TILAK MAHARASHTRA VIDYAPEETH, PUNE
 BACHELOR OF SCIENCE (B.Sc.) - GAME ART AND DESIGN
 EXAMINATION: DECEMBER- 2023
 THIRD SEMESTER

 Sub.: Mathematics (BSGD21-306)

 Sub.: Mathematics (BSGD21-306)}

Date: 21/12/2023
Total Marks: 40
Time: 2.00 pm to 4.00 pm

Instructions: All questions are compulsory.

Q. 1. Solve the following (Any 2)

1. What is the final value of $\left(\operatorname{cosec}^{2} 30^{\circ}\right)\left(\cot 45^{\circ}\right)^{10}\left(1-\cos ^{2} 30^{\circ}\right)$
2. Proof that $\operatorname{Sec}^{2} Ø /\left(\left(\tan ^{2} \varnothing\right)\left(\operatorname{cosec}^{2} \varnothing\right)\right)=1$
3. What will be the direction of a Null Vector.
Q. 2. Solve the following (Any 2)
4. What is the value of $\left(\sec ^{2} 45^{\circ}+\operatorname{cosec}^{2} 45^{\circ}\right)^{0.5}$
5. What is the value of $\frac{1+\tan ^{2} 63^{\circ}}{1+\cot ^{2} 63^{\circ}} \cot ^{2} 63^{\circ}$
6. What are Zero Vectors and Unit Vectors?
7. Find the unit vector in the direction of the vector $\vec{a}=\hat{\imath}+4 \hat{\jmath}+8 \hat{k}$
Q. 3. Solve the following (Any 2)
8. Find $A^{2}-9 A+3 I$, if $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
9. Find inverse of the matrix $\boldsymbol{A}=\left[\begin{array}{lll}2 & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 3 & 2 \\ 1 & 1 & 1\end{array}\right]$ using elementary transformations.

A tower stands vertically on the ground. From a point on the ground, which is 19 m away from the
3. foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower. Assume the value of $3^{1 / 2}=1.7$
4. If $A=\left[\begin{array}{ccc}3 & 2 & -2 \\ 5 & 1 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -4 & 2 \\ 4 & 2 & 7 \\ 2 & 0 & 3\end{array}\right], C=\left[\begin{array}{ccc}4 & 1 & 3 \\ 0 & 3 & 1 \\ 1 & -2 & 3\end{array}\right]$, then compute $(\mathrm{A}+\mathrm{B})$ and $(\mathrm{B}-\mathrm{C})$. Also, verify that $A+(B-C)=(A+B)-C$.

