 5 33.33333 Yes

Client C 12 4 33.33333 Yes

Client D 15 7 46.66667

 Yes

Client E 8 4 50

Yes

upto

10%

upto

20%

upto

30%

upto

40%
3

Chapter 4: Data Analysis and Interpretation

 219

8 CLSA

Client A 15 6 40 Yes

Client B 18 6 33.33 Yes

Client C 24 12 50

 Yes

Client D 15 4 26.66667 Yes

Client E 12 5 41.66667 Yes

upto

10%

upto

20%

upto

30%

upto

40%

3

9 Zensar

Client A 18 6 33.33333 Yes

Client B 12 5 41.67

Yes

Client C 24 11 45.83333

Yes

Client D 10 4 40

Yes

Client E 15 4 26.66667 Yes

upto

10%

upto

20%

upto

30%

upto

40%

2

10
TechHigh

way

Client A 10 4 40 Yes

Client B 15 5 33.33 Yes

Client C 24 10 41.66667 Yes

Client D 12 4 33.33333 Yes

Client E 8 3 37.5 Yes

Table 4.29 Software Development Life Cycle during Year 2015-2016

Chapter 4: Data Analysis and Interpretation

 220

4.9- Testing of Hypotheses

In this research three hypotheses were stated, these entire three hypotheses are tested

using SPSS statistics 20 tool, and applied test.

Hypothesis 1-: Z statistics test

Hypothesis 2-: Z statistics test

Hypothesis 3-: Z statistics test for mean test

Hypothesis 1: There are hurdles in collecting SOP process for software development

Collecting SOP Techniques Yes No

Personally Meeting 369 31

Through Document 289 111

Online-Automated 342 58

Lack of Knowledge about the business

context
393 7

Lack of Understanding of Business

problems/opportunities
400 0

Missing of gaps to be bridged 400 0

Inadequate number of Resources 366 34

Inadequate Time 366 34

Table 4.30 Factors for Collecting SOP from Client

H0 -: 90 % of employees are agreed that there are hurdles in collecting SOP from client.

H1-: more than 90 % of employees are agreed that there are hurdles in collecting SOP

from client.

 S.E=√ PQ/n Where P =0.9

 Q = 1-.9 = 0.1

Chapter 4: Data Analysis and Interpretation

 221

 S.E. = √ (0.9*0.1 / 3200) = 0.005303

Step IV: Calculation of Z value.

p = Proportion of agreed people = (No. of agreed people / total people)

p = 0.9140625

Z= diff. / S.E.

diff = 0.9140625 – 0.9 = 0.0140625

Zcal = 2.651650429

Step V: Comparison:

Table value of Z for one tail test at 5% level of significance is 1.64

Step VI: Conclusion:

Calculated value of Zcal (i.e. 2.65) > Table value of Z (1.64) Hence we accept H1

which means more than 90 percent employees are agreed that there are hurdles in

collecting SOP from client during software development process and hence the alternate

hypothesis “There are hurdles in collecting SOP process for software development ”of the

study is accepted.

Hypothesis 2: IT Industry follows standard practices to use licensed or well-known

tools to collect initial SOP from customer in software development.

Collecting SOP Tools Yes No

Visual Paradigms 336 64

Project Management Software 238 167

Microsoft-Package 235 165

Chapter 4: Data Analysis and Interpretation

 222

Data Dictionary 166 234

Use Cases and User Stories 160 240

ReqHarbor.com 357 43

MindTool 221 179

IBM Rational Doors 379 21

Jira 146 254

Rally 124 276

Taleo 150 250

Quality Center 318 82

Collecting SOP Tools (The above Table is with reference to same chapter Table

no. 4.17).

Step 1: Setting Hypothesis

H0: 95% or more employees agreed that it is best practice to use collecting SOP tools

used in IT Industry. (H0: p = .95)

H1: < 95% or more employees agreed that it is best practice to use collecting SOP tools

used in IT Industry. (H1= p < .95)

 H0 : p =0.95

 H1= p < 0.95 (One tail test as rejection area is towards one side)

Step II: Sample Size

 n=400 (> 30) As n > 30, large sample test i.e. Z-test is used.

http://www.reqharbor.com/

Chapter 4: Data Analysis and Interpretation

 223

Step III: Calculation of S.E. (Standard Error)

 S.E=√ pq/n Where p =. 95

 q = 1-p =0.0 5

 S.E. = √ 0.95*0.05 / 400 = 0.0108975

Step IV: Calculation of Z value.

Z= diff. / S.E. diff = 0.9475-0.9500

Zcal= 0.2294

Step V: Comparison:

Table value of Z for one tail test at 5% level of significance is 1.64

Step VI: Conclusion:

Calculated value of Z (0.2294) < Table value of Z (1.64) Hence we accept H0 which

means 95 percent System Analyst have a positive attitude towards usage of tools for

Collecting SOP in IT Industry and hence the hypothesis “IT Industry follows standard

practices to use licensed or well-known tools to collect initial SOP from customer in

software development.” of the study is accepted.

Hypothesis 3: If collected needs are not freezed, then it has impact on business.

Referring above table 4.29 following hypothesis is proved

H0 -: On an average, clients are taking 35% of time duration for SOP (i.e µ = 0.35)

Chapter 4: Data Analysis and Interpretation

 224

H1-: On an average, clients are taking more than 35% of time duration for SOP, which

has an impact on business (i.e µ > 0.35)

Step IV: Calculation of Z value.

Sample mean = 0.3893

Population mean under H0 is µ = 0.35

Z= diff. / S.E.

where,

diff = 0.3893 – 0.35 = 0.0393

S.E. = σ/√n = 0.009202

Zcal = 0.0393 / 0.009202 = 4.2738

Table value of Z for one tail test at 5% level of significance is Ztab = 1.64

Step VI: Conclusion:

Since Calculated value of Z (4.2738) > Table value of Z (1.64)Hence, we accept

H1 which means that, on an average, clients are taking more than 35% of time

duration for SOP, which has an impact on business and hence alternate

hypothesis “ If collected needs are not freezed, then it has impact on

business” is accepted.

Reference:

1. Vidya Gaveakr, (2013) “A Study of Geographic Information System based

computerized framework to enhance the water supply system in Pune

City” Thesis of Computer Management Dept., Tilak Maharashtra

Univerisity.

Chapter 4: Data Analysis and Interpretation

 225

2. http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-

symptoms-and-reasons.

3. K.K. Aggarwal and Yogesh Singh,”Software Engineering”,New age

International Publishers, third Edition, 2008.

4. http://www.umsl.edu/~sauterv/analysis/Fall2010Papers/Isserman/

5. http://www.practicalecommerce.com

6. http://www.reqharbor.com/

7. https://www.google.co.in/webhp?hl=en#hl=en&q=data%20dictionary

8. https://ankitmathur111.wordpress.com/2012/06/20/whats-whys-hows-of-

software-testing-wwh/

9. http://istqbexamcertification.com/what-is-fundamental-test-process-in-

software-testing/

10. http://www..ibm.com/software/products/en/ratidoorfami

11. https://scitools.com

12. https://en.wikipedia.org/wiki/Software_development_effort_estimation

13. http://www.jamasoftware.com/blog/change-impact-analysis-2

14. Missing Requirements Information and its Impact on Software

Architectures: A Case Study by Md Rounok Salehin at the University of

Western Ontario.

http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.reqharbor.com/
https://www.google.co.in/webhp?hl=en#hl=en&q=data%20dictionary
http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/
http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/
http://www..ibm.com/software/products/en/ratidoorfami
https://scitools.com/
https://en.wikipedia.org/wiki/Software_development_effort_estimation
http://www.jamasoftware.com/blog/change-impact-analysis-2

226

Chapter 5

Conclusions and Suggestions

5.1 Conclusions

In the chapter 4 , researcher has completed analysis on data collected through

questionnaire, and prepared total 29 analysis tables through which objectives and

hypothesis has been proved.

Following are the conclusions made through research.

1. Personally meeting with clients, through documents, online or automated are

equally important techniques for collecting unambiguous needs from customer in

software development process.

2. Type of customer’s needs i.e Using Scope Clarification for Domain, Input

Processes, Reporting Procedures, Number of Users and Data Collection are

important information which results into error free software product.

3. Time for collecting customer needs required for product development must be

Adequate so that proper needs can be collected to avoid further problems on

product.

4. “Power up communication with visuals” is useful and effective technique for

collecting customer needs through this technique proper set of needs can be

gathered.

Chapter 5: Conclusions and Suggestions

 227

5. Many people like senior management team, senior architecture team, testers,

developers, clients, end users and subscribers are involved in the discussion of

collecting needs.

6. Time is the most important factor for software development process because as

time increases, schedule may get lagged due to which it may have indirect effect

on cost and business.

7. ‘Lack of knowledge about the business context’ is the most responsible factor for

failure of collecting needs from customer process.

8. ‘Requirement Errors’ is the most responsible factor to make software product

erroneous because as we know that requirement is the base for all the phases of

SDLC process.

9. ‘Lack of user involvement’ followed by ‘Poor or No Requirements’ is most

important factor responsible for the failure of software project.

10. ‘IBM Rational Doors’ and ReqHarbor.com are the best collecting needs tool

through which needs are stored in automated format and can be accessed by team

of software product development.

11. Automated Testing is the most useful method of software testing in software

companies.

12. Execution of 8 testcases per day using automated testing mode is best practice for

software testing process to avoid failure of software product.

13. Tester should expect 5 to 6 defects per day in their software testing process to

avoid software failure.

Chapter 5: Conclusions and Suggestions

 228

14. “Addition of test cases” is the most frequent task tester needs to do when

customer’s needs are incomplete and changing though its development process.

15. ‘Gap in testing or discontinuity in testing work’ affects total cost of software

project. Cost is indirectly related with schedule of development.

16. Absence and Incompleteness, Incorrectness, Ambiguity and Vagueness,

Volatility, Traceability parameters are the most important causes for failure of

software.

17. Maximum companies who spent more time on collecting customer’s needs incur

more cost as cost is indirectly related to time for product development.

18. Thus the final conclusion is noticed through the research. The process of

collecting accurate needs should be well documented to resolve ambiguity

because it directly impacts on business of software development. The process

of collecting needs must be automated through tools so that ambiguity gets

resolved and proper development process will get executed. Once needs gets

freezed there should not be delay in schedule for development and thus extra

cost should not be incurred for whole software development process.

Chapter 5: Conclusions and Suggestions

 229

5.2 Suggestions

1. It is suggested that developers, software testers should read and understand

customer’s needs carefully before starting their work.

2. Management of any software company should have adequate number of

resources, work allocation between resources should be balanced and requirement

engineer should also not spend more time collecting needs from customer.

3. Collected needs must be accurate and well documented.

4. Customer needs must be collected through automated tools.

5. Researcher has suggested a format of documents for collecting customer needs in

the proposed model.

6. Software testers should write testcases for accurate customer’s needs.

7. Software tester should get involved in the requirement phase and also

communicate with requirement engineers for better understanding of customer

requirements.

8. Software tester should create correct test cases and test data before starting

software testing.

9. Software tester should verify test results with exact functionality required by

customers and also consider performance of software system.

10. Software companies should consider all the factors which are responsible for

failure and rectify the same immediately.

11. Implementation of model improves the interaction between developer and tester

and helps to increase quality of the product.

Chapter 5: Conclusions and Suggestions

 230

12. Encourage the software companies for active participation in quality product

development and implementation of model in minimal cost.

13. Interaction of researcher from Industry and academia is also required to make

constant improvement for successful implementation of model for better quality

of product.

14. Conduction of quality audit from third party

15. Software Testing Clubs participation in execution of quality audits with

standardized (ISO, CMM, Six Sigma etc) companies.

16. Awareness about the quality standards among the employees of the software

companies can be created.

17. To make the employees more productive, thrust on awareness about tools by

arranging various training sessions for employees.

18. Make employees aware of their responsibility towards development of quality

product.

19. There should be QA team activity on feedback system for employees on quality

development, tester performance improvement.

20. Organize quality product fest program to create awareness about quality product

among the employees.

21. QA team should organize award and recognition fest for successfully and error

free development of software.

22. Active involvement of finance manager throughout SDLC will help in keeping

track of the cost.

Chapter 5: Conclusions and Suggestions

 231

23. The manuals must be provided and followed by employees during implementation

of model to avoid errors.

24. There should be up gradation of tools used for development and testing.

25. Organization should purchase upgraded version and licensed of various tools used

in software companies.

26. By using tools organization saves resources like time, efforts, and cost.

27. By using automated reverse engineering tool requirement changes can be easily

traced out in the development process.

28. In suggested model, input model stores all customer’s needs document category

wise like missing requirement, wrong requirement etc. which will help to avoid

errors in the product.

29. Timely freezing of customer’s needs will lead to better utilization of resources

like cost and time.

5.3 Suggested Model

Customer’s Needs Management to Reduce Software Failures Model (CNMRSF)

Considering the present state of collecting needs from customer process for

software development process, a model to reduce software failure in testing phase is

designed through the present research work. This new model is called Customer’s Needs

Management to Reduce Software Failures (CNMRSF). The main functionality of

CNMRSF model is to provide better software testing actions for corresponding poor

requirement. Model always has 3 phases like input, processing and output [1, 2].

CNMRSF model integrates the functionality of different modules like Input module,

processing module and output module. Figure 5.1 shows the work flow of CNMRSF

Chapter 5: Conclusions and Suggestions

 232

model. The workflow of CNMRSF model is divided in 3 phases: Input phase, processing

phase and Output generation phase.

Figure 5.1 High level architecture of CNMRSF Model

In Input Module Customer Needs document can get from your local computer drive.

Main functionality of this phase is to get exact type and requirement document for further

analysis.

Processing Module deals with integrated functionality of Reading Requirement

document, analyzing requirement document by call customer’s Needs Engine (RA

Engine) and Execution of Output module to generate list of Issues, Impacts and Actions

for particular type of requirement issue.

Chapter 5: Conclusions and Suggestions

 233

Output Module deals with generation of output based on input argument as a

requirement issue type provided by processing phase. Output phase has module named as

Output Module and this module is basically gets executed by Processing module. Main

functionality of output module is to get requirement type issue as an input and based on

this input query to database to fetch corresponding list of Issues, Impacts and Action

points. This module displaying list of Issues, Impacts and Actions based on

corresponding requirement issue type.

Above Model is described in detail in Annexure -II

References

[1] Thomas Kiihne , “What is Model?” Darmstadt University of Technology,

Darmstadt, Germany.

 [2] http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

[3] http://www.voltreach.com/Development_Methodologies.aspx

 [4] Kirsten Kiefer, “The Impact of Requirement issues on testing”, Software

Customer Needs Management to Reduce Software Failure model has been

designed to analyze the provided requirement document for the recognition

of exact requirement issue. And based on requirement issue it is providing

list of requirement issues, impact of this requirement issue and actions need

to be performed by testing team to reduce extra efforts and failures in

software product.

http://www.voltreach.com/Development_Methodologies.aspx

Chapter 5: Conclusions and Suggestions

 234

Education associates Ltd.

 [5] http://www.softed.com/resources/docs/impact-of-requirements-issues-on-

testing.pdf

[6] People soft upgrade process for testing.

[7] http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-

and-mitigate

http://www.softed.com/resources/docs/impact-of-requirements-issues-on-testing.pdf
http://www.softed.com/resources/docs/impact-of-requirements-issues-on-testing.pdf

235

ANNEXURE-I

A Study of Collecting Customer Needs in Software Development

Process and Its Impact on Business of Selected IT Companies in Pune.

NOTE: In today’s IT world, more and more online Applications and tools are used,

which help in carrying out various daily chores. If these applications and tools do

not work according to specification then it would cause inconvenience to all users.

The researcher is an academician who is interested in surveying the causes of

failures of softwares. For a better feedback from the Industry Experts from Pune

IT Hub, I would appreciate your cooperation in responding to this questionnaire.

1 Company(Optional) ___

2. Gender : a) Male b) Female

3. Age : a)Upto 40 b) 4150 c) 5160 d) Above 60

4. Education a) Graduate b) Post Graduate

 c) Any Other (Specify)__________________________________

5. Occupation: a) Business Analyst b) Designer c) Tester

 d) Any Other :______________________________

6 OfficeLocation a) Hadapsar b) Hinjewadi c) Kharadi

d) Any Other

7 From whom you collect requirements (Tick Multiple Option)

o Stakeholders

o End User

236

8 How you collect requirements from clients.(Tick Multiple Option)

 a) Personally meetings with Clients

 b) Through Documents

 c) Online or Automated

 d) Any other:_________________________

9 which kind of requirements you collect.(Tick Multiple Option)

 a) Scope Clarification for Domain

 b) Input Processes

 c) Reporting Procedure

 d) Number of users

 e) Data Collection

 f) All of the above

 g) Any other:_________________________

10 who involved in requirement analysis process

a. Senior Management
b. Project Manager
c. End User
d. Requirement Team

e. Developers
f. Testers

g. Scribes

h. Any other:_______________

11. How much times you interact or communicate with clients during requirements gathering

process.

a. 2 Weeks

b. 3 Weeks

c. 4 Weeks

d. More than weeks

e. Any Other: __________

237

12 For single interaction, how much time required

a. Less than 2 Hrs.

b. 3 Hrs.

c. 4 Hrs.

d. More than 4Hrs.

e. Any Other: __________

13 Are you aware of following Software Development Life Cycle process?

Sr, No Model Name Yes No

1 Waterfall

2 Rapid Prototyping

3 Incremental

4 Agile

5 Spiral

14 Which of the following technique is most beneficial to gather software requirement and to what

extent? (Tick any one for Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly

Disagree(DS)‐1)

Sr.No. Techniques SA(5) A(4) N(3) D(2) SD(1)

a) Homework Completion

b) Power up Communication with

 Visuals

C) Use of standard template to support

 your work

d) Avoid common pitfalls

e) Use of tools

238

15 State the significance of following documents in success of software project? Strongly Agree

(SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1)

a) Customer Requirement Document

 (CRD)

b) Business Requirement Document

 (BRD)

c) Functional Requirement Document

 (FRD)

d) Component Specification Document

 (CSD)

e) Component Design Document

 (CDD)

f) Test cases Document (TCD)

16 What do you think which factor of the following is reasonable for the failure of software

project?

Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1)

a) Lack of user involvement

b) Long or unrealistic time scale

c) Poor or No Requirements

d) Inadequate Documentations

e) Scope Creep

f) No Change Control System

g) Poor testing

h) Lack of foresight in building efficiency

 markets

i) poor managerial decisions

j) Cost overrun.

k) Lack of an experienced project

 manager:

l) Lack of methodology in the process

m) Well‐defined Schedules

239

17 What are the factors contributing to failure forrequirement gathering process Give in terms of

weightage (1‐5)?

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1)

a) Knowledge about the business

 context

b) Understanding of Business

 problems/opportunities

c)
Identification of gaps to be
bridged

d) Adequate number of Resources

e) Adequate Time

18 According to your opinion from the beginning of SDLC to what extent testers plays a role. Option)

Role 100% ‐ 90%
90%‐
70%

70% ‐ 50% Less than 50%

Tester

19 Whether Tester is present In all the below Activities of Project?

Sr.No Factors Yes No

a) Requirement Phase

b) Design Phase

c) Development Phase

d) Testing Phase

e) Maintenance Phase

20 How non‐requirement gathering time is gettingspent in yourorganization please mention in

 Percentage?

Sr.No Factors Enter in the Percentage

a) Writing Requirement Documents

b) Reviewing FRD/BRD

c) Client Customer interaction

d) Conducting trainings for Tester and

 Developers

240

e) Any Others

21 If yes then please mention which tools are getting used to gather requirements in your

organization?

Sr.No Factors Tick

a) Visual Paradigms

b) Project Management Software

c) MicrosoftPackage

d) Data Dictionary (Service Versioning Number [SVN])

e) Use Cases and User Stories

f) ReqHarbor.com

g) MindTool

h) IBM Rational Doors

i) Jira

j) Rally

k) Taleo

l) Quality Center

22 Are you using testing tools?

o Yes

o No

23 Which testing type are your preferring?

o Automated Testing

o Manual Testing

24 Which of the following tools are you using for software testing?

 i) Soap Box test tool

 ii) QTP

 iii) jmeter

 iv) Load Tracer

 v) Specify here if any other ………………………………………………

25 How many test cases are you executing per day?

o 4

241

o 8

o 16

o 20

26 Per day, how many defects are getting raised on incorrect requirement?

o 1‐2

o 3‐4

o 56

o 78

27 Following are the different cost that are considered during testing process. Give your opinion in

 terms of weightage (1‐5) regarding the level of losses occurred as per this cost?

Sr. No. Factors (utilization) SA(5) A(4) N(3) D(2) SD(1)

a) Resources

b) Software

c) Hardware

d) Network

e) Infrastructure(electricity, rent etc)

f) Any other

28 State the following document is most useful in success of software testing?

 Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No. Factors SA(5) A(4) N(3) D(2) SD(1)

a) Customer Requirement Document

 (CRD)

b) Business Requirement Document

 (BRD)

c) Functional Requirement Document

 (FRD)

d) Component Specification Document

 (CSD)

e) Component Design Document

 (CDD)

f) Test cases Document (TCD)

242

29 State how poor requirement gathering or change in requirement gathering may impact on

software testing process?

 Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No. Factors SA(5) A(4) N(3) D(2) SD(1)

a) Addition of Test case

b) Deletion of Test case

c) Modification of existing test case

d) Re‐execution of modified test case

e) Verification of newly added

f) functionality due to requirement Change

g) Test result creation for newly added

 Requirement

30 State following which factors is responsible to make software erroneous.

 Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1)

a) Logic Design

b) Documentation

c) Human

d) Environment

e) Data

f) Interface

g) Requirement Errors

f) Any other

31 State overhead occurs in software testing due to poor requirement gathering.

243

 Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1)

a) Gap in Testing

b) Increase in system failures

c) System Testing Delay

d) Inaccurate Testing Estimation

e) Test_team_credibility_decreation

f) Delay_benefit_realisation

32 What are the common requirement issues that may affect Software Testing?

 Strongly Agree (SA)‐5, Agree(A)‐4, Neutral(N)‐3, Disagree(D)‐2, Strongly Disagree(DS)‐1

Sr.No Factors SA(5) A(4) N(3) D(2) SD(1)

a) Absence and Incompleteness

b) Incorrectness

c) Ambiguity and Vagueness

d) Volatility

e) Traceability

33 Following efforts are carried out in case of collected needs from customer are not freeze.

Sr.No. Tool Name Tick

1 Development Efforts

2 Rework Efforts

3 Quality Assurance Efforts

4 Testing Efforts

The information given by the respondent would be treated as confidential.

244

Annexure-II

Conceptual Background of Software Requirement Analysis and

Software Testing Process

A requirement is an expression of desired behaviour. A requirement is nothing but

objects or entities, the states they can be in, and the functions that are performed to change

states or object characteristics. [1] The goal of the requirements phase is premature until the

problem is clearly defined [1] to understand the customer’s problems and needs. Thus,

requirements focus on the customer and the problem, not on the solution or the implementation.

We often say that requirements designate what behaviour the customer wants, without saying

how that behaviour will be realized. This chapter mainly focuses on detail understanding of

requirement engineering process, software testing process and how poor requirement gathering

process impacts on software testing process.

 Requirement Engineering

The process to gather the software requirements from client, analyse and document

them is known as requirement engineering. The goal of requirement engineering is to develop

and maintain sophisticated and descriptive ‘System Requirements Specification’ document.

Requirement Engineering Process

It is a four-step process, which includes –

(1) Feasibility Study

(2) Requirement Gathering

Annexure -II

245

(3) Software Requirement Specification

(4) Software Requirement Validation

Feasibility study

When the client approaches the organization for getting the desired product developed, it comes

up with rough idea about what all functions the software must perform and which all features

are expected from the software. Referencing to this information, the analysts does a detailed

study about whether the desired system and its functionality are feasible to develop. This

feasibility study is focused towards goal of the organization. This study analyses whether the

software product can be practically materialized in terms of implementation, contribution of

project to organization, cost constraints and as per values and objectives of the organization. It

explores technical aspects of the project and product such as usability, maintainability, and

productivity and integration ability. The output of this phase should be a feasibility study report

that should contain adequate comments and recommendations for management about whether

or not the project should be undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next phase starts with

gathering requirements from the user. Analysts and engineers communicate with the client and

end-users to know their ideas on what the software should provide and which features they

want the software to include.

Software Requirement Specification

SRS is a document created by system analyst after the requirements are collected from various

stakeholders. SRS defines how the intended software will interact with hardware, external

Annexure -II

246

interfaes, speed of operation, response time of system, portability of software across various

platforms, maintainability, speed of recovery after crashing, Security, Quality, Limitations etc.

The requirements received from client are written in natural language. It is the responsibility

of system analyst to document the requirements in technical language so that they can be

comprehended and useful by the software development team. SRS should come up with

following features:

 User Requirements are expressed in natural language.

 Technical requirements are expressed in structured language, which is used inside the

organization.

 Design description should be written in Pseudo code.

 Format of Forms and GUI screen prints.

 Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

After requirement specifications are developed, the requirements mentioned in this document

are validated. User might ask for illegal, impractical solution or experts may interpret the

requirements incorrectly. This results in huge increase in cost if not nipped in the bud.

Requirements can be checked against following conditions –

 If they can be practically implemented

 If they are valid and as per functionality and domain of software

 If there are any ambiguities

 If they are complete

 If they can be demonstrated

Annexure -II

247

Requirement Gathering Process

Figure 1 Requirement Gathering Process

Figure 1. Illustrates the process of determining the requirements for a proposed software

system. The person performing these tasks usually goes by the title of requirements analyst or

systems analyst. As a requirements analyst, we first work with our customers to elicit the

requirements, by asking questions, examining current behavior, or demonstrating similar

systems. Next, we capture the requirements in a model or a prototype. This exercise helps

business analyst to better understand the required behavior, and usually raises additional

Annexure -II

248

questions about what the customer wants to happen in certain situations. Once the requirements

are well understood, we progress to the specification phase, in which business analyst decide

which parts of the required behavior will be implemented in software. During validation,

business analyst checks that requirement specification matches what the customer expects to

see in the final product. Analysis and validation activities may expose problems or omissions

in the models or specification that cause us to revisit the customer and revise our models and

specification. The eventual outcome of the requirements process is a Software Requirements

Specification (SRS), which is used to communicate to other software developers (designers,

testers, maintainers) how the final product ought to behave.

Software Testing

Testing is the process of evaluating a system or its component(s) with the intent to find

whether it satisfies the specified requirements or not.

Testing is executing a system in order to identify any gaps, errors, or missing requirements in

contrary to the actual requirements.

Testing is the process of evaluating a system or its component(s) with the intent to find

whether it satisfies the specified requirements or not. In simple words, testing is executing a

system in order to identify any gaps, errors, or missing requirements in contrary to the actual

requirements.

According to ANSI/IEEE 1059 standard, Testing can be defined as - A process of analyzing

a software item to detect the differences between existing and required conditions (that is

defects/errors/bugs) and to evaluate the features of the software item.

Annexure -II

249

Main functionality of Software Testing [3]

Main focus of Software testing functionality basically deals with following four aspects:

Verification

Verification addresses the concern: "Are you building it right?" Ensures that the software

system meets all the functionality. Verification takes place first and includes the checking for

documentation, code, etc. It has static activities, as it includes collecting reviews,

walkthroughs, and inspections to verify a software. It is an objective process and no subjective

decision should be needed to verify a software. Done by developers.

Validation

Validation addresses the concern: "Are you building the right thing?" Ensures that the

functionalities meet the intended behavior. Validation occurs after verification and mainly

involves the checking of the overall product. Done by testers. It has dynamic activities, as it

includes executing the software against the requirements. It is a subjective process and

involves subjective decisions on how well a software works.

Testing

 It involves identifying bug/error/defect in a software without correcting it. Normally

professionals with a quality assurance background are involved in bugs identification. Testing

is performed in the testing phase.

Debugging

 It involves identifying, isolating, and fixing the problems/bugs. Developers who code the

software conduct debugging upon encountering an error in the code. Debugging is a part of

White Box Testing or Unit Testing. Debugging can be performed in the development phase

while conducting Unit Testing or in phases while fixing the reported bugs.

Annexure -II

250

Types of Software Testing

There is different way to test any software product. Following are the few testing types are

studied in this research.

Manual Testing

Manual testing includes testing a software manually, i.e., without using any automated tool or

any script. In this type, the tester takes over the role of an end-user and tests the software to

identify any unexpected behavior or bug. There are different stages for manual testing such as

unit testing, integration testing, system testing, and user acceptance testing.

Testers use test plans, test cases, or test scenarios to test a software to ensure the completeness

of testing. Manual testing also includes exploratory testing, as testers explore the software to

identify errors in it.

 Automation Testing

Automation testing, which is also known as Test Automation, is when the tester writes scripts

and uses another software to test the product. This process involves automation of a manual

process. Automation Testing is used to re-run the test scenarios that were performed manually,

quickly, and repeatedly.

Figure 2 Automation Testing

Test Script

Test

Execution

Test

Automation

Annexure -II

251

Apart from regression testing, automation testing is also used to test the application from load,

performance, and stress point of view. It increases the test coverage, improves accuracy, and

saves time and money in comparison to manual testing.

Black-Box Testing

The technique of testing without having any knowledge of the interior workings of the

application is called black-box testing. The tester is oblivious to the system architecture and

does not have access to the source code. Typically, while performing a black-box test, a tester

will interact with the system's user interface by providing inputs and examining outputs

without knowing how and where the inputs are worked upon.

White-Box Testing

White-box testing is the detailed investigation of internal logic and structure of the code.

White-box testing is also called glass testing or open-box testing. In order to performwhite-

box testing on an application, a tester needs to know the internal workings of the code.

The tester needs to have a look inside the source code and find out which unit/chunk of the

code is behaving inappropriately.

Grey-Box Testing

Grey-box testing is a technique to test the application with having a limited knowledge of the

internal workings of an application. In software testing, the phrase the more you know, the

better carries a lot of weight while testing an application.

Mastering the domain of a system always gives the tester an edge over someone with limited

domain knowledge. Unlike black-box testing, where the tester only tests the application's user

interface; in grey-box testing, the tester has access to design documents and the database.

Annexure -II

252

Having this knowledge, a tester can prepare better test data and test scenarios while making a

test plan.

There are different levels during the process of testing. In this chapter, a brief description is

provided about these levels.

Levels of testing include different methodologies that can be used while conducting software

testing. The main levels of software testing are:

 Functional Testing

 Non-functional Testing

Functional Testing

This is a type of black-box testing that is based on the specifications of the software that is to

be tested. The application is tested by providing input and then the results are examined that

need to conform to the functionality it was intended for. Functional testing of software is

conducted on a complete, integrated system to evaluate the system's compliance with its

specified requirements.

There are five steps that are involved while testing an application for functionality.

 The determination of the functionality that the intended application is meant to

perform.

 The creation of test data based on the specifications of the application.

 The output based on the test data and the specifications of the application.

 The writing of test scenarios and the execution of test cases.

 The comparison of actual and expected results based on the executed test cases.

Annexure -II

253

An effective testing practice will see the above steps applied to the testing policies of every

organization and hence it will make sure that the organization maintains the strictest of

standards when it comes to software quality.

 Unit Testing

This type of testing is performed by developers before the setup is handed over to the testing

team to formally execute the test cases. Unit testing is performed by the respective developers

on the individual units of source code assigned areas. The developers use test data that is

different from the test data of the quality assurance team.

The goal of unit testing is to isolate each part of the program and show that individual parts

are correct in terms of requirements and functionality.

Integration Testing

Integration testing is defined as the testing of combined parts of an application to determine if

they function correctly. Integration testing can be done in two ways: Bottom-up integration

testing and Top-down integration testing.

Integration Testing Methods:

Bottom-up integration

This testing begins with unit testing, followed by tests of progressively higher-level

combinations of units called modules or builds.

Top-down integration

In this testing, the highest-level modules are tested first and progressively, lower-level

modules are tested thereafter.

Annexure -II

254

In a comprehensive software development environment, bottom-up testing is usually done

first, followed by top-down testing. The process concludes with multiple tests of the complete

application, preferably in scenarios designed to mimic actual situations.

System Testing

System testing tests the system as a whole. Once all the components are integrated, the

application as a whole is tested rigorously to see that it meets the specified Quality Standards.

This type of testing is performed by a specialized testing team.

System testing is important because of the following reasons:

 System testing is the first step in the Software Development Life Cycle, where the

application is tested as a whole.

 The application is tested thoroughly to verify that it meets the functional and technical

specifications.

 The application is tested in an environment that is very close to the production

environment where the application will be deployed.

 System testing enables us to test, verify, and validate both the business requirements

as well as the application architecture.

Regression Testing

Whenever a change in a software application is made, it is quite possible that other areas

within the application have been affected by this change. Regression testing is performed to

verify that a fixed bug hasn't resulted in another functionality or business rule violation. The

intent of regression testing is to ensure that a change, such as a bug fix should not result in

another fault being uncovered in the application.

Regression testing is important because of the following reasons:

Annexure -II

255

 Minimize the gaps in testing when an application with changes made has to be tested.

 Testing the new changes to verify that the changes made did not affect any other area

of the application.

 Mitigates risks when regression testing is performed on the application.

 Test coverage is increased without compromising timelines.

 Increase speed to market the product.

Acceptance Testing

This is arguably the most important type of testing, as it is conducted by the Quality Assurance

Team who will gauge whether the application meets the intended specifications and satisfies

the client’s requirement. The QA team will have a set of pre-written scenarios and test cases

that will be used to test the application.

More ideas will be shared about the application and more tests can be performed on it to gauge

its accuracy and the reasons why the project was initiated. Acceptance tests are not only

intended to point out simple spelling mistakes, cosmetic errors, or interface gaps, but also to

point out any bugs in the application that will result in system crashes or major errors in the

application.

By performing acceptance tests on an application, the testing team will deduce how the

application will perform in production. There are also legal and contractual requirements for

acceptance of the system.

Alpha Testing

This test is the first stage of testing and will be performed amongst the teams (developer and

QA teams). Unit testing, integration testing and system testing when combined together is

Annexure -II

256

known as alpha testing. During this phase, the following aspects will be tested in the

application:

 Spelling Mistakes

 Broken Links

 Cloudy Directions

 The Application will be tested on machines with the lowest specification to test loading

times and any latency problems.

Beta Testing

This test is performed after alpha testing has been successfully performed. In beta testing, a

sample of the intended audience tests the application. Beta testing is also known as pre-release

testing. Beta test versions of software are ideally distributed to a wide audience on the Web,

partly to give the program a "real-world" test and partly to provide a preview of the next

release. In this phase, the audience will be testing the following:

 Users will install, run the application and send their feedback to the project team.

 Typographical errors, confusing application flow, and even crashes.

 Getting the feedback, the project team can fix the problems before releasing the

software to the actual users.

 The more issues you fix that solve real user problems, the higher the quality of your

application will be.

 Having a higher-quality application when you release it to the general public will

increase customer satisfaction.

Non-Functional Testing

Annexure -II

257

This section is based upon testing an application from its non-functional attributes. Non-

functional testing involves testing a software from the requirements which are nonfunctional

in nature but important such as performance, security, user interface, etc.

Some of the important and commonly used non-functional testing types are discussed below.

 Performance Testing

It is mostly used to identify any bottlenecks or performance issues rather than finding bugs in

a software. There are different causes that contribute in lowering the performance of a

software:

 Network delay

 Client-side processing

 Database transaction processing

 Load balancing between servers

 Data rendering

Performance testing is considered as one of the important and mandatory testing type in terms

of the following aspects:

 Speed (i.e. Response Time, data rendering and accessing)

 Capacity

 Stability

 Scalability

Performance testing can be either qualitative or quantitative and can be divided into different

sub-types such as Load testing and Stress Testing.

Annexure -II

258

Load Testing

It is a process of testing the behaviour of a software by applying maximum load in terms of

software accessing and manipulating large input data. It can be done at both normal and peak

load conditions. This type of testing identifies the maximum capacity of software and its

behaviour at peak time.

Most of the time, load testing is performed with the help of automated tools such as Load

Runner, AppLoader, IBM Rational Performance Tester, Apache JMeter, Silk Performer,

Visual Studio Load Test, etc.

Virtual users (VUsers) are defined in the automated testing tool and the script is executed to

verify the load testing for the software. The number of users can be increased or decreased

concurrently or incrementally based upon the requirements.

Stress Testing

Stress testing includes testing the behaviour of a software under abnormal conditions. For

example, it may include taking away some resources or applying a load beyond the actual load

limit.

The aim of stress testing is to test the software by applying the load to the system and taking

over the resources used by the software to identify the breaking point. This testing can be

performed by testing different scenarios such as:

 Shutdown or restart of network ports randomly

 Turning the database on or off

 Running different processes that consume resources such as CPU, memory, server,

etc.

Annexure -II

259

Usability Testing

Usability testing is a black-box technique and is used to identify any error(s) and

improvements in the software by observing the users through their usage and operation.

According to Nielsen, usability can be defined in terms of five factors, i.e. efficiency of use,

learn-ability, memory-ability, errors/safety, and satisfaction. According to him, the usability

of a product will be good and the system is usable if it possesses the above factors.

Nigel Bevan and Macleod considered that usability is the quality requirement that can be

measured as the outcome of interactions with a computer system. This requirement can be

fulfilled and the end-user will be satisfied if the intended goals are achieved effectively with

the use of proper resources.

Molich in 2000 stated that a user-friendly system should fulfill the following five goals, i.e.,

easy to Learn, easy to remember, efficient to use, satisfactory to use, and easy to understand.

In addition to the different definitions of usability, there are some standards and quality models

and methods that define usability in the form of attributes and sub-attributes such as ISO-

9126, ISO-9241-11, ISO-13407, and IEEE std.610.12, etc.

UI vs. Usability Testing

UI testing involves testing the Graphical User Interface of the Software. UI testing ensures

that the GUI functions according to the requirements and tested in terms of color, alignment,

size, and other properties.

On the other hand, usability testing ensures a good and user-friendly GUI that can be easily

handled. UI testing can be considered as a sub-part of usability testing.

Security Testing

Annexure -II

260

Security testing involves testing software in order to identify any flaws and gaps from security

and vulnerability point of view. Listed below are the main aspects that security testing should

ensure:

 Confidentiality

 Integrity

 Authentication

 Availability

 Authorization

 Non-repudiation

 Software is secure against known and unknown vulnerabilities

 Software data is secure

 Software is according to all security regulations

 Input checking and validation

 SQL insertion attacks

 Injection flaws

 Session management issues

 Cross-site scripting attacks

 Buffer overflows vulnerabilities

 Directory traversal attacks

Portability Testing

Portability testing includes testing a software with the aim to ensure its reusability and that it

can be moved from another software as well. Following are the strategies that can be used for

portability testing:

Annexure -II

261

 Transferring an installed software from one computer to another.

 Building executable (.exe) to run the software on different platforms.

Portability testing can be considered as one of the sub-parts of system testing, as this testing

type includes overall testing of a software with respect to its usage over different

environments. Computer hardware, operating systems, and browsers are the major focus of

portability testing. Some of the pre-conditions for portability testing are as follows:

 Software should be designed and coded, keeping in mind the portability requirements.

 Unit testing has been performed on the associated components.

 Integration testing has been performed.

 Test environment has been established.

Testing documentation involves the documentation of artifacts that should be developed

before or during the testing of Software.

Documentation for software testing helps in estimating the testing effort required, test

coverage, requirement tracking/tracing, etc. This section describes some of the commonly

used documented artifacts related to software testing such as:

 Test Plan

 Test Scenario

 Test Case

 Traceability Matrix

Software TestingTools

From the survey carried out in this research, it has been seen that following list of tools are

getting used by tester for automation testing.

 HP Quick Test Professional

Annexure -II

262

 Selenium

 IBM Rational Functional Tester

 SilkTest

 TestComplete

 Testing Anywhere

 WinRunner

 LaodRunner

 Visual Studio Test Professional

 WATIR

Impact of poor requirement on Software testing

As we saw in above Requirement gathering section, requirement collection from client

is one of the basic and important task of requirement gathering process. But if due to inadequate

knowledge of business or functional requirement, business analyst can collect incorrect

requirements from client. collected from client then it is definitely going to impact of software

development and software testing process. There are many software product failures examples

in the world because of incorrect, incomplete requirements. Literature review has shown the

many reasons for IT project failure in all over the world [7]. Out of 100% project success rates

were only 34% with the rest of project being either “challenged” in some way or failing

outright. The failure in software project means there is loss in productivity, revineo of Software

Company and these losses are very significant. For example, British food retailer Sainsbury

had to write off its $526 million investment in an automated supply-chain management system.

The U.S. Federal Aviation Administration spent $2.6 billion unsuccessfully trying to upgrade

its air traffic control system in the 1990s. Ford Motor Company abandoned its purchasing

Annexure -II

263

system in 2004, after spending $400 million. In the 8 years since, things probably haven't

changed much.[7]

One of main reason of such project failure is incomplete software requirement which

in turn happened due to poor requirement gathering. In SDLC process, most of time it is

impossible to have complete and finalized set of requirements at the beginning of a project.

This leads requirement changes to happen during the latter stages of the project and create

conflicts with the software process been practiced [5].

Actually requirement gathering is the practice of collecting the requirements of a

system from users, customers and other stakeholders. [6] Requirements gathering practices

include interviews, questionnaires, user observation, workshops, brainstorming, use cases, role

playing and prototyping.

One of the root causes of poor requirement gathering in SDLC is the only role for users

is in specifying requirements, and that all requirements can be specified in advance.

Unfortunately, requirements grow and change throughout the process and beyond, calling for

considerable feedback and iterative consultation. Due to this frequently changing requirements

gathering process, many developers complain about inadequate, non-freezing requirements and

its impact on their work, software productivity and time consuming overhead. This non-

freezable requirement gathering process not only affects developer’s work but also affecting

Tester, maintenance and management team. Non-Freezable requirement leads to poor software

requirement gathering and in turn leads to non-qualitative software product. Poor requirement

gathering mostly happens due to business problem, and not a technology problem.

http://en.wikipedia.org/wiki/Requirements_elicitation#cite_note-1
http://en.wikipedia.org/wiki/Brainstorming
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Software_prototyping

Annexure -II

264

The non-freezable requirements for software, as delivered by typical business analysts,

designer is not sufficiently clear, insightful, or well understood to develop software systems

that meet the needs of business users.

To overcome this problem, there is need to understand root cause of poor software

requirements gathering process and find out the corrective solution for the same.

 Few cause that leads to poor requirement gathering [7]:

1. Poor Requirements Quality

2. Over Emphasis on Simplistic Use Case Modeling

3. Inappropriate Constraints

4. Requirements Not Traced

5. Excessive Requirements Volatility including Unmanaged Scope Creep

6. Inadequate Verification of Requirements Quality

7. Inadequate Requirements Validation

8. Inadequate Requirements Management

9. Inadequate Requirements Process

10. Inadequate Tool Support

11. Unprepared Requirements Engineers

Poor requirement happens due to the problems that indicate the challenges for requirements

gathering [8]. Following are few challenges that we need to consider while doing requirement

gathering.

 'Problems of scope'. The boundary of the system is ill-defined or the customers/users

specify unnecessary technical detail that may confuse, rather than clarify, overall system

objectives.

Annexure -II

265

 Problems of understanding. The customers/users are not completely sure of what is

needed, have a poor understanding of the capabilities and limitations of their computing

environment, don’t have a full understanding of the problem domain, have trouble

communicating needs to the system engineer, omit information that is believed to be

“obvious,” specify requirements that conflict with the needs of other customers/users, or

specify requirements that are ambiguous or untestable.

 Problems of volatility. The requirements change over time. The rate of change is

sometimes referred to as the level of requirement volatility

Impact of Poor Requirements on Software Project and Customer’s Business

The quality of requirements can have a lot of impact on the outcome of the project. One high

profile project which was significantly affected by the requirements management process was

the Chrysler Comprehensive Compensation System which was supposed to handle paychecks

for Chrysler’s 87,000 employees but was shut down after several years of development.

The impact is magnified as the BA moves from high-level requirements towards functional and

non-functional requirements. The cost of rework of functional requirements is the highest

because these requirements define the technical specification and design of the solution.

Annexure -II

266

Figure 3 Impact of Poor requirement gathering process [1]

Projects are undertaken by the business to satisfy a strategic goal. Poor requirements

have the following effects on projects (and subsequently impact the strategic goals of the

business): [3]

 Scope creep negatively affecting budget and completion time

 Low utilzation of resources and higher overheads

 Inadequate business process design (due to insufficient details about activities)

 Poor design and ergonomics of the user interface, resulting in lower productivity

 Inadequate software specification, resulting in lower developer productivity

 Poor specification amplifies the negative effect of poor requirements when it comes to

software testing, leading to higher costs and lower quality of the solution

Annexure -II

267

 Time-consuming and costly code rework

 Difficulties in solution integration.

 Input phase of CNMRSF Model (From Chapter 5 Suggested Model)

Input phase is divided into three steps: Selection of Type of Requirement Document, Getting

Requirement Document and Calling Processing Module by providing requirement document.

Fig 3 shows the working flow of input phase. In this phase, Requirement document can get

from your local computer drive. Main functionality of this phase is to get exact type and

requirement document for further analysis.

Figure 4 Input module of CNMRSF Model

Input Module

Reading File type input

from User (FRD, CRD

etc)

Asking User to get file

from drive using upload

Calling processing

module by providing

requirement document

file

Annexure -II

268

 Processing phase of CNMRSF Model

Processing phase deals with integrated functionality of Reading Requirement document,

analyzing requirement document by call customer’s Needs Engine (RA Engine) and Execution

of Output module to generate list of Issues, Impacts and Actions for particular type of

requirement issue.

 In processing phase, RMEngine gets call to analyze exact requirement issue type.

Functionality of RMEngine is explained in detail in below section. After executing RMEngine,

processing module checks type of requirment issue provided by RMEngine, and based on that

it calls output module. While calling output module, requirment type is getting provided as an

input argument. Following algorithm should get executed by Processing module to call Output

module.

 If requirment type = Incomplete

{

Call Output Module(Incomplete);

 }

If requirment type = Incorrect {

Call Output Module(Incorrect);

 }

If requirment type = Ambiguity{

Call Output Module(Ambiguity);

 }

If requirment type = Volatilty{

Call Output Module(Volatilty);

 }

If requirment type = Tracability{

Call Output Module(Tracability);}

Annexure -II

269

 Figure 5. Processing module of CNMRSF Model

Annexure -II

270

Here based on input argument provided in call of Output Module, List of Issues,

Impacts and Actions are getting displayed by Output module. Output Module has been

explained in detail in below “Output phase of CNMRSF Model” section.

 Requirement Analysis Engine (RAEngine)

Requirement Analysis Engine is used in processing phase. It is developed based on the

requirement issues responded by respondent from different software companies. For

RMEngine, following requirement issues has been considered [4].

1. Incomplete/Absent

2. Incorrect

3. Ambiguity & Vagueness

4. Volatility

5. Traceability

 RAEngine is heart of CNMRSF module. Without RAEngine, CNMRSF can not do

anything. RAEngine basically works on if else ladder concept. It first checks what is exact

requirement issue present in provided requirement document and based on that decide type of

requirement issue. For deciding appropriate requirement issue, RAEngine analyze requirement

document by compairing it with software system architechure document and tries to provide

exact requirement issue. RAEngine takes Requirement document as an input and generates

requirement issue type by considering many isssues present in provided requirement document.

 As metioned above, RAEngine maninly focuses on five type of requirement issues like

incomplete,incorrect, Ambuiguity,vaguess, volatility and traceability etc. [4]. Based on

Annexure -II

271

different conditions like if track table is missing or improper change control process found then

its mark requirement issue as traceability issue. If functional or non-functional requirements

are missing then it marks requirement issue type as incorrect. If there is change between old

requirement document and new requirement document then it marks requirement issue as

volatility. If requirement followed poor requirement definition then it marks requirement issue

as Ambiguity and Vagueness. Like wise it checks for Incomplete/Absence requirement issue.

Here using if syntax RAEngine verifies many conditions to decides appropriate requirement

issue.

 Once requirement issue is identified by RAEngine, it returns that requirement issue back

to processing module and then processing module works on further analysis.

Annexure -II

272

Figure 6. Customer’s Needs Engine used in CNMRSF Model

Annexure -II

273

 Output Phase of CNMRSF model

 Figure 7. Output Module of CNMRSF Model

Annexure -II

274

Output phase deals with generation of output based on input argument as a requirement

issue type provided by processing phase. Output phase has module named as Output Module

and this module is basically gets executed by Processing module. Main functionality of output

module is to get requirement type issue as an input and based on this input query to database

to fetch corresponding list of Issues, Impacts and Action points. This module displaying list of

Issues, Impacts and Actions based on corresponding requirement issue type.

Output module deals with database to fetch records from three different tables named

as Issue, Impact and Action. These three tables have following schema.

Issue Table

Issue Name Issue Description

Impact Table

Impact Name Impact Description

Action Table

Action Name Action Description

Annexure -II

275

SQL Queries to create these three tables:

Create Table Issue(Issue Name varchar(20), Issue Description varchar(100));

Create Table Impact(Impact Name varchar(20),Impact Description varchar(100));

Create Table Action(Action Name varchar(20), Action Description varchar(100));

These tables should be created in database before executing CNMRSF model. This is

prerequisite and important step to execute CNMRSF model.

Once output module gets call from processing module with a requirement issue type

then it executes following queries to fetch corresponding records for requirement issue type.

Output module uses following SQL queries to fetch records from Issue, Impact and Action

tables.

SQL queries for Issue Table:

Select * from Issue where Issue Name = “Incomplete”;

Select * from Issue where Issue Name = “Incorrect”;

Select * from Issue where Issue Name = “Ambiguity & Vagueness”;

Select * from Issue where Issue Name = “Volatility”;

Select * from Issue where Issue Name = “Traceability”;

Annexure -II

276

SQL queries for Impact Table:

Select * from Impact where Impact Name = “Incomplete”;

Select * from Impact where Impact Name = “Incorrect”;

Select * from Impact where Impact Name = “Ambiguity & Vagueness”;

Select * from Impact where Impact Name = “Volatility”;

Select * from Impact where Impact Name = “Traceability”;

SQL queries for Action Table:

Select * from Action where Action Name = “Incomplete”;

Select * from Action where Action Name = “Incorrect”;

Select * from Action where Action Name = “Ambiguity & Vagueness”;

Select * from Action where Action Name = “Volatility”;

Select * from Action where Action Name = “Traceability”;

For Issue, Impact and Action tables records, need to refer section 6.6.

Tables Definition

Issue, Impact and Action tables should have following list of records in database.

Annexure -II

277

 Issue Table

Issue Name Issue Description

Incomplete Gaps will be present in Requirement specification

Incomplete Functional and non-functional requirements are missing

Incomplete UI layout and sequencing failure can come

Incomplete Essential behaviour of system may fail

Incomplete System performance issue can come

Incomplete Data conversion issues

Incomplete Lack of Exception Handling

Incorrectness Requirement specification can be wrong or incorrect

Incorrectness Business Reps may not be good developers or SMEs

Incorrectness Business Reps may not be available to the project as required

Incorrectness Inadequate change control process within project

Ambiguity &

Vagueness

If requirement is greater and bigger than system architecture scope then

it is vague as compare to functional and non-functional requirements

Ambiguity &

Vagueness

Ambiguity and vagueness can come due to lack of system/product

knowledge. BA’s not knowing exact details of the requirements

Annexure -II

278

Ambiguity &

Vagueness

Ambiguity and vagueness can occur due to poor requirement definition

process

Volatility Frequent change in requirement specification

Volatility Lack of actual requirement by the user

Volatility Determination of unfeasible and expensive requirement

Traceability Volatile requirement cannot be traceable through the work items of

project.

Traceability Lack of maintenance of traceability to and from requirements team

Table 1 Issue table used by CNMRSF Model

 Impact Table

Impact Name Impact Description

Incomplete Incomplete requirement can lead to gaps in software testing

Incomplete More system failures can occur in customer system like production , UAT

Incomplete System testing can get delayed

Incomplete Estimations for software testing can be inaccurate

Incomplete System performance issue can come

Incomplete Testing team productivity and credibility can get decreased

Annexure -II

279

Incomplete Delayed in Software benefit realization

Incorrectness Incorrect test cases and test results will be created.

Incorrectness Loss of time in investigation of test case failures

Incorrectness Rework of test cases writing and re-testing.

Incorrectness Loss of testing team efforts, time and credibility

Ambiguity &

Vagueness

Loss of time in clarification of requirements

Ambiguity &

Vagueness

Unable to determine how to test requirement

Ambiguity &

Vagueness

Incorrect test cases and test results will be created.

Ambiguity &

Vagueness

Rework of test cases writing and re-testing.

Ambiguity &

Vagueness

Loss of testing team efforts, time and credibility

Volatility Rework of test cases writing and re-testing

Volatility Extended re-testing

Annexure -II

280

Volatility Delay in delivery dates

Volatility Delayed in Software benefit realization

Traceability Unable to analyze impact of changing requirements

Traceability Unknown test cases coverage

Traceability Unable to evaluate number of requirements successfully met.

Traceability Unable to evaluate which requirement have not been successfully delivered

Table 2 Impact table used by CNMRSF Model

 Action Table

Action Name Action Description

Incomplete Need to use supplement testing with experience based techniques

Incomplete Relationship between testing and requirement team should be good,

Incomplete Testing team must understand the business problems and solutions made

for these problems

Incomplete Early testing should be implemented

Incomplete Checklist for Requirement specification reviews should be developed

Incorrectness Raise risk regarding unavailability of Developers or SMEs

Annexure -II

281

Incorrectness Testing team should involve in all requirement specific meetings,

workshops and sessions

Incorrectness Ask for central change management process so that testing team can

review change.

Incorrectness Maximum communication should be happened between testing,

development and requirement teams.

Ambiguity &

Vagueness

Need to have risk based testing.

Ambiguity &

Vagueness

Need to start early testing and reviews test cases and test results bits

early.

Ambiguity &

Vagueness

Need to use critical thinking technique.

Ambiguity &

Vagueness

Need to involve tester or test analyst or test lead (or complete testing

team) in requirements gathering meetings, workshops and JAD sessions

Volatility Scenarios based testing instead of requirements based testing.

Volatility Need to follow good change management practices

Volatility Need to have exploratory testing

Annexure -II

282

Volatility Need to work on building consensus with the business representatives on

the expected test result

Traceability Need to implement and maintain a requirements traceability matrix

Traceability Need to implement requirement change management process

Traceability Need to assign unique identifiers to requirements

Traceability Need to make test system component automate so that it will save testing

time even if requirement gets changed.

Table 3 Action table used by CNMRSF Model

Requirement gathering is the process of collection of requirement from the

client but many times due to incorrect requirement collection complete

software project gets impacted. This chapters provides detail understanding

about reasons behinds poor or incorrect requirements and how it impacts on

software project and customer’s business.

Annexure -II

283

References:

1. Chapter 4 ‘Capturing the Requirements’, http://www.cse.msu.edu/~chengb/RE-

491/Papers/atlee-chapter4.pdf

2. http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm

3. http://www.jot.fm/issues/issue_2007_01/column2.pdf

4. http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-

reasons.

5. Indika Perera, “Impact of Poor Requirement Engineering in Software Outsourcing: A

Study on Software Developers’ Experience”. Int. J. of Computers, Communications &

Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 2 (June), pp. 337-348

6. Requirements Engineering A good practice guide, Ramos Rowel and Kurts Alfeche, John

Wiley and Sons, 1997

7. Donald Firesmith, Software Engineering Institute, U.S.A “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

8. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Requirements

Elicitation". Technical Report CMU/SEI-92-TR-012. CMU / SEI. Retrieved January 14,

2012.

9. https://www.utdallas.edu/~chung/RE/Getting_requirements_right-

avoiding_the_top_10_traps.pdf

http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
http://www.jot.fm/issues/issue_2007_01/column2.pdf
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.jot.fm/issues/issue_2007_01/column2/
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm

284

REFERENCES

1. The Standish Group Report (CHAOS). (2003). Retrieved November 2013, from

:http://www.projectsmart.co.uk/docs/chaos-report.pdf.

2. Boehm, B., & Bose, P. (1994). A collaborative spiral software process model based on

Theory W. Third International Conference on the Software Process, pp. (59-68).

3. Cao, L., & Ramesh, B. (2008). Agile Requirements Engineering Practices: An Empirical

Study. IEEE Software, 25 (1), pp. (60-67).

4. 2013, Md Rounok Salehin “Missing Requirements Information and its Impact on Software

Architectures:A Case Study” The School of Graduate and Postdoctoral Studies The

University of Western Ontario,London, Ontario, Canada

5. Gross, A., Doerr, J. (2012). What do software architects expect from requirements

specifications? results of initial explorative studies. IEEE First International Workshop on

Twin Peaks of Requirements and Architecture, IEEE Software, pp. (41-45).

6. Lee, S., & Rine, D. (2004). Missing Requirements and Relationship Discovery through

Proxy Viewpoints Model. 19th annual ACM Symposium on Applied Computing, pp.

(1513-1518). Nicosia, Cyprus.

7. George, B., Bohner, S. A., & Prieto-Diaz, R. (2004). Software information leaks: A

complexity perspective. Ninth IEEE International Conference on Engineering Complex

Computer Systems (ICECCS'04), pp. (239-248). Florence, Italy: IEEE Computer Society.

8. Gumuskaya, H. (2005). Core Issues Affecting Software Architecture in Enterprise Projects.

Proceedings of World Academy of Science, Engineering And Technology, volume 9, pp.

(35-41)

9. Thomas Kiihne , “What is Model?” Darmstadt University of Technology, Darmstadt,

Germany.

10. http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

285

11. Kirsten Kiefer, “The Impact of Requirement issues on testing”, Software Education

associates Ltd

12. Brooks, F. 1987. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE

Computer, Vol. 20, No. 4, April 1987, 10-19.

13. Jayaswal, B. K., Patton, P. C. 2006. Design for Trustworthy Software: Tools, Techniques,

and Methodology of Developing Robust Software, 1st Edition. (September 2006), Prentice

Hall edition.

14. Zowghi, D. 2002. A Study on the Impact of Requirements Volatility on Software Project

Performance. Proceedings of Ninth Asia-Pacific SE Conference (APSEC‟ 2002), IEEE

Computer Science.

15. Taghi, M., Khoshgoftaar, N., Sundaresh, N. 2006. An empirical study of predicting

software faults with case-based reasoning. (June 2006), Software Quality Control.

16. Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating fault prediction models.

(October 2008), Empirical Software Engineering.

17. M.P.Singh, Rajnish Vyas, “Requirements Volatility in Software Development Process”

International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-4, September 2012

18. Zowghi, N. Nurmuliani, ―A study of the Impact of requirements volatility on Software

Project Performance, Proceedings of the Ninth Asia-Pacific Software Engineering

Conference , APSEC 2002, Gold Cost, Queensland, Australia,04-06 Dec 2002, pp:3-11.

19. http://www.mapsofindia.com/maps/maharashtra/pune.htm (23/7/2008)

20. http://www.mapsofindia.com/pune/software-company-pune.html

21. https://maps.google.co.in/maps?hl=en-IN&gbv=2&ie=UTF-

8&fb=1&gl=in&q=software+companies+in+pune&hq=software+companies&hnear=0x3

http://www.mapsofindia.com/pune/software-company-pune.html

286

bc2bf2e67461101:0x828d43bf9d9ee343,Pune,+Maharashtra&ei=av_nVKH6O86IuwSvrI

L4Bw&ved=0CB4QtQM&output=classic&dg=brw

22. Sr. S. P. Gupta, “Statistical Methods”, Sultanchand & Sons Publication, New Delhi.

23. Don Gotterbarn, “Reducing Software Failures: Addressing the Ethical Risks of the

Software Development Lifecycle” Australian Journal of Information Systems

24. Muhammad Naeem Ahmed Khan and et.all (2013), “Review of Requirements

Management Issues in Software Development” I.J.Modern Education and Computer

Science, 2013, 1, 21-27, Published Online January 2013 in MECS (http://www.mecs-

press.org/) DOI: 10.5815/ijmecs.2013.01.03

25. https://web.cs.dal.ca/~hawkey/3130/SEBackground4.pdf

26. Systems Development Lifecycle: Objectives and Requirements. Bender RPT Inc. 2003

27. Vanshika Rastogi (2015), “Software Development Life Cycle Models- Comparison,

Consequences” IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 6 (1) , 2015, 168-172

28. Software Development Life Cycle (SDLC) Yogi Berra presentation

29. Ms. Shikha maheshwari and Prof.Dinesh Ch. Jain 2012 “A Comparative Analysis of

Different types of Models in Software Development Life Cycle” International Journal of

Advanced Research in Computer Science and Software Engineering, Volume 2, Issue 5,

May 2012

30. Royce, Winston (1970), "Managing the Development of Large Software Systems" (PDF),

Proceedings of IEEE WESCON 26 (August): 1–9

31. PK.Ragunath, S.Velmourougan, P. Davachelvan, ,S.Kayalvizhi, R.Ravimohan (2010)

“Evolving A New Model (SDLC Model-2010) For Software Development Life Cycle

(SDLC)” IJCSNS International Journal of Computer Science and Network Security,

VOL.10 No.1, January 2010

https://web.cs.dal.ca/~hawkey/3130/SEBackground4.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

287

32. Seema, Sona Malhotra 2012 “Analysis and tabular comparision of popular SDLC models”

International Journal of Advances in computing and Information Technology.

33. Sonali MAthur and Shaily Malik (2010), “Advancements in the V-Models”, International

Journal of Computer Applications (0975-8887) Volume 1- No.12

34. Naresh Kumar, A. S. Zadgaonkar, Abhinav Shukla “Evolving a New Software

Development Life Cycle Model SDLC-2013 with Client Satisfaction”

 International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-3, Issue-1, March 2013

35. G. Kotonya and I. Sommerville, (1998), have published article on “Requirements

Engineering: Processes and Techniques”, in the book published by Chichester, UK: John

Wiley & Sons.

36. Requirements Engineering A good practice guide, Ramos Rowel and Kurts Alfeche, John

Wiley and Sons, 1997

37. I. Sommerville and P. Sawyer (1997), Requirements Engineering: A Good Practice Guide,

New York: John Wiley & Sons,.

38. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=948567&url=http%3A%2F%2Fie

eexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D948567

39. K. E. Wiegers, Software Requirements, 2nd ed., Redmond, W A: Microsoft Press, 2003.

40. http://prr.hec.gov.pk/Chapters/369S-2.pdf (Software Testing reference)

41. Donald Firesmith, Software Engineering Institute, U.S.A “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

42. Olga Liskin , et al., “Supporting Acceptance Testing in Distributed Software Projects with

Integrated Feedback Systems: Experiences and Requirements” 2012 IEEE Seventh

International Conference on Global Software Engineering

http://prr.hec.gov.pk/Chapters/369S-2.pdf
http://www.jot.fm/issues/issue_2007_01/column2/

288

43. Vishawjyoti, Sachin Sharma, “Study and Analysis of automation testing techniques” ,

Journal of global research in computer science, Volume 3, No. 12, December 2012, ISSN-

2229-371

44. Antonia Bertolino has published his research article on “Software testing research and

practice”

45. Vivek Kumar (2012) has published his article on “Comparison of Manual and automation

testing” International Journal of Research in Science And Technology, (IJRST) 2012, Vol.

No. 1, Issue No. V, Apr-Jun, ISSN: 2249-0604

46. R. M. Sharma (2014), “Quantitative Analysis of Automation and Manual Testing”

International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue

1, July 2014

47. Harsh Bhasin, at.el. (2014), have published research article on “Black Box Testing based

on Requirement Analysis and Design Specifications”

48. MIRZA MAHMOOD BAIG (2009), “NEW SOFTWARE TESTING STRATEGY”

N.E.D. University of Engineering & Technology

49. Mohd. Ehmer Khan , Farmeena Khan “A Comparative Study of White Box, Black Box and

Grey Box Testing Techniques”, (IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 3, No.6, 2012

50. Paul C. Jorgensen (2013) published book on “Software testing: a craftsman's approach”

CRC Press

51. Wasif Afzal et al. (2008) “A Systematic Mapping Study on Non-Functional Search-based

Software Testing” paper available at http://www.researchgate.net/publication/221391274

52. W. K. Chan et al (2002), have published article on “An Overview of Integration Testing

Techniques for Object-Oriented Programs” Proceedings of the 2nd ACIS Annual

http://books.google.co.in/books?hl=en&lr=&id=6WlmAQAAQBAJ&oi=fnd&pg=PP1&dq=Functional+software+testing&ots=Jsj-K3Okg0&sig=bb-ub8PKu4lB48sFdndwxm25Fgs
http://www.researchgate.net/publication/221391274

289

International Conference on Computer and Information Science (ICIS 2002), International

Association for Computer and Information Science, Mt. Pleasant, Michigan (2002)

53. Shivkumar Hasmukhrai Trivedi, (2012), has published research article on “Software

Testing Techniques” International Journal of Advanced Research in Computer Science and

Software Engineering, Volume 2, Issue 10, October 2012

54. Leung, H.K.N (1989) has published article on “Insights into regression testing” Software

Maintenance, 1989., Proceedings., Conference on

55. M. Fagan, “Design and Code Inspections to Reduce Errors in Program Development,” IBM

Systems Journal, vol. 38, no. 2/3, pp. 258–287, 1999.

56. Hitesh Tahbildar at el(2011). “Automated software test data generation: Direction of

research” International Journal of Computer Science & Engineering Survey (IJCSES)

Vol.2, No.1, Feb 2011

57. http://www.rishabhsoft.com/blog/beta-testing-the-importance (2011)

58. Ms. S. Sharmila, “Analysis of Performance Testing on Web Applications” International

Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue

3, March 2014

59. Pooja Ahlawat (2013) “A Comparative Analysis of Load Testing Tools Using Optimal

Response Rate” International Journal of Advanced Research in Computer Science and

Software Engineering. Volume 3, Issue 5, May 2013

60. Chapter 4 ‘Capturing the Requirements’, http://www.cse.msu.edu/~chengb/RE-

491/Papers/atlee-chapter4.pdf

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leung,%20H.K.N..QT.&newsearch=true
http://www.rishabhsoft.com/blog/beta-testing-the-importance
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf

290

61. 2013, Md Rounok Salehin “Missing Requirements Information and its Impact on Software

Architectures:A Case Study” The School of Graduate and Postdoctoral Studies The

University of Western Ontario,London, Ontario, Canada

62. Mohd. Ehmer Khan, “Different Forms of Software Testing Techniques for Finding Errors,”

IJCSI, Vol. 7, Issue 3, No 1, pp 11-16, May 2010

63. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Requirements

Elicitation". Technical Report CMU/SEI-92-TR-012. CMU / SEI. Retrieved January 14,

2012.

64. Donald Firesmith, Software Engineering Institute, U.S.A “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

65. Indika Perera, “Impact of Poor Requirement Engineering in Software Outsourcing: A Study

on Software Developers’ Experience”. Int. J. of Computers, Communications & Control,

ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 2 (June), pp. 337-348

66. Requirements Engineering A good practice guide, Ramos Rowel and Kurts Alfeche, John

Wiley and Sons, 1997

67. Chapter 4 ‘Capturing the Requirements’, http://www.cse.msu.edu/~chengb/RE-

491/Papers/atlee-chapter4.pdf

68. http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm

69. http://www.jot.fm/issues/issue_2007_01/column2.pdf

70. http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-

reasons.

http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.jot.fm/issues/issue_2007_01/column2/
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.cse.msu.edu/~chengb/RE-491/Papers/atlee-chapter4.pdf
http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
http://www.jot.fm/issues/issue_2007_01/column2.pdf
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons

291

71. IndikaPerera, “Impact of Poor Requirement Engineering in Software Outsourcing: A Study

on Software Developers’ Experience”. Int. J. of Computers, Communications & Control,

ISSN 1841-9836, E-ISSN 1841-9844 Vol. VI (2011), No. 2 (June), pp. 337-348

72. Requirements Engineering A good practice guide, Ramos Rowel and KurtsAlfeche, John

Wiley and Sons, 1997

73. Donald Firesmith, Software Engineering Institute, U.S.A “Common Requirements

Problems, Their Negative Consequences, and the Industry Best Practices to Help Solve

Them”. http://www.jot.fm/issues/issue_2007_01/column2/

74. Christel, Michael and Kyo C. Kang (September 1992). "Issues in Requirements

Elicitation". Technical Report CMU/SEI-92-TR-012. CMU / SEI. Retrieved January 14,

2012.

75. https://www.utdallas.edu/~chung/RE/Getting_requirements_right-

avoiding_the_top_10_traps.pdf

76. Vidya Gaveakr, (2013) “A Study of Geographic Information System based computerized

framework to enhance the water supply system in Pune City” Thesis of Computer

Management Dept., Tilak Maharashtra Univerisity.

77. http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-

reasons.

78. K.K. Aggarwal and Yogesh Singh,”Software Engineering”,New age International

Publishers, third Edition, 2008.

79. http://www.umsl.edu/~sauterv/analysis/Fall2010Papers/Isserman/

80. http://www.practicalecommerce.com

81. http://www.reqharbor.com/

82. https://www.google.co.in/webhp?hl=en#hl=en&q=data%20dictionary

http://www.jot.fm/issues/issue_2007_01/column2/
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.sei.cmu.edu/library/abstracts/reports/92tr012.cfm
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.enterprisecioforum.com/en/blogs/pearl/it-project-failure-symptoms-and-reasons
http://www.reqharbor.com/
https://www.google.co.in/webhp?hl=en#hl=en&q=data%20dictionary

292

83. https://ankitmathur111.wordpress.com/2012/06/20/whats-whys-hows-of-software-testing-

wwh/

84. http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/

85. Thomas Kiihne , “What is Model?” Darmstadt University of Technology, Darmstadt,

Germany.

86. http://www.la1.psu.edu/cas/jgastil/pdfs/conceptualdefinitiondeliberation.pdf

87. http://www.voltreach.com/Development_Methodologies.aspx

88. Kirsten Kiefer, “The Impact of Requirement issues on testing”, Software Education

associates Ltd.

89. http://www.softed.com/resources/docs/impact-of-requirements-issues-on-testing.pdf

90. http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-and-

mitigate

91. http://kinzz.com/resources/articles/91-project-failures-rise-study-shows

92. S. Arun Kumar and T.Arun Kuma “Study The Impact Of Requirements Management

Characteristics In Global Software Development Projects: An Ontology Based Approach”

in International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.4,

October 2011

93. http://www.pune.ws/in/?list=it_software_companies-hinjawadi|here

94. http://www.pune.ws/in/?list=hadapsar-it_software_companies

95. http://www.pune.ws/in/?list=it_software_companies-kharadi

96. http://www.pune.ws/in/?list=it_software_companies-magarpatta

97. http://hiapune.in

98. https://www.dnb.co.in/TopIT/company_listing.asp?PageNo=1&q=employee&r

99. Software Engineering for Students- A Programming Approach by Douglas Bell Pearson

Education. Pg 230-255

http://istqbexamcertification.com/what-is-fundamental-test-process-in-software-testing/
http://www.voltreach.com/Development_Methodologies.aspx
http://www.softed.com/resources/docs/impact-of-requirements-issues-on-testing.pdf
http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-and-mitigate
http://blog.sei.cmu.edu/post.cfm/common-testing-problems-pitfalls-to-prevent-and-mitigate
http://kinzz.com/resources/articles/91-project-failures-rise-study-shows
http://www.pune.ws/in/?list=it_software_companies-hinjawadi|here
http://www.pune.ws/in/?list=hadapsar-it_software_companies
http://www.pune.ws/in/?list=it_software_companies-kharadi
http://www.pune.ws/in/?list=it_software_companies-magarpatta
http://hiapune.in/
https://www.dnb.co.in/TopIT/company_listing.asp?PageNo=1&q=employee&r

293

100. Ralph R. Young, Effective Requirements Practices. Addison-Wesley, 2001, page 108.

101. Kotonya, G. and Sommerville, I. 1998. Requirements Engineering: Processes and

Techniques Chichester, UK: John Wiley and Sons.

102. Karl E. Wiegers More About Software Requirements: Thorny Issues and Practical

Advice(Microsoft Press, 2006; ISBN 0-7356-2267-1)Chapter 2: Truths About Software

Requirement

103. Henry Johnson, An approach to software project management through requirements

engineering, At Texas Tech University, Henry Johnson, December 2010

104. Davis , C.J, Fuller, R.M. Tremblay, M.C. & Berndt, D.J. (2006). Communication

Challenges in requirements elicitation and the use of the repertory grid technique.

Journal of computer information Systems, 78

105. Bourque, P.; Fairley, R.E. (2014). "Guide to the Software Engineering Body of

Knowledge (SWEBOK)". IEEE Computer Society. Retrieved 17 July 2014

106. Software Engineering – A Practitioners Approach by Roger S. Pressman Tata McGraw

Hill.

 Quality, 5th ed., Prentice-Hall, 2010. Donna C. S. Summers. Pg 20-57

107. Total Quality Management, Prentice Hall, 2003 Dale H. Besterfield. . Pg 37-77

108. Information Technology Project Management -Kathy Schwalbe. Pg 7-177

109. Software Metrics A rigorous and practical approach – N Fenton, S Lawrence Pfleeger.

 Pg 170-255

110. Research Methodology Methods and Techniques By C R Kothari and Gaurav Garg.

Pg 52-109

http://www.computer.org/portal/web/swebok/v3guide
http://www.computer.org/portal/web/swebok/v3guide

294

111. A Practitioner's Guide to Software Test Design, Lee Copeland, 2003. Pg 38-97

112. The Art of Software Testing, 2nd edition, Glenford Myers, et. 2004. Pg 76- 143

113. Software Testing Techniques, 2nd edition, Boris Beizer, 1990. Pg 14-65

114. How to Break Software: A Practical Guide to Testing, James Whittaker, 2002.

Pg123-254

115. http://technosoftwares.com/software-development-life-cycle

116. http://www.jamasoftware.com/blog/change-impact-analysis-2

117. “Impact of software requirement volatility pattern on project dynamics: evidences

from a case study” International Journal of Software Engineering & Applications

(IJSEA), Vol.2, No.3, July 2011

Books

1. Software Engineering for Students- A Programming Approach by Douglas Bell Pearson

Education. Pg 230-255

2. Software Engineering – A Practitioners Approach by Roger S. Pressman Tata McGraw

Hill.

3. Quality, 5th ed., Prentice-Hall, 2010. Donna C. S. Summers. Pg 20-57

4. Total Quality Management, Prentice Hall, 2003 Dale H. Besterfield. . Pg 37-77

5. Information Technology Project Management -Kathy Schwalbe. Pg 7-177

6. Software Metrics A rigorous and practical approach – N Fenton, S Lawrence Pfleeger. Pg

170-255

7. .Research Methodology Methods and Techniques By C R Kothari and Gaurav Garg. Pg

52-109

8. .A Practitioner's Guide to Software Test Design, Lee Copeland, 2003. Pg 38-97

http://www.amazon.com/gp/product/158053791X/ref=pd_sxp_elt_l1/102-6179150-6556164?n=283155
http://www.amazon.com/gp/product/0471469122/ref=pd_sim_b_1/102-6179150-6556164?%5Fencoding=UTF8&v=glance&n=283155
http://www.amazon.com/gp/product/0442206720/ref=ase_acmorg-20/102-6179150-6556164?s=books&v=glance&n=283155&tagActionCode=acmorg-20
http://www.amazon.com/gp/product/0201796198/ref=pd_sxp_elt_l1/102-6179150-6556164?n=283155
http://technosoftwares.com/software-development-life-cycle
http://www.amazon.com/gp/product/158053791X/ref=pd_sxp_elt_l1/102-6179150-6556164?n=283155

295

9. The Art of Software Testing, 2nd edition, Glenford Myers, et. 2004. Pg 76- 143

10. Software Testing Techniques, 2nd edition, Boris Beizer, 1990. Pg 14-65

11. How to Break Software: A Practical Guide to Testing, James Whittaker, 2002.

Pg123-254

http://www.amazon.com/gp/product/0471469122/ref=pd_sim_b_1/102-6179150-6556164?%5Fencoding=UTF8&v=glance&n=283155
http://www.amazon.com/gp/product/0442206720/ref=ase_acmorg-20/102-6179150-6556164?s=books&v=glance&n=283155&tagActionCode=acmorg-20
http://www.amazon.com/gp/product/0201796198/ref=pd_sxp_elt_l1/102-6179150-6556164?n=283155

	01_title
	02_certificate
	03_acknowlegement
	04_Contents
	05_List_of_Tables_Graphs
	06_Synopsis
	07_Chapter_1
	Fig. 1.1 Software Development Life Cycle

	08_Chapter_2
	09_Chapter_3
	3.1. Introduction
	3.2. Definition of Software
	3.4. Software Development Life Cycle
	3.5.2. Iterative Model
	3.5.3. Spiral Model
	3.5.4. V – Model
	3.5.4.1. Verification Phases
	3.5.4.2. Coding Phase
	3.5.4.3. Validation Phases
	3.5.5. Big Bang Model

	10_Chapter_4
	4.1 Introduction
	1. General Background of Respondents
	2. Current state of collecting SOP from customer process in Software industry
	4.3. Gender Background of Respondents
	4.3.2 Qualification and Occupation wise Distribution of Employees

	11_Chapter_5
	12_Annexure-I
	13_Annexture-II
	Manual Testing
	Automation Testing
	Black-Box Testing
	White-Box Testing
	White-box testing is the detailed investigation of internal logic and structure of the code.
	White-box testing is also called glass testing or open-box testing. In order to performwhite-
	box testing on an application, a tester needs to know the internal workings of the code.
	Grey-Box Testing
	Functional Testing
	Unit Testing
	Integration Testing
	System Testing
	Regression Testing
	Acceptance Testing
	Alpha Testing
	Beta Testing
	Non-Functional Testing
	Performance Testing
	Load Testing
	Stress Testing
	Usability Testing
	UI vs. Usability Testing
	Security Testing
	Portability Testing
	Software TestingTools
	From the survey carried out in this research, it has been seen that following list of tools are getting used by tester for automation testing.
	Impact of poor requirement on Software testing
	Figure 3 Impact of Poor requirement gathering process [1]

	14_Refrences

