
COMPARATIVE STUDY OF
MECHANISMS FOR DISCOVERING THE MOST

APPROPRIATE WEB SERVICE AND
PROPOSING AN EFFICIENT

WEB SERVICE DISCOVERY MECHANISM

A thesis submitted to

Tilak Maharashtra Vidyapeeth, Pune

For the Degree of Doctor of Philosophy (Ph.D.)

In

Computer Management

Under the Faculty of Management

Submitted By
Netra Patil

Under the supervision of
Dr. Arpita Gopal

Director – MCA

Sinhgad Institute of Business Administration and Research,

Kondhwa-Bk, Pune - 411048

October 2014

Declaration

I hereby declare that the thesis entitled “Comparative Study Of

Mechanisms For Discovering The Most Appropriate Web Service And

Proposing An Efficient Web Service Discovery Mechanism” completed and

written by me has not been previously formed the basis for the award of any Degree

or other similar title upon me of this or any other University or examining body.

Place : Pune (Mrs. Netra Patil)

Date : 16-Oct-2014 Research Student

Certificate

This is to certify that the thesis entitled “Comparative Study Of Mechanisms For

Discovering The Most Appropriate Web Service And Proposing An Efficient Web

Service Discovery Mechanism” which is being submitted for the degree of Doctor of

Vidyavachaspati (Ph. D.) in Computer Management to Tilak Maharashtra Vidyapeeth is an

original piece of research work completed by Mrs. Netra Patil under my supervision and

guidance.

To the best of my knowledge and belief the work incorporated in this thesis has not been

formed the basis for the award of any Degree or similar title of this or any other university or

examining body upon her.

Place : Pune Dr. Arpita Gopal

Date : 16-Oct-2014 Director-MCA

Sinhgad Institute of Business Administration and

Research, Kondhwa(Bk), Pune-411048

Acknowledgement

Pursuing a PhD is a truly life-changing journey that is not possible to accomplish without the

help, support and guidance of many people. The most pleasurable aspect of writing a research

thesis is the opportunity it provides to thank God and express heartfelt gratitude to all those

who have been a great source of encouragement and enlightenment to complete each and

every task with utmost passion and dedication.

First of all, I would like to express my deepest gratitude to my guide, Dr. Arpita Gopal,

Director-MCA, Sinhgad Institute of Business Administration and Research, Kondhwa, Pune,

India for sparing her most valuable time for continuously motivating and guiding me during

the course of research work. She gave me the opportunity to perform and accomplish the

biggest step towards an academic or research career. Her encouragement to explore new

directions while maintaining focus has kept me productive and excited about research. Every

moment spend with her was a profoundly enriching experience.

No amount of words can express the gratefulness for Prof. M. N. Navale, President, Sinhgad

Technical Education Society, Pune, for his exemplary patronage to scholarly pursuits in

granting me days off to enable me complete my research work and accommodating the

research devoted hours so generaously.

I am also blessed with wonderful friends in many ways, my successes are theirs, too. Special

thanks to my dear friend Dr. Chandrani Singh, Joint Director-MCA, Sinhgad Institute of

Business Administration and Research, Kondhwa, Pune whose stimulating encouragement,

and valuable suggestions have greatly contributed to this thesis and helped me round off the

research successfully. All my friends gave me a lot of support and encouragement through

the hard times. They deserve special acknowledgements - Thank you Rithambara Korpal,

Rubina Sheikh, and many more friends from SIBAR.

I owe my sincere gratitude and a very special thanks to my parents and in-laws for bearing

me through the thick and thin of my research tenure. They have always given me their

unconditional love and moral support. I am indebted to them for inculcating the love for

knowledge in me. If it wasn’t for their support, co-operation and encouragement, this

endeavor would not have been possible.

I would take this opportunity to thank and acknowledge my life partner, Dr. Prashant Patil,

for his continuous encouragement and cooperation throughout completion of my research

work. He has always been there in both the good and the bad moments and gave me the

power and inspiration to move on and fight for my goals.

And last but not the least, to my dearest daughter Tejas, I offer my immense gratitude for her

unconditional love, patience and tolerance. Thank you my darling for making it all

worthwhile!

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil i

Contents

List of Figures v

List of Tables ix

Chapter 1 Introduction

1.1. SOA and Web Service Discovery……………………………………………...2

1.2. Approaches towards Web Service Discovery……………………………….…4

1.3. Issues in Web Service Discovery………………………………………………7

1.4. Research Hypothesis …………………………………………………………..9

1.5. Research Objective …………………………………………………………...10

1.6. Research Methodology ……………………………………………………….11

1.7. Organization of Thesis ………………………………………………………..12

Chapter 2 Review of Literature

2.1. Web Service Discovery……………………………………………………….14

2.2. Web Service Discovery Mechanisms………………………………………....15

2.2.1 Peer-to-Peer mechanism……………………………………………....15

2.2.2 UDDI and ebXML registry based mechanisms based on

Centralized approach …………………………………………….……21

2.2.3 Alternative mechanisms …...…………………………………….……45

2.3. Limitations of existing mechanisms……………………………………….….48

2.4. The pilot study……………………………………………………………..…51

2.5. The present study……………………………………………………...………55

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil ii

Chapter 3 Service Registries

3.1. UDDI Registry……………………………………………….………….….....58

3.2. ebXML Registry……………………………………………….…………..…..66

3.3. UDDI Vs ebXML Registry – A Comparative Study……………….………...68

Chapter 4 UDDI based Web Service Discovery Mechanism

4.1. Why UDDI based mechanism ..………………………………………………70

4.2. The Approach……………………………………….. ………………………. 71

4.3. UDDI based mechanism : Reputation-Enhanced Web Service Discovery

with QoS……………………….……………………………………………..73

4.3.1 Publishing QoS Information ………………………………………....74

4.3.2 Updating QoS information…………………………………………....75

4.3.3 Discovering web service through Discovery Agent and

 Reputation Manager…………………………………………….……..76

4.4. UDDI based mechanism : Web service QoS-Certifier based Web

Service Discovery……………………………………………………………..85

4.5. jUDDI Registry working…………….…………………………………………86

Chapter 5 Proposed Approach – Smart Web service discovery enhanced

 with QoS Monitor

5.1. Publishing and updating QoS Parameters.……………………………….……92

5.2. Discovering Service in UDDI Registry…………..……………………..……..98

5.2.1 Discovery Agent Workflow …………………………………….…….102

5.2.2 Monitoring Service QoS………………………………………………106

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil iii

Chapter 6 Experiments and Results Analysis

6.1. Service Discovery Model implementation……………………………..……..112

6.2. Experimental Setup and Evaluation…………………………………………..114

6.3. Summary of Results Obtained………………………………………………...130

Chapter 7 Summary & Conclusion

7.1. Summary…………………………………………………………………….131

7.2. Contribution…………………………………………………………………..132

7.3. Conclusion……………………………………………..….…………………..133

7.4. Future Enhancements………………………………….……………………..134

References………………………………………………….……………………………135

Appendix I Glossary of relevant terms ………………………………….……………143

Appendix II jUDDI database ERD .……………………………………….……...…...145

Appendix III Pilot Study Questionnaire……………………………………..……….....146

Appendix IV Research Paper Repository..……………………………….….……...…..152

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil iv

a. "Assessment of UDDI and ebXML Registry for e-Business Application" by Netra
Patil, Dr. Arpita Gopal, in International Journal of Computer Science and Application,
ISSN 0974-0767, Issue-III, December 2012.

b. “Comparative Study of mechanisms for Web Service Discovery based on Centralized
approach focusing on UDDI” by Netra Patil, Dr. Arpita Gopal, in International Journal
of Computer Applications, ISSN 0975-8887, January 2011.

c. "Enhancing UDDI registry for storing Qos in tModel for discovering web services" by

Netra Patil, Dr. Arpita Gopal, in International Journal of Computer Science and
Application, ISSN 0974-0767, Issue-I, January 2011.

d. “Ranking Web-services based on QoS for best-fit search” by Netra Patil, Dr. Arpita
Gopal, in International Journal of Computer Science and Communication, ISSN 0973-
7391, Volume-I, Number-II, September 2010.

e. “Quantifying Web Services on Quality Parameters for Best-fit Web-service Selection”

by Netra Patil, Dr. Arpita Gopal, in International Journal of Computer Science and
Application”, ISSN 0974-0767, Issue-II, January 2010.

f. “Comparative Study of Centralized and Decentralized Approaches for Web Service
Discovery Mechanism”, by Netra Patil, Dr. Arpita Gopal, in International Conference
IACC 2010 at Thapar University, Patiala.

g. “Model proposed for the senior management of an organization for utilizing resources
effectively to adopt web services”, by Netra Patil, Dr. Arpita Gopal, in International
Conference ICDM 2008 at IIM Ghaziabad, Delhi.

Synopsis………………………………………………………………………………...i-xiii

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil v

List of Figures

Figure 2.1 Peer-to-Peer approach for Distributed Discovery in WSMX 18

Figure 2.2 WSPDS Architecture 19

Figure 2.3 Speed-R Architecture 20

Figure 2.4 Property attributes 24

Figure 2.5 The “Lease” element 24

Figure 2.6 Service model of UDDI 26

Figure 2.7 XML schema for WSQDL complex type 27

Figure 2.8 tModel Component and Schema including qualityBag 28

Figure 2.9 DAML-S/UDDI Matchmaker architecture 31

Figure 2.10 QoS broker based architecture 34

Figure 2.11 Architecture of Web Service Publication and Discovery
with QoS certifier 36

Figure 2.12 Common Architecture components of the Models to
Customize Private UDDI Registry Query Results 36

Figure 2.13 Model 1 - Parameter values to be saved and retrieved from
UDDI server 37

Figure 2.14 Model 2 - Parameter values to be retrieved from logs data 39

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil vi

Figure 2.15 Model 3 - Parameter values to be saved and retrieved from
external files 40

Figure 2.16 High-level architecture of WSB model 41

Figure 2.17 Architecture based on WS-QoSMan service broker 43

Figure 2.18 Classes and their Relationships in XTRO 46

Figure 2.19 Service retrieval approach based on process ontology 46

Figure 2.20 Multidimensional approach to Web Service Discovery and
Integration 47

Figure 2.21 Architecture of Semantic Web Service Discovery and
Composition 47

Figure 2.22 Customers in different service domain Satisfied with different

QoS parameter values 53

Figure 2.23 Service Engineers receiving complaints about service 54

Figure 3.1 JAXR Architecture 58

Figure 3.2 UDDI core data structures 60

Figure 4.1 Existing Web service Architecture 72

Figure 4.2 Model of Reputation-enhanced Web Services Discovery
with QoS 73

Figure 4.3 The tModel with the QoS information 75

Figure 4.4 Service Discovery Request Format 77

Figure 4.5 Flowchart for Matching, Ranking and Selecting service 82

Figure 4.6 Service Discovery Request SOAP Message 84

Figure 4.7 Service Discovery Response SOAP Message 84

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil vii

Figure 4.8 Web services registration and discovery model with 85
QoS Ceritifier

Figure 5.1 Service QoS Monitor Based Model For Web Services
Discovery 91

Figure 5.2 The tModel with the QoS information 96

Figure 5.3 Algorithm of Publishing Web Service 97

Figure 5.4 Algorithm of Updating Service QoS Information 98

Figure 5.5 Algorithm of Discovering a Web Service 99

Figure 5.6 Service Discovery Request SOAP Message 100

Figure 5.7 Service Discovery Response SOAP Message 101

Figure 5.8 Discovery Agent Workflow for Matching, Ranking and
Selecting service 102

Figure 5.9 Overall Algorithm for service discovery 103

Figure 5.10 Service QoS Matching Algorithm 104

Figure 5.11 Service QoS Ranking algorithm 105

Figure 5.12 Service QoS and Monitor Matching Algorithm 107

Figure 5.13 Monitor Rating Algorithm 108

Figure 5.14 Monitor Score Calculation Algorithm 109

Figure 5.15 Adjusted Monitor Score Calculation Algorithm 110

Figure 5.16 Overall Score Calculation Algorithm 110

Figure 5.17 Service Selection Algorithm 111

Figure 6.1 Service Discovery Model 113

Figure 6.2 Graph of obtained web services with their QoS score
for customer C2 118

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil viii

Figure 6.3 Graph of obtained web services with their QoS score
for customer C3 120

Figure 6.4 Graph of obtained web services with their QoS score
for customer C4 122

Figure 6.5 Graph of obtained web services with their QoS score
for customer C5 123

Figure 6.6 Graph of obtained web services with Overall score with
increasing Monitor weight 127

Figure 6.7 Graph of obtained web services with Overall score with
increasing QoS weight 128

Figure 6.8 Graph showing effect of aging factor on Monitor score 129

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil ix

List of Tables

Table 2.1 Relation between Good Response Time and Satisfied Customer 52

Table 2.2 Relation between High Reliability and Satisfied Customer 52

Table 2.3 Relation between High Availability and Satisfied Customer 52

Table 2.4 Relation between Good Price and Satisfied Customer 53

Table 2.5 Customers in different service domain Satisfied with different
QoS parameter values 53

Table 2.6 Service Engineers receiving complaints about service 54

Table 3.1 UDDI Inquiry API Methods 64

Table 3.2 UDDI Publisher API Methods 65

Table 3.3 UDDI Vs ebXML Registry 68

Table 4.1 UDDI elements and API functions for them 72

Table 4.2 Ratings record for services along with Timestamp 80

Table 4.3 Publisher table 87

Table 5.1 Service requirements – Functional, QoS and Monitoring
requirement 100

Table 6.1 Customer C1 Requirement 116

Table 6.2 Services returned for Customer C1 116

Table 6.3 Customer C2 Requirement 117

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil x

Table 6.4 Services returned for Customer C2 118

Table 6.5 Customer C3 Requirement 119

Table 6.6 Services returned for Customer C3 120

Table 6.7 Customer C4 Requirement 121

Table 6.8 Services returned for Customer C4 121

Table 6.9 Customer C5 Requirement 122

Table 6.10 Services returned for Customer C5 123

Table 6.11 Published QoS with QoS Score for each QoS matched service 125

Table 6.12 Actual QoS and Monitor Ratings for QoS matched services
over one month 126

Table 6.13 Services returned with Overall score having different rankings
for different weights given to QoS and Monitor Score 127

Table 7.1 Summarized comparison of results obtained 134

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 1

Chapter 1

Introduction

Web Service Technology (WST)- A Brief Concept

Companies have reorganized businesses using technology advents such as web-enabled

business. These businesses have gotten highly promoted due to the ease with which

application-to-application communication happens over the internet, the underlying

framework being strong support of web service technology.

The fundamental concept is simple – web services allow us to make Remote Procedure

Calls (RPCs) against an object over the Internet or a network. Web Services Technology

is not the first of its kind to allow us to do this, but it differs from other technologies in its

use of platform-neutral standards. For example HTTP and XML allow us to hide the

implementation details entirely from the client. The client needs to know the URL of the

service, and the data types used for the method calls, but don’t need to know whether the

service was built in Java and is running on Linux, or is an ASP.NET web service running

on Windows. [97]

A Web service comprises of loosely coupled software components published, located and

invoked across the web. A Web service is a means of performing distributed computing.

A web service provides either some business functionality or information to other

applications through an internet connection. For example,

 A recruiting company is interested in publishing its latest job-openings as a Web

Service. Job placement (contracting) companies could be potential subscribers to this

Web Service.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 2

 An airline reservation system is interested in publishing its latest airfares as a Web

Service. Travel agencies could be potential subscribers of this Web Service.

A Web service is a software system identified by a URI, whose public interfaces and

bindings are defined and described using XML. Its definition can be found out by other

software systems. These systems may then interact with the Web service in a way

specified by its definition, using XML based messages conveyed by Internet

protocols.[98]

1.1 Service Oriented Architecture (SOA) and Web Service Discovery

Since businesses have reorganized using the technology, there came a need to have

architecture for building business application known as Service Oriented Architecture.

A Service Oriented Architecture (SOA) is architecture for building business applications

as a set of loosely coupled black-box components organized to deliver a well-defined

level of service by linking together business processes. One of the most important aspects

of SOA is that it is a business approach and methodology as much as it is a technological

approach and methodology. With SOA, the important business processes such as

generating an invoice, calculating an interest rate, converting currency become business

services. A business service is a sealed container of software code that describes a

specific business process that can be connected to other business processes. One single

business service for a given functionality can be used everywhere in the organization and

whenever a business policy is changed, it is required to make change at only one place as

the same service is used everywhere.

SOA can make it easier and faster to build and deploy IT systems that directly serve the

goals of a business. SOA adds predictability and regularity between business rules, policy

and software services. Therefore, one of the greatest selling points for SOA is that it can

help management know what tasks a particular service is executing and what rules and

policies are codified within these services. Being able to track this not only makes

software within the company better but also makes corporate governance more

predictable and less cumber some.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 3

A service-oriented architecture is essentially a collection of services. These services

communicate with each other. The communication can involve either simple data passing

or it could involve two or more services coordinating some activity. Some means of

connecting services to each other is needed.

Service-Oriented Architecture is a business-driven IT architecture approach that supports

integrating your business as linked, repeatable business tasks, or services. SOA helps

today’s business innovate by ensuring that IT systems can adapt quickly, easily and

economically to support rapidly changing business needs. SOA helps customers increase

the flexibility of their business processes, strengthen their underlying IT infrastructure

and reuse their existing IT investments by creating connections among disparate

applications and information sources.

Service-oriented architecture is not a new concept. The first service-oriented architecture

for many people in the past was with the use of DCOM or Object Request Brokers

(ORBs) based on the CORBA specification. In these traditional distributed architectures,

web services were used to facilitate point-to-point solutions. Hence, web service

discovery was not a common concern.

The increasing number of web services available on the web raises a new and challenging

problem, the location and discovery of these services. The lack of a proper discovery

mechanism is hindering the potential of these technologies.

The growing numbers of web services descriptions are difficult to manage in open

environments such as in the Web. The main problem arises due to the fact that hundreds

of different web services exists providing thousands of different functionalities. They are

built independent of each other at different locations by different people. Discovering a

web service that matches the user's requirement is time consuming and tedious.

As the demand for web service consumption is rising, a series of questions arise

concerning the methods and procedures to discover the most suitable web service to use.

Web service discovery is the process of finding the most appropriate web services needed

by a web service requestor.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 4

There is a need for dynamic discovery mechanism that will be always up-to-date

providing efficient and available web service choices.

Web service discovery mechanisms have a role even more important than web searching,

because they facilitate the need for collaboration among various business processes and

consumers over widely accepted web standards.

In the beginning of service-oriented computing, finding relevant web services was mainly

done by searching through services registries (i.e. UDDI Business Registries or UBRs).

Automated web service search engines were not necessary when web services were

counted by the hundreds. However, the number of service registries is gradually

increasing and web service access points (i.e. WSDLs) are no longer a scarce resource as

there are thousands of web services scattered throughout the Web.

Business organizations need to advertise their services in a global environment to

potential trading partners and they should also have a way to discover and interact with

each other. Service consuming client must be able to find proper web services with less

effort than currently required.

As web services have begun to expand across the internet, users need to be able to

efficiently access and share web services. Production and interoperability of larger

number of web services have lead to the emergence of new standards on how services

can be published, discovered or used. Hence, mechanisms are required for efficient

selection of appropriate web service instance in terms of quality and performance factors

during web service consumption.

1.2 Approaches towards Web Service Discovery

Web service discovery is "the act of locating a machine-processable description of a Web

service that may have been previously unknown and that meets certain functional

criteria." [97] The goal is to find an appropriate Web service.

Under manual discovery, a requester human uses a discovery service (typically at design

time) to locate and select a service description that meets the desired functional and other

criteria.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 5

Under autonomous discovery, the requester agent performs this task, either at design time

or run time. The steps in discovering a web service are same in both cases. Only few

issues such as interface requirement’s need for standardization and trust have to be

considered in this case, as the discovery is automated.

One situation in which autonomous discovery is often needed is when the requester agent

has been interacting with a particular provider agent, but for some reason needs to refresh

its choice of provider agent, either because the previous provider agent is no longer

available, or other reasons.

There are three main approaches [97] for discovering a web service: as a registry

approach, as an index approach, or as a peer-to-peer approach. Their differences and

purposes are discussed below.

1.2.1 The Registry Approach

A registry is an authoritative, centrally controlled repository of services information.

Service provider must publish the service information into the registry before that

information is available to the service consumers. The registry owner decides who has

authority to publish and update the service information into the registry. A company is

not able to publish and update the information of services provided by another company.

The registry owner decides what information can be published in the registry. Others

cannot independently add to that information. UDDI is an example of the registry

approach, but it can also be used as an index.

1.2.2 The Index Approach

An index is a collection or guide to information published by the service provider and

that exists elsewhere. It is not authoritative and information that it references is not

centrally controlled. In the case of an index, the service provider describes the service and

functional descriptions on the Web, and the index owners collect them without service

providers knowledge. Anyone can create their own index. When descriptions are

exposed, they can be collected using web spiders and arranged into an index. Multiple

organizations may have such indexes. The information contained in an index could be out

of date. The information can be verified before use. Different indexes provide different

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 6

kinds of information — some richer, some sparser. Google is an example of the index

approach.

The key difference between registry and index approach is one of control: Who controls

what and how service descriptions get discovered? In the registry model, it is the owner

of the registry who controls this. In the index model, since anyone can create an index,

market forces determine which indexes become popular.

1.2.3 Peer-to-Peer (P2P) Discovery

Peer-to-Peer (P2P) computing provides an alternative that does not rely on centralized

registries and allows Web services to discover each other dynamically. At discovery time,

a service requester queries its neighbors in search of a suitable Web service. If any one of

them matches the request, then it replies. Otherwise each queries its own neighboring

peers and the query propagates through the network until a particular hop count or other

termination criterion is reached.

Peer-to-peer architectures do not need a centralized registry, since any node will respond

to the queries it receives. P2P architectures do not have a single point of failure, such as a

centralized registry. Furthermore, each node may contain its own indexing of the existing

Web services. Finally, nodes contact each other directly, so the information they receive

is known to be up-to-date. On the contrary, in the registry or index approach there may be

significant latency between the time a Web service is updated and the updated description

is reflected in the registry or index. The reliability provided by the high connectivity of

P2P systems comes with performance costs and lack of guarantees of predicting the path

of propagation. Any node in the P2P network has to provide the resources needed to

guarantee query propagations and response routing, which in turn means that most of the

time the node acts as a relayer of information that may be of no interest to the node itself.

This results in inefficiencies and large overhead especially as the nodes become more

numerous and connectivity increases. Furthermore, there may be no guarantee that a

request will spread across the entire network, therefore there is no guarantee to find the

providers of a service.

Further to the above approaches, justification lies in portraying the issues related to these

approaches.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 7

1.3 Issues in Web Service Discovery

In today’s global world, every person is looking for cost and time effective services,

which can give him/her satisfaction. Thanks to technological development because of

which the world has come closer. There are number of software/IT companies which are

providing web based services to global customers. Right from travel booking to buying

and selling anything, customers do visit web portals very often. Based on the cost-benefit

analysis customer makes selection and try to avail the services. On the other hand service

provider companies (web portals) in association with IT companies, who develops the

services, make efforts to meet the customers’ needs and to satisfy them. However due to

technical and non-technical problems, service providers as well as IT companies do find

that customers have genuine complaints or grievances which they can or can not solve

immediately. Because of this, loosing customers has become a great loss to the service

providers. In order to solve this problem, this research has aimed to develop a model of

efficient web service discovery mechanism. This will lead to help service engineers of

service provider companies and ultimately general customers in making an effective

search while logging onto the site for expected service based on certain parameters which

will automatically make discovery by giving ranking/priority for cost-effective solution.

Web service discovery based on the non-functional aspects (e.g Quality of Service) has

become a very important step to help service requestor to locate a desired service.

Generally there are two types of service requestors – the human user who will use the

services in complex application development or program which automatically sends

request and select services for further processing. Many researchers are proposing various

models, QoS description languages and frameworks for discovering and selecting an

appropriate web service. However, from the literature study some issues which arise and

need to be addressed are as -

 The end user’s view has not been focused in their designs and the user support is

either missing or lacking in these systems. Without the proper user support, the

accuracy of the QoS requests cannot be guaranteed, and without accurate QoS

requests, even the best selection model cannot satisfy users’ requirements. Hence

there is a need of a user oriented service selection system, which is important

mainly for the human-involved service selection.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 8

 An assumption that users can formulate requests which precisely reflect their QoS

requirements may not be true as a user may not have the knowledge about what

the realistic QoS values are. Also if the user requests for a service with randomly

picked number for reliability as ‘greater than 95%’, the result could be zero

matching services. Decreasing this number by a few percent, we may find some

matching services. Because of this kind of difficulty of choosing a right number,

it is not reliable for a selection system to assume the accuracy of the QoS requests

from users. It is very advantageous if the selection system can assist users to

choose the right QoS values.

 In many current systems, the user interface design is not given much importance.

Different selection models are proposed and then it is assumed that users would

have the ability to submit a proper query which will yield appropriate results

using the model. The user may need to have the knowledge on ontology, utility

functions etc. In reality, many of the users don’t have this kind of knowledge. So

we should have a simple and a carefully designed interface to help users

formulate the service request.

 With current QoS query languages, requestors may not be able to define their

requirements in a precise and comprehensive way. For instance, many times the

QoS requirement is represented as either a number (e.g. reliability: 95%), or a

fuzzy description (e.g. reliability: very good). However, it is also possible that

users may have a mixed request – numeric values on some QoS attributes and

fuzzy expressions on others. Therefore, the selection model should have the

ability to support this kind of request.

 Another issue we want to address is the lack of support for defining preference

order on QoS attributes, e. g. which quality attributes should be given higher

priority if there are more than one services satisfying all the criteria. Hence, it is

necessary to define a separate preference order for QoS attributes, which is

lacking in many current works.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 9

1.4 Research Hypothesis

A number of web portals are offering web services for customers all over the world.

Customers make selection of these web services based on certain parameters of their

choice. However, there are certain loopholes in the mechanism of efficient web services

discovery.

The proposed research work aims to develop an efficient model for web services

discovery mechanism, which will wipe off the weaknesses in the existing web service

architecture to satisfy the customers. The proposed model will assist in retrieving web

services with desired functionality and provide a flexible tool which will guide the user to

choose the right QoS parameter values, formulate precise requirements for these QoS

parameters and define QoS parameters preference order or priorities for minimizing the

search. The tool will rank the services based on the search criteria specified by the user

and thus the most appropriate web service for the user will be found out using the

proposed mechanism.

This research work intends to accomplish the following:

Given a list of web services with the similar functionality and different QoS values, this

study aims at

1) Proposing a new discovery technique to store and manage QoS information of web

services in the registry for ranking and finding the most appropriate web service from

the list of published web services in the registry.

2) Designing a Web Service Discovery tool which will assist in –

a. Publishing web services along with QoS information in UDDI registry.

b. Requesting web services by specifying functional, QoS and Monitoring

requirement along with the priority of QoS.

c. Extracting monitor score from the service monitor which monitors the

services at regular intervals for verifying advertised QoS by the service

providers.

d. Assigning weights to QoS and monitor scores as per the users preference

and find the overall score of each service which are functionally matched.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 10

e. Ranking the services based on the calculated overall scores and return

specified number of top ranked services to the user.

3) Comparing the proposed technique with existing techniques mainly on the relevance

of quality of the results which is evaluated based on the degree of similarity between

results obtained from the new technique and that of the existing one.

4) Based on the results obtained from above, implementing a web discovery tool with

user-centric interface for discovering the most appropriate web service.

1.5 Research Objective

As a large number of web services are proliferating across the internet, end users or client

applications need to be able to efficiently access and share web services. Production and

interoperability of larger number of web services have lead to the emergence of new

standards on how services can be published, discovered or used. Hence, mechanisms are

required for efficient selection of appropriate web service instance in terms of quality and

performance factors at the time of the web service consumption.

The discovery mechanism should offer a number of capabilities, recognizable at both

development and execution time. During development, one may search a web service

repository for information about available web services. At execution, client applications

may use this repository to discover all instances of a web service that match a given

interface in automated way.

The main objective of this research study is to propose a simple mechanism at the level of

standards such as WSDL and UDDI which will attempt to select the most efficient web

service among possible different alternatives with real-time, optimized and countable

factors-parameters. The mechanism aims at minimizing the search of web services by

ranking the matched web services based on functional requirements by keyword search

and nonfunctional requirement by QoS parameters.

The work aims to examine and analyze the different mechanisms and models for the web

service discovery and thereafter attempts to propose the best discovery mechanism for the

desired web service.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 11

1.6 Research Methodology

1) The research study approaches the problem defined in section 1.4 in different phases

as follows:

Phase I

a. Study the existing web service discovery mechanisms to determine their

suitability for discovering the most appropriate web service from the available set

of services for the desired functionality and find out the suitable ones. A pilot

survey study was also conducted whose result signifies necessity of an efficient

mechanism which should be able to discover the most appropriate web service as

per the consumer’s requirement of functionality as well as quality of service

(QoS) and the priority of QoS

b. Identify the QoS parameters for ranking web services for efficient discovery

under the given environmental constraints.

c. Design an algorithm for matching web services with desired functionality based

on keyword search and ranking web services based on the QoS parameter values

with its preference values specified by the user.

Phase II

a. Design an algorithm for calculating monitor ratings and score for each

functionally and QoS matched service.

b. Design an algorithm for ranking the web services based on the overall scores ie.

Both actual QoS and monitored QoS score.

Phase III

Implement the existing and proposed discovery algorithms designed in Phase I and

Phase II and investigate the performance of each based on quality of result obtained.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 12

2) The research work provides

a. Comparative study of existing web service discovery mechanisms to determine

their suitability for discovering the most appropriate web service from the

available set of services for the desired functionality and find out the suitable ones

b. Algorithms for matching and ranking of web services for the selection.

c. Result analysis of existing discovery algorithm and proposed discovery algorithm

based on QoS parameters.

1.7 Organization of Thesis

In Chapter 2, the review of literature and various mechanisms for web service discovery

are presented. It starts with describing the concept of web service discovery and further

discusses various web service discovery mechanisms. It presents how the search engines

like Google, Yahoo are not useful enough for discovering the services available over the

internet, as those searches are generic and it could only locate publicly accessible WSDL

documents. Various mechanisms to discover web services have been reviewed and

presented. It also presents the impact of centralized mechanisms UDDI and ebXML, on

the way of conducting the e-business by making it possible for business organizations to

publish information on the internet about their products and web services. Decentralized

approaches based on Peer-to-peer mechanisms and federated registry are also discussed.

Chapter 3 discusses about services registries available and the data model of each. Two

main services registries are discussed namely, Universal Description, Discovery and

Integration (UDDI) registry and Electronic Business XML (ebXML) registry. The

chapter discusses the architecture and comparative study of both registries.

Chapter 4 discusses the approach of UDDI based mechanisms for web service publishing

and discovery in the registry. It presents Reputation-enhanced web service discovery with

QoS and Web service QoS-Certifier based web service discovery. The chapter presents

introduction of new role in the architecture of UDDI registry – Reputation Manager and

Web Service QoS Certifier.

Chapter 5 discusses the new mechanism proposed, i.e. Smart Web Service Discovery

enhanced with QoS Monitor, to discover a web service. A detailed discussion on how this

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 13

mechanism can be implemented in current UDDI registry architecture is presented. The

chapter provides various algorithms for publishing web services in this registry,

matching, rating and ranking these web services according to service consumer’s

functional and QoS request.

Chapter 6 provides results and analysis of various experiments conducted. This chapter

provides a comparison of results obtained from experiments with different mechanisms.

The chapter provides a framework under which different experiments were conducted

and lists the parameters chosen for these experiments. The analysis of the results obtained

is also provided.

Chapter 7 presents the summary of research work carried out. Certain claims about

contribution to the knowledge made by the research are put forward. This chapter draws

conclusions and directions for the further research.

Appendix – I lists relevant definitions for understanding of web service architecture and

discovery of web services.

Appendix – II presents an ER Diagram for jUDDI database which stores the information

about of web services on the server.

Appendix – III provides the formats of questionnaire required for the pilot study to start

with the research.

Appendix – IV contains a copy of all the published papers during this research work.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 14

Chapter 2

Review of Literature

The Web Service Discovery issue in distributed applications has been handled since 2001. The

present study demanded a comprehensive understanding of different approaches and

mechanism used for discovering web services dynamically. The result of literature survey is

presented here.

2.1 Web Service Discovery

Web Service Discovery is “the act of locating a machine-processable description of a web

service-related resource that may have been previously unknown and that meets certain

functional criteria. It involves matching a set of functional and other criteria with a set of

resource descriptions”. The goal is to find an appropriate Web service-related resource.[97]

Traditionally, the Web service discovery processes involved manual intervention. A set of Web

service descriptions are discovered according to user requirements. These service descriptions

are manually scanned and those services that satisfy user requirements are selected and

composed. In the context of distributed system integration, such manual intervention is

unrealistic, cumbersome and time consuming.

The approaches to Web services discovery can be classified as centralized and decentralized.

UDDI falls under fully centralized approach that supports replication where central registries

are used to store Web service descriptions. Having realized that replicating the UDDI data is

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 15

not a scalable approach several decentralized approaches have been proposed. Three major

operators, namely IBM, Microsoft, and ARIBA provide public UDDI service.

Web service discovery mechanisms include a series of registries, indexes, catalogues, agent

based and Peer to Peer-P2P solutions. The most dominating among them is the Universal

Description Discovery and Integration-UDDI standard that is currently in version 3.

2.2 Web Service Discovery Mechanisms

Web service discovery mechanisms allow accessing to service repositories and/or “crawling

the Web” in the search for services. Since large amount of information is associated with web

services, methods to narrow the discovery can be quite complicated and use such semantic

information. Search engines such as Google and Yahoo have become a new source for finding

Web services. However, search engines do not easily separate and expose to users the basic

service properties (i.e. binding information, operations, ports, service endpoints, among

others), as they are instrumented or crawling and indexing generic content. In addition, search

engines generally crawl Web pages from accessible Web sites while publicly accessible WSDL

documents reside on Web servers; hence they are not designed to be fetched and analyzed by

normal crawlers.

Web Service Discovery mechanisms are broadly classified into three types :

 Peer-to-Peer mechanisms based on decentralized approach

 UDDI and ebXML registry based mechanisms based on centralized approach

 Alternative mechanisms

2.2.1 Peer-to-Peer mechanisms based on decentralized approach

Peer-to-Peer (P2P) mechanisms are based on decentralized approach in which web services

are not discovered on a single registry but it allows web services to be discovered dynamically

on the network. from peer-to-peer. All peers in the network are functionally equal and co-

operate with each other for responding to the user request. At discovery time, a service

requester queries its neighbors in search of a suitable web service. If any one of them matches

the request, then it replies. Otherwise each queries its own neighboring peers and the query

propagates through the network until a particular hop count or other termination criterion is

reached. As peer-to-peer architectures do not need a centralized registry and any node on the

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 16

network is able respond to the queries it receives, this architectures do not have a single point

of failure, such as a centralized registry. Additionally, each peer may contain its own indexing

of the existing web services. But at the same time, the reliability provided by the high

connectivity of peer-to-peer systems comes with performance costs and no assurance of

predicting the path of propagation. Every node in peer-to-peer architecture must have the

resources needed to ensure query propagation and response routing. This results that each node

acts as a relay of information that may be of no use for the node itself. If the number of nodes

on the network are increased , connectivity increases and this results in reducing the efficiency

of the system and increasing overhead. Still there may be no guarantee that a request will be

propagated across the entire network, and hence there is no guarantee to find the desired web

service.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan, “Chord:

A Scalable Peer-to-peer Lookup Service for Internet Applications” 2001 [41]. Chord is a

distributed lookup protocol which is designed to efficiently locate the node that stores a

particular data item. Chord provides support for just one operation: given a key, it maps the

key onto a node. Data location can be easily implemented on top of Chord by associating a key

with each data item, and storing the key/data item pair at the node to which the key maps.

Chord adapts efficiently as nodes join and leave the system, and can answer queries even if the

system is continuously changing. Chord is scalable, with communication cost and the state

maintained by each node scaling logarithmically with the number of Chord nodes.

Qiang He, Jun Yan, Yun Yang, Ryszard Kowalczyk, Hai Jin, “Chord4S: A P2P-based

Decentralised Service Discovery Approach” 2008 [72] proposes a peer-to-peer based

decentralised service discovery approach named Chord4S. Chord4S utilises the data

distribution and lookup capabilities of the popular Chord to distribute and discover services in

a decentralized manner. Data availability is further improved by distributing service

descriptions of functionally-equivalent services to different successor nodes that are organised

into a virtual segment in the Chord circle. In addition, the Chord routing protocol is extended

to support efficient discovery of multiple services with single request. This enables late

negotiation of service level agreements between a service consumer and multiple service

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 17

providers. They claim that Chord4S achieves higher data availability and provides efficient

query with reasonable overhead.

Fatih Emekci, Ozgur D. Sahin, Divyakant Agrawal, Amr El Abbadi, “A Peer-to-Peer

Framework for Web Service Discovery with Ranking” 2004 [19].They have proposed a

structured peer-to-peer framework for web service discovery in which Web services are

located based on both service functionality and process behavior. It represents the process

behavior of the web services with finite automata and use these automata for publishing and

querying the web services within the system. The model is scalable and robust due to the

underlying peer-to-peer architecture. Web services can join and leave the system dynamically.

We also propose an efficient and scalable reputation model based on sketch theory. Thus the

returned services are ranked based on the trust and quality ratings of the services using the

proposed reputation model.

Ioan Toma, Brahmananda Sapkota, James Scicluna, Juan Miguel Gomez, Dumitru Roman,

and Dieter Fensel, “A P2P Discovery mechanism for Web Service Execution Environment”

2005 [40]. They have presented a scalable approach for automatic discovery of services over

distributed execution environments. The solution is based on P2P technologies that proved to

be scalable, efficient and robust solutions for distributed systems. As shown in Fig. 2.1, equal

WSMX peers which participate in the service discovery process have to match the local

registered services against a broadcasted query. A major aspect that is to be considered in this

context is the topology of network. For message routing the topology of the network has

significant impact on the overall performance of the service discovery process. The approach

that they have adopted to address these aspects is the HyperCuP approach. HyperCuP

decreases the big overhead of network communication by providing a topology based on a

structure called hypercube: a generalization of a 3-cube to n dimensions. In the resultant graph

the connection between neighbored nodes can be associated with a specific dimension of the

hypercube. This allows us to define a message broadcast scheme with certain guarantees:

nodes receive a message exactly once and the number of messages sent is linearly dependent

on the number of nodes in the network. A set of structuring ontology concepts is used to build

a hypercube consisting of distinct concept clusters. A query which consists of a logical

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 18

combination of service and domain ontology concepts is routed to all relevant concept clusters.

Within a concept cluster the message is broadcasted to all contained peers. If the query

formulation matches the conceptual description of a service the representing peer is reacting by

sending an according response to the requester.

Farnoush Banaei-Kashani, Ching-Chien Chen, and Cyrus Shahabi, “WSPDS: Web Services

Peer-to-peer Discovery Service” 2004 [22]. They have introduced WSPDS (Web Services

Peer-to-peer Discovery Service), a fully decentralized and interoperable discovery service with

semantic-level matching capability. They claim that a peer-to-peer architecture of the

semantic-enabled WSPDS not only satisfies the design requirements for efficient and accurate

discovery in distributed environments, but also is compatible with the nature of the web

Services environment as a self-organized federations of peer service-providers without any

particular sponsor. WSPDS is a distributed discovery service implemented as a cooperative

service. A network of WSPDS servants collaborate to resolve discovery queries raised by their

Figure 2.1 Peer-to-Peer approach for Distributed Discovery in WSMX

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 19

peers. Fig. 2.2 depicts an unstructured peer-to-peer network of WSPDS servants. Each servant

is composed of two engines, communication engine and local query engine, playing two roles:

(1) Communication and Collaboration : the communication engine provides the interface to

user and also represents the servant in the peer-to-peer network of servants. This engine is

responsible for receiving service queries from users, resolving the queries by local query

(through the local query engine) and global query (via its peer servants), and finally merging

the received responses to reply to the user query; and receiving queries from its neighbors in

the peer-to-peer network, resolving the queries by local query, and sending the response (if not

empty) to the network as well as forwarding the query to other neighbors in the network. (2)

Local query: the local query engine receives the queries from the communication engine,

queries the local site (where the servant is running) for matching services, and sends responses

to the communication engine.

Sivashanmugam, K., Verma, K., Mulye, R., Zhong, Z., and Sheth, A., “Speed-R: Semantic

P2Penvironment for diverse Web Service registries” 2004 [95]. They have proposed Speed-R

system for publishing and discovering web services that uses ontologies and a P2P

infrastructure. Some nodes in the P2P subsystem are assigned registries, which in turn

partitioned according to their specific domain. An ontology is assigned to each domain. Its

architecture is based on role assignment to peers. e.g. some nodes have undertaken the role of

Figure 2.2 WSPDS Architecture

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 20

controlling updates and propagating them, thus their system may suffer from single point

failure. Fig. 2.3 presents architecture of Speed-R system. Each Peer runs ‘Operator Peer’ to

control semantic access to its registry (direct registry access without support for semantic

discovery is allowed). Peers support Domain Ontology and Operator Services (if ontology is

not used, no semantic discovery can be provided, search defaults to keyword search). Each

Registry can be accessed using API, which is dependent on its implementation and standard

that it conforms to. Registries Ontology (i.e., the upper ontology, only one for the whole P2P

cloud) is present in the P2P network. Any given time peers are aware of the updated Registries

Ontology.

Gang Zhou, Jianjun Yu, Rui Chen, Hui Zhang, "Scalable Web Service Discovery on P2P

Overlay Network" 2007 [25]. They have developed the ServiceIndex system for service

discovery which merges advantages of P2P computing and Semantic Web Services into web

services world. The ServiceIndex system tries to solve the problem of semantic search in

distributed environment and support complex search, tree lookups, locality sensitivity, and

ontology based service discovery. It is possible to construct a dynamic and pure P2P overlay

network for service discovery and achieve considerable system performance.

…….

Peer1

Peer2

Peer3

PeerK

PeerN

Reg1 Reg2 Reg3

…..

RegN RegK

GWP

Operator Services, Domain Ontology

Operator Services, Domain Ontologies
Operator Services, Domain Ontology

API API API API API

Registries
Ontology

Figure 2.3 Speed-R Architecture

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 21

Summarizing the above papers, it can be concluded that peer-to-peer discovery mechanism

provide an efficient and scalable solution for the discovery of services in distributed systems as

it is fully decentralized and do not have a single point of failure, such as a centralized registry.

Additionally, each peer may contain its own indexing of the existing web services. In case of

semantic search, ontology can also be specified.

2.2.2 UDDI and ebXML registry based mechanisms based on centralized approach

In centralized approach, UDDI (Universal Description, Discovery and Integration) and ebXML

(electronic business XML) are the two types of registries which are storing and managing web

service information centrally. UDDI is a vendor-sponsored initiative led by IBM, Microsoft,

and Ariba, whereas, ebXML is a UN/CEFACT (United Nations center for Trade Facilitation

and Electronic Business) / OASIS sponsored initiative for creating a single global electronic

market. UDDI and ebXML, make it possible for business organizations to publish information

on the Internet about their products and web services, where the information can be readily and

globally accessed by clients who want to do business. UDDI Registry is a web-based registry

that exposes information about a business providing web service, web service and its technical

interfaces. A service provider makes its services available to public users by publishing

information about the service in a UDDI registry.

The information about Web services in a UDDI registry includes a description of the business

and organizations that provide the services, a description of a service’s business function, and a

description of the technical interfaces to access and manage those services [92]. A UDDI

registry which is an XML- based registry consists of instances of four core data structures

including the businessEntity, the businessService, the bindingTemplate and the tModel. This

information comprises everything a user needs to know to use a particular Web service. The

businessService is a description of a service’s business function, businessEntity describes the

information about the organization that published the service, bindingTemplate describes the

service’s technical details, including a reference to the service’s programmatic interface or

API, and tModel defines various other attributes or metadata such as taxonomy and digital

signatures [92]. UDDI (Universal Description, Discovery and Integration) plays a key role in

the web service architecture. It provides a structured and standard description of the web

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 22

service functionalities as well as searching facilities to help in finding the providers that better

fit client requirements. Generally speaking, a UDDI registry contains the information about

businesses and services these business organization offers. These services may not be always

web services or computer related services at all. In fact, UDDI was designed in the intention of

holding arbitrary information about a business. It serves not only as an access point for service

related information, but also about the businesses themselves. Structure of UDDI is similar to

telephone directory, in the way that phone numbers are stored and catalogued.

With ebXML, companies are able to define how to conduct business using a specific

vocabulary. Core components are used to build predefined documents. Messages are sent using

standardized protocols and formats. All of this information is stored in ebXML registries.

Business Processes and Business Document has to be created prior to their use. Specification

of these both describes the workflow of business processes and the information exchanged

between the partners respectively. These documents can be composed of reusable and

extendable Core Components. An ebXML Registry provides means for finding organizations,

business processes, core components and other objects. Therefore it does not store the actual

objects but metadata and associations between them. Business partners register their services in

an ebXML registry along with their Collaboration Protocol Profiles (CPPs). During the search

the registry is queried for a business partner that offers the required service. Based on the CPPs

of both partners a Collaboration Protocol Agreement (CPA) is formed which specifies what

kind of business is to be performed and how. Usually CPA is negotiated after being proposed

by one party. Based on the agreement it is now possible to configure an ebXML enabled

application and execute the business process.

Ali ShaikhAli, Omer F. Rana, Rashid Al-Ali, David W. Walker, “UDDIe: An Extended

Registry for Web Services” 2004 [79]. They implement UDDIe an extension to UDDI, which

supports the notion of “blue pages”, to record user defined properties associated with a service

and to enable discovery of services based on these. UDDIe enables a registry to be more

dynamic, by allowing services to hold a lease – a time period describing how long a service

description should remain in the registry. UDDIe can co-exist with existing UDDI – and has

been implemented as an opensource software.

Extensions in UDDIe are based on four types of information: business information; service

information, binding information; and information about specifications for services. A service

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 23

may be discovered by sending requests based on service information. The extensions provided

in UDDIe consist of the following:

Service Leasing: Service providers may want to make their service available for limited time

periods (for security reasons, for instance) – or the service may change often. UDDIe supports

“Finite” and “Infinite” leases – where a finite lease can be immediate, or based on a future

lease. When using finite leases, service providers must define the exact period for which the

service should be made available for discovery in the registry. The lease period is restricted by

the maximum allowable lease period defined by the UDDIe administrator. Depending on the

type of application domain for which the UDDIe registry is to be used, the value of the

maximum allowable lease may change. This parameter is left to the UDDIe administrator to

set. For example, if a service provider is interested in publishing a service in UDDIe for two

hours, but the maximum granted lease is one hour, publication of the service will be rejected

by the registry. A “future lease” allows a service provider to make the lease period start at a

future time – the service will only be discoverable once this lease has been activated.

Alternatively, service providers may want to publish their services for an infinite period of

time. Such leases are allowed in UDDIe, but only if the ratio of finite/infinite lease services is

within a threshold (a parameter set by the UDDIe administrator).

Replication: The UDDI Business Registry (UBR) is conceptually a single system built from a

group of nodes that have their data synchronized through replication.

A series of operator nodes each host a copy of the content, thereby replicating content among

one another. Content may be added to the UBR at a single node, and that operator node

becomes the content master. Any subsequent updates or deletes of the data must occur at the

operator node where the data was inserted. UDDIe can be used as a private operator node that

is not part of the UBR. Private nodes do not have data synchronized with the UBR, so the

information contained within is distinct. The availability of private nodes is significant if an

organization considers sharing

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 24

Figure 2.4 Property attributes

their service content a security problem. This is useful in instances where a company does not

want to expose certain service offerings and business processes to others – for instance,

suppliers set up to handle large contracts may not be able to handle individual customers.

In UDDIe a business Service, structure represents a logical service – and is the logical child of

a business Entity – the provider of the service. Service properties are contained in the property

Bag entities – such as the Quality of Service (QoS) that a service can provide, or the methods

available within a service that can be called by other services. Figure 2.4 illustrates the

attributes associated with a property – and consists of a propertyName, propertyType and

propertyvalue. Some of these are user defined attributes – such as propertyType – and can be

number, string, method etc. Range based checks, for instance, are only allowed if the

propertyType is a number. The API for interacting with the registry system extends three

classes within existing UDDI implementations. The extensions provided in the API include: _

saveService: This set of APIs is mainly used for publishing service details. This has been

extended from the original UDDI system to introduce dynamic metadata for services. Such

metadata could be used to represent attributes such as cost of access, performance

characteristics, or usage index associated with a service, along with information related to how

a service is to be accessed, and what parameters the service will return. The saveService call

utilises the propertyBag mechanism provided in UDDIe. _ findService: This set of APIs is

Figure 2.5 The “Lease” element

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 25

mainly used for inquiry purposes. In particular we extend this set of API from the original

UDDI to include queries based on various information associated with services, such as

Service Property and Service leasing.

They claim that extensions to the UDDI registry and query mechanisms would add a great

search flexibility, making UDDI a more powerful search engine. The ability for UDDIe to co-

exist with standard UDDI version is also an important aspect of this work – as they do not

break compatibility with existing UDDI deployments.

Phil Bonderud, Sam Chung, Barbara Endicott-Popovsky, “Toward Trustworthy Service

Consumers and Producers” 2008 [11]. They proposed a S-QoS4WS approach that utilizes

‘PublisherAssertion’ tags within the UDDI to satisfy Security and QoS issues. This approach

makes use of existing mechanisms within UDDI version 3 to resolve current issues involving

trust and non-repudiation. S-QoS4WS takes into consideration security and QoS issues with

respect to establishing trust and nonrepudiation. The approach adds an optional third party

entity to the web services paradigm whose sole purpose is to certify information about each

respective business partner. The third party service certifier certifies that services offered by a

service producer meet the specifications used to describe the service in the UDDI. The third

party consumer validation entity authenticates that its service consumer partner is a trustworthy

and legitimate business. Each third party entity is expected to publish its own web service

whose sole purpose is to provide an automated way of obtaining information.

In Figure 2.6, solid lines represent interactions that require human intervention. It is expected

that in order for a service to be adequately certified or a consumer to be validated, that some

degree of human involvement will be required. Dashed lines represent transactions that are

fully automated. S-QoS requires that a service producer select a third party entity (A) which

will certify that any statistics and requirements it wishes to advertise in the UDDI, about a

service, are accurate. This communication is expected to require human involvement, which is

indicated by the solid line in Figure. Upon reaching final agreement concerning a service’s

certification (B), the certifying entity publishes a web service to a UDDI. This service,

published by the certifier, holds the results of a service’s certification. The service producer (B)

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 26

also publishes its service to the UDDI, if it has not already done so. Both the service producer

and the third party certification entity make identical ‘publisherAssertions’ for this service,

which will be explained in detail in the next section. By making identical ‘publisherAssertions’

for this service (C), service consumers can query the UDDI for ‘status:complete’ certified

services. S-QoS mirrors the interactions between the service producer and its certification

entity to produce consumer validations (1 – 3). Whether or not a unique UDDI is used as

diagramed, which caters only to service consumers, is irrelevant to this research and not a

requirement for the success of this approach. Equivalent to communications represented by line

A, communications between a service consumer (1) and its respective third party service

consumer validation entity is expected to require human involvement. Upon reaching final

agreement over the information to be published (2), the validation entity publishes a web

service to a UDDI that holds the results of a consumer’s validation. The service consumer (2)

also publishes an informational service to the UDDI that represents itself, if it has not already

done so. Both the service consumer and the third party validation entity make identical

‘publisherAssertions’ for the consumer. By making identical ‘publisherAssertions’ for the

Figure 2.6 : Service model of UDDI

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 27

consumer (3), service producers obtain an added bonus of being able to query a UDDI for

‘status:complete’ validated consumers. This added bonus enables service producers to

proactively market their services to viable organizations. Within each UDDI businesses have

the option of providing a service description statement. Service consumers will enter ‘Service

Consumer’ as their descriptor, consumer evaluators will enter ‘Consumer Validation’, service

certification entities will use ‘Service Certification’, and service producers default to any

description.

Youngkon Lee “Web Services Registry implementation for Processing Quality of Service”

2008 [103]. This paper presented the design principle for integrating quality management on

Web service registry developed in UDDI specification and Web service quality management

system (WSQMS). WSQMS, developed by NIA1 can measure and collect the quality

information of Web services by its agency system installed on the Web service system. Web

service registry is core system for registering and searching WSDL(Web Service Description

Language). In a Web service registry, WSDL is referenced in a tModel, which is a container for

a reference to the WSDL. Because tModel is devised to include the detail information about a

Web service, it is natural conclusion that we modify tModel to be proper for including the

reference to WSQDL. There are two choices. First is to make a new reference data object to

WSQDL in <overviewDoc> as the form described as WSDL. This way is trivial, so it enables

Figure 2.7 XML schema for WSQDL complex type.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 28

users to find out at once that WSDL and WSQDL describe characteristics for the same target

Web service. This way, however, restricts severely the usage of reference to quality data. That

is, user cannot search the quality data rapidly because there are no classification schemes for

quality data. Figure 2.7 shows <wsqrlURL> in <overviewDoc> and XML schema for

WSQDL complex type.

 Second way is to make a specific tag, <qualityBag>, in tModel to store the reference to

WSQDL. This requires additional processing modules, but enables the quality data to be used

more widely. For example, this method allows the reference to WSQDL in <qualityBag> to be

handled as the form of tModel, resulting that process related with tModel could have still

flexibility. However, it requires updates of considerable part of the registry because the registry

system should process two types of tModel for: WSDL and WSQDL. However, it is impossible

to search a Web service effectively on the basis of quality data, because tModel has only

reference data to WSQDL. Thus, it is desirable to implement architecture for referring Web

service quality data by using the quality classification scheme. Figure 2.7 shows the tModel

component structure and XML schema including <uddi:qualityBag>.

Figure 2.8 tModel Component and Schema including qualityBag

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 29

In Figure 2.8 the structure of <overviewDoc> is the same as previous tModel, but

<qualityBag> is a new structure for referring any number of tModel. Another way is to add

quality context information to tModel for quality classification scheme. This allows the registry

to have quality context in <qualityBag>, as corresponding WSDL through tModel. As the

previous search method of Web service registry by using <categoryBag>, a registry parses

previously the quality data in <qualityBag> and stores the quality context so that users may

just search a Web service satisfying some criteria by using the quality context or in quality

classification. To represent quality context data consistently and to manage it requires further

study. Figure 2.8 shows the <qualityBag> component structure and its XML schema including

<qualityContext>, whose structure could include any type of character string. <qualityBag>

stores any number of required <qualityContext> and represent any type of quality data. For

example, as digital signature for message consistency and proof of message sender, a

<qualityContext> as type of /eval/sec/Dsig/keySize/ could be made and we say that a system is

safer when it has its value of 128 rather than 64 in the respect of digital signature safety.

<qualityContext> representing Web service quality information should be registered on a

registry and user can search the quality data according to the value of <qualityContext>. The

registry requires the additional APIs for processing the quality data in the relationship with

WSQMS. Firstly, it is required for WSQMS to have APIs searching the new registered Web

service. The APIs correspond to the functionality of searching Business Entity, Service,

Binding, and tModel. APIs for representing the reference to the quality information sent from

WSQMS are required. If the reference to the quality data is stored in tModel, the additional

APIs for processing tModel operation are required. Besides, it’s required the APIs for

modifying and updating Web service quality information and synchronizing the Web service

information between WSQMS and registries.

Massimo Paolucci and Katia Sycara, “Autonomous Semantic Web Services” 2003[66]. In

this paper, the authors presented a mechanism that begins to bridge the gap between the Web

services infrastructure and the Semantic Web. They adopted the vision of Web services as

autonomous goal-directed agents that select other agents to interact with and that flexibly

negotiate their interaction models, acting variously in client–server and peer-to-peer modes.

The resulting web services called as autonomous Semantic Web services, use ontologies and

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 30

semantically annotated web pages to automate the fulfillment of tasks and transactions. In

particular, these services use the Semantic Web to support capability- based discovery and

interoperation at runtime. A first step toward this vision was to develop formal languages and

inference mechanisms for representing and reasoning with core Web service concepts. The

DARPA Agent Markup Language for Services (DAML-S) is the first attempt to define such a

language. One objective behind the Semantic Web is to provide languages for expressing the

content of Web pages and making that information accessible to agents and computer

programs. More precisely, the Semantic Web is based on a set of languages such as the

Resource Description Framework (RDF), DAML+OIL, and the more recent Web Ontology

Language (OWL), which can be used to annotate Web content. These languages have well-

defined semantics and inferential procedures that let agents draw inferences from the

languages’ statements. Using the semantic markup for the US National Oceanic and

Atmospheric Administration’s page reporting Pittsburgh’s weather conditions, for example, an

agent could learn that the current condition is heavy snow. The agent might further learn from

the Pittsburgh school board site’s semantic markup that all schools are closed on days of heavy

snow. Combining the two pieces of information, the agent could infer that Pittsburgh schools

are closed today. The Semantic Web’s second element is a set of ontologies that provide

conceptual models for interpreting the information provided. An ontology of weather might

contain concepts such as temperature, snowy, cloudy, and sunny, for example, and

relationships between the terms. The Semantic Web vision is about transforming the Web into

an Internet-wide knowledge-representation system in which ontologies provide the conceptual

framework for interpreting the information provided by Web pages. To produce the types of

inferences they have described, the Semantic Web requires computational processes and agents

that can interpret semantic content and derive consequences from the information they collect.

The Semantic Web also supports a more distributed computational model in which a requester

transacts with multiple Web services, solving problems through collaboration and negotiation.

Within this scheme, ontologies not only define a shared conceptualization for interpreting

semantic markup of Web sites, but also provide a shared vocabulary that lets services across

the Web use the same terminology to interpret each other’s messages. Ultimately, the Semantic

Web will provide the basic mechanisms for extracting information from Web pages and the

basic knowledge that Web services will use in all transactions. In addition to knowledge,

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 31

however, Web services need an infrastructure that facilitates reliable communication —

registries to locate other services, reputation services, guarantees of secure and private

transactions, and so on. Such an infrastructure falls outside the current view of the Semantic

Web’s scope.

Web services advertise or request through the communication module using DAML-S.

Advertisements are stored in the UDDI registry, and requests are sent to the DAML-S

matching engine. The service profile provides a high-level view of a given Web service. It is

the DAML-S analog to the Web service representation that UDDI provides in the Web services

infrastructure, although the two have some sharp differences as well as similarities. Some

information, such as a Web service’s provider, is present in both descriptions, but the service

profile supports properties such as the representation of capabilities — the tasks the service

performs — that UDDI does not support. On the other hand, UDDI describes the ports the Web

service uses, whereas DAML-S relegates this information to other modules of the description,

such as the grounding (described below). The process model specifies the tasks a Web service

performs, the order in which it performs them, and the consequences of each. A client can use

the process model to derive the service’s choreography, or message-exchange pattern, by

figuring out what inputs it expects, when it expects them, what outputs it reports, and when.

The process model’s role is similar to emerging standards such as BPEL4WS and WSCI, but

focuses more on the effects of executing a service’s different components. The service

Figure 2.9 DAML-S/UDDI Matchmaker architecture

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 32

grounding binds the abstract description of a Web service’s information exchanges —defined

in terms of inputs and outputs in the process model — with an explicit WSDL operation, and

through WSDL to SOAP messages and transportlayer information. DAML-S’s reliance on

DAML+OIL, as well as WSDL and SOAP, shows how proposed Web services standards can

be enriched with semantic information. DAML-S adds formal content representations and

reasoning about interactions and capabilities to Web service specifications. Therefore, DAML-

Senabled Web services use UDDI, WSDL, and SOAP to discover other services and interact

with them, and they use DAML-S to integrate these interactions, in their own problem solving.

Managing Web Services with DAML-S

They have implemented tools for Semantic Web service discovery and invocation making use

of DAML-S and complementing current Web services systems. They describe the DAML-

S/UDDI Matchmaker and the architecture of a DAML-S-empowered Web service.

DAML-S-Enabled Service Discovery

The DAML-S service profile relies on ontologies to specify what type of information the Web

service reports and what effects its execution produces. At discovery time, a Web service

generates a request that contains a profile for the ideal service it wants to interact with. The

discovery process selects a Web service provider’s profile that matches the request. Although

DAML-S profiles and UDDI Web-service descriptions contain different information, they

share the goal of facilitating Web-service discovery. The combination could thus provide rich

representations for Web services. Using UDDI’s TModels to encode DAML-S capability

descriptions, we can reconcile the differences between the two. Once the capabilities encoded,

a new module is added to UDDI: the matching engine performs inferences based on

DAML+OIL logics and effectively adds capability matches to UDDI. The result is the DAML-

S/UDDI Matchmaker for Web services. The Matchmaker receives Web-service

advertisements, information inquiries, and requests for capabilities through the communication

module, which implements a simple inquiry-and-publish API. The communication module then

sends the advertisements and inquiries to UDDI through the DAML-S/UDDI translator, which

transforms DAML-S encoded advertisements into UDDI format. The communication module

directs requests for capabilities to the DAML-S matching engine, which selects those Web

services whose advertised capabilities match the request. The matching is complicated by the

fact that providers and requesters have different views on Web-service functionality. Thus, the

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 33

matching engine can’t base the selection on strings or keywords. Rather, it must match

semantic descriptions of capabilities to access the deeper meaning of the advertisements and

requests. Consider, for example, a service provider advertising that it sells pet food, and a

requester looking to buy dog food. A UDDI-style registry would be unable to match the

request because keyword matching is not powerful enough to identify the relationship between

pet food and dog food. Instead, DAML-S profiles let service providers express concepts that

are explicitly related via ontologies. In this case, the provider could specify that dog is a type of

pet, and the DAML-S matching engine could recognize a semantic match between the request

and the advertisement. The DAML-S matching algorithm accommodates the differences

between an advertisement and a request by producing flexible matches — recognizing degrees

of similarity — on the basis of available ontologies. Basically, the matching engine attempts to

verify whether the requested outputs are a subset of those generated by the advertisement, and

whether the advertisement’s inputs subsume those of the request. When these conditions are

satisfied, the advertised service generates the outputs that the requester expects and the

requester can provide all the inputs the Web service expects. The degree of satisfaction

between these two rules determines the degree of match between provider and requester.

Katia Sycara, Massimo Paolucci, Julien Soudry, and Naveen Srinivasan, “Dynamic

Discovery and Coordination of Agent-Based Semantic Web Services” 2004 [87].

Matchmaking and brokering are multiagent coordination mechanisms for Web services. Both

have performance trade-offs, but the Web Ontology Language for Semantic Web Services

(OWL-S) can handle extensions that address some of the shortcomings. In this article, the

authors focus on the broker, analyzing both its interaction protocol and reasoning tasks. The

authors also describe OWL-S’s exec extensions, detail their implementation’s basic features,

and explain how these features address the broker’s reasoning problems.

M. Adel Serhani, Rachida Dssouli, Abdelhakim Hafid, Houari Sahraoui, “A QoS broker

based architecture for efficient web services selection” 2005 [78]. In this paper, the authors

presented a QoS broker based architecture for web services. The main goal of the architecture

was to support the client in selecting web services based on his/her required QoS. To achieve

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 34

this goal, researchers proposed a two-phase verification technique that is performed by a third

party broker.

The first phase consists of syntactic and semantic verification of the service interface

description including the QoS parameters description. The second phase consists of applying a

measurement technique to compute the QoS metrics stated in the service interface and

compares their values with the claimed one. This is used to verify the conformity of a web

service from the QoS point of view (QoS testing). A methodological approach to generate QoS

test cases, as input to QoS verification is used. They implemented a prototype that included the

verification and certification components of the broker. They performed experiments to

evaluate the importance of verification and certification features in the selection process using

real web services. The architecture extends the standard Service Oriented Architecture (SOA)

[1] [2] with QoS support for web services. It includes QoS description during the service

publication, and performed dynamic QoSaware invocations. In addition, it verified, certified,

confirmed and monitored QoS dynamically via a web service-based broker. The architecture

involves four main participating roles the web service broker, the web service provider, the

Figure 2.10 QoS broker based architecture

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 35

client, in addition to a QoS enabled UDDIe registry [15].

Figure 2.10 presents an architecture based broker with features such as support of service

selection based on client requirement, QoS verification and certification. QoS verification is

the process of validating the correctness of information described in the service interface as

well as the described QoS parameters. The QoS verification is performed using an approach

that generates test cases to measure QoS parameters. The verification will be used as input for

the certification process that will be issued when the verification succeed. The broker arbitrates

the negotiation process between clients and their providers until they reach an agreement.

During web service invocation, the broker measures dynamically QoS attributes and uses their

values to monitor the provision of the selected QoS level; then, it notifies the interested entities

of any violation. The broker updates, regularly, its database whenever significant changes

happen. In the architecture, the certification process goes beyond certifying just the QoS

provider’s claims.

Wenli Dong “QoS Driven Service Discovery Method Based on Extended UDDI”, 2007 [99]. In

this paper the author proposed a QoS driven service discovery method based on extended

UDDI with the help of Semantic Web. First, a Extending UDDI Model based on QoS driven

was proposed, QoS ontology was analyzed to reduce misunderstanding. Second, a matching

algorithm based on fuzzy correlation calculate was proposed to filter the unqualified service to

improve the discovery accuracy. Third, a discovery process based on policy was built based on

Semantic Web technology. The experience results showed that the QoS driven Web service

discovery method possessed high discovery accuracy.

 The QoS certifier was added in the proposed extended UDDI model to support QoS filtering

function as shown in Figure 2.11. The QoS certifier’s role is to verify service provider’s QoS

claims. According to the author the proposed registry differed from the current UDDI model

by having information of the function description of the Web service as well as its associated

quality of service registered in the registry repository. Lookup could be made by function

description of the desired Web service, with the required quality of service attributes as lookup

constraints. QoS is a combination of several non-functional characteristics. QoS publication

helps selecting among services with the same functionality based on OoS. There are many

aspects of QoS that are important to Web services.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 36

Figure 2.11 Architecture of Web Service Publication and Discovery with QoS certifier

Huimin HE, Haiyan DU, Dongxia HAN, Yuemei HE, “Research on the Models to Customize

Private UDDI Registry Query Results” 2008 [37] . This paper presents three models which

enable the customization of Universal Description, Discovery and Integration (UDDI) query

results, based on some pre-defined and/or real-time changing parameters. These proposed

models detail the requirements, design and techniques which make ranking of Web service

discovery results from a service registry possible. They present an extension to the UDDI

inquiry capabilities to customize or rank the query results, based on business requirements.

Authors proposes three models to achieve the customization of UDDI query results. All three

share some common architecture components as shown in Fig.2.12.

Fig 2.12 Common Architecture components of the Models to Customize Private UDDI

Registry Query Results

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 37

They are: UDDI server, UDDI Proxy and User Interface. These components will interact with

other external components. The customization criteria required is the ranking of list of business

or service list to User Interface. Load balancing also can be improved by keeping the User

Interface and UDDI Proxy on separate servers. The most basic feature of UDDI is to allow

businesses to publish their services in a directory and enable other business representatives to

locate partners and to form business relationships based on the web services they provide. They

introduce two types of parameter: static and dynamic. The static parameter will hold certain

values which has been fixed and do not change during run-time. Only Administrator access can

modify its values. Examples of static parameter are vendor ranking, cost per transaction and

advertisement priority. Unlike static, the dynamic parameter will be used to store value which

is real-time changing and gets updated during run-time. The updating frequency will depend on

mechanism defined within the criteria. One usage of dynamic parameter is to keep track of

service or business popularity. The criteria used to customize the UDDI query results will be

represented by static and dynamic parameters.

Model where parameters are saved and retrieved from UDDI server

In this first model, we propose the use of only UDDI Proxy and UDDI Server components,

where the parameters will be saved inside the UDDI server itself.

Figure 2.13 Model 1 - Parameter values to be saved and retrieved from UDDI server

This will require a new tModel definition to describe the parameters information. Each

business entity and service will then contain a reference to this tModel in their record. The term

“bag” indicates a generic container of multiple values, and enables a company to register

multiple business identifiers. i. Retrieving Parameters Values In this model, all the parameter

values are stored using XML schema inside the UDDI server. Whenever a request is made by

consumer to get a list of services, the UDDI Proxy will invoke the UDDI Find functions of the

inquiry API. Certain Find Qualifiers can also be used to enable more precise search criteria.

Let us take an example of mobile user who requests for online stock quote service. All static

and dynamic parameters related to the services are embedded in the list. This is very important

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 38

as the UDDI Proxy will use some of this parameter values as ranking criteria. Based on the

criteria preferences defined by administrator, if the ranking feature is enabled, the UDDI Proxy

will further process the list accordingly, using the embedded parameters values. Once

processing is done, the new list which contains ranked and sorted services will be sent to user

interface, all the parameters values will be discarded. ii. Saving Parameters Values Saving of

parameters values to UDDI Server will be handled by the UDDI Proxy using the Save

functions of the UDDI publishing API. For static parameters, its values can be edited only by

the administrator. This can be achieved by having UDDI Proxy to display and save the

parameter values directly to UDDI server. The save frequency is solely depending on the

registry administrator. As for the dynamic parameters, its values will be updated each time the

Proxy detect a request has been made to access the respective business or service links. If the

dynamic parameter is used to store an incremental number such as vendor ranking or

popularity, first the UDDI Proxy is required to read the current parameter value, increment the

value by 1 before it invoke the save function. The main advantage of the first model is the

criteria data are stored and bind with its associated business or service entity. This will be

beneficial for private registry operator who wishes to extend UDDI capabilities to support

ranking with minimal changes to his present system architecture. However, there might be

certain performance issue if the Proxy accesses launch too many queries, too frequently to the

UDDI server.

Model Where Parameters are retrieved from Server Logs

A private registry system normally consists of several application and server components. A

typical UDDI server is often hosted together with application server and SOAP server or being

part of a integrated solution package. As with the UDDI server, these servers do provide cross-

language logging services for purposes of application debugging and auditing. Web service log

data could provide information such as Web service usage, supporting information concerning

business transaction and quality of service. These logs data could provide useful semantic

information for ranking criteria. Fig.2.14 shows the components and data flow of this second

model. Note this model does not support the retrieving or saving of static parameters.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 39

Figure 2.14 Model 2 – Parameter values to be retrieved from logs data

Retrieving Dynamic Parameter Values In this second model, we propose the creating of

dynamic parameter values by extracting and processing the data from log files of SOAP server,

application server and UDDI server. A function used to search, match and count for each

parameter type is required within the UDDI Proxy. ii. Saving Dynamic Parameter Values Since

dynamic parameters values are extracted from the log files and the log processing is handled by

the respective server logging services, there will be no saving mechanism introduced here. The

only important requirement is to ensure all the servers logging service are turned on, or to the

minimum level where UDDI will be created within the logs. The main advantage of the second

model is the criteria data can be automatically generated from the server logs. This will

simplify implementation procedures and ensure data received are the most recent. Registry

administrator who does not require static parameters for their criteria will find this model

suitable for their need. Besides, this model can be further extended to monitor the health of

registry servers as described in.

Model Where Parameters are saved and Retrieved from External File

In this model, researcher proposes keeping both parameter values in external files, one file for

each parameter type. As shown in Fig. 2.15, the files should be accessible directly from the

Proxy, outside the UDDI server. The flat ASCII file can either be in pipe-delimited or even

XML format. File A is used to store values for static parameters and it can be modified by

administrator only. File B is used to store values for dynamic parameters and gets updated by

certain functions within the UDDI Proxy.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 40

Figure 2.15 Model 3 - Parameter values to be saved and retrieved from external files

Unlike the first model where saving of parameter values will be added to existing UDDI record

based on XML schema, this model will have its own data structure to store business/service

parameters values. The third model introduces distributed storage of the parameters data; it has

the advantages of lowering the UDDI Server load, and gives administrator more control over

the external files. However, with more control available at the administrator interface, the

UDDI Proxy will have to provide more complex functions to support these requirements and

file handling processing. This model will best suite registry operator who has long list of

criteria parameters, require full control of the parameters data, and has to generate complex

criteria on the registry query results.

Claudia Diamantini, Domenico Potena, Jessica Cellini, “UDDI registry for Knowledge

Discovery in Databases services” 2007 [18]. In this paper the authors discussed the design and

implementation of the UDDI service broker, a core element of the platform. They analyze the

information needed to describe a tool in our platform, showing limitations of the present UDDI

standard. Then, they present the solution to overcome such limitations and to extend UDDI

broker capabilities In this paper, they discuss how to extend the UDDI registry in order to

manage information needed to describe a service in the KDDVM platform, focusing on the

description of KDD tools. UDDI specifications define two ways to add new information into a

registry. One possibility is to define a tModel in order to address, by the overviewDoc field,

WSDL description. In this way, WSDL and UDDI work together for web services

advertisement. As a matter of fact, a WSDL document defines how to invoke a service. It

provides information on the data being exchanged, the sequence of messages for an operation,

the location of the service and the description of bindings (e.g. SOAP or HTTP). The other way

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 41

is to use a category- Bag to classify services based on their functionalities. A categoryBag is a

collection of keyedReference structures. Each keyedReference provides a <name,value> pair,

that assumes values in a particular domain described by the related tModel.

Eyhab Al-Masri and Qusay H. Mahmoud, “Toward quality driven web Service Discovery”

2008 [3]. In this paper, the authors provide quality-driven discovery using our Web service

broker (WSB), shown in Figure. In the WSB model, service providers publish service

information in the UDDI or search engines. The WSB collects Web services disseminated

throughout the Web and continuously monitors their behavior based on various QWS metrics.

WSB requires no human intervention because it performs these functions automatically.

Service providers can also submit their Web services to the WSB. The WSB interface lets

clients articulate proper service queries based on QWS. When clients receive response

messages, they can invoke services. To assess a particular Web service’s quality, the service

must contain at least one accessible operation - that is, it must have a valid service end point.

However, a Web service might contain one or more operations but the service end point is

inaccessible, so the service can’t be monitored or considered serviceable. WSB performs a

series of tests to determine a collected Web service’s serviceability.

Figure 2.16 High-level architecture of WSB model.

The WSB automatically collects Web services disseminated throughout the Web and monitors

their behavior using various QWS metrics. Clients use the WSB interface to enter QWS-based

queries. For example, a Web service interface might contain two or more operations, but the

actual service end point to invoke these operations requires authentication or contains an

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 42

invalid location. This makes achieving trialability impossible. Therefore, amplifying Web

services prior to any QWS monitoring can ensure their trialability and that they’re serviceable.

Eyhab Al-Masri and Qusay H. Mahmoud, “Investigating Web Services on the World Wide

Web” 2008 [21]. In this work, the authors conduct a thorough analytical investigation on the

plurality of Web service interfaces that exist on the Web today. Using their Web Service

Crawler Engine (WSCE), we collect metadata service information on retrieved interfaces

through accessible UBRs, service portals and search engines. This data can be used to

determine Web service statistics and distribution based on object sizes, types of technologies

employed, and the number of functioning services. This statistical data can be used to help

determine the current status of Web services. UDDI Business Registries (UBRs) UBRs are

used for publishing and discovering Web services into registries. There are several key UBRs

that currently exist and were used for this method including: Microsoft, XMethods, SAP,

National Biological Information Infrastructure (NBII), among others. Web-based crawling

involves using an existing search engine API to discover WSDL files across the Web such as

Google and Yahoo search APIs. Using this method, a crawler engine can continuously parse

search results from an existing search engine when looking for Web services throughout their

indices. This involves the use of search engine specific features to collect Web service

information. For example, Google Search API provides a way to search for files with any

extension such as WSDL, DISCO, or WSIL. There were several key search engines indices

that were used for crawling these types of service resource including: Google, Yahoo,

AlltheWeb, and Baidu. The crawling tools consist of a verifier, validator, and metadata

collector. A Web service is passed to the WSCE crawler tools after a resource is examined.

Crawlers are used to build the backend index for search engines by following links from one

page to another. However, Web service crawling is relatively distinctive from Web page

crawling

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 43

Eyhab Al-Masri and Qusay H. Mahmoud “Discovering the Best Web Service” 2007 [20].

This work introduces the Web Service Relevancy Function (WsRF) used for measuring the

relevancy ranking of a particular Web service based on QoS metrics and client preferences.

The main focus of their approach is to design an intelligent system that has the potential of

examining web service’s QoS properties in an open and transparent manner, and enabling

clients to select the best available web service by taking advantage of client QoS preferences,

Web service capabilities, and service provider features. This is achieved through the WS-

QoSMan service broker. The architecture of the proposed WS-QoSMan solution is shown on

QoSMetrics uses overviewURL to point to an XML-based file generated by WS-QoSMan and

that contains QoS metrics for a specific Web service. WsRF is used to measure the relevancy

ranking of a particular Web service wsi. Clients can submit their requests to WS-QoSMan (i.e.

via a GUI) which will process these requests and compute WsRF values for all available

services related to search query. A Web service with the highest calculated WsRF value is the

most desirable and relevant to the client based on his/her preferences. In order to calculate

WsRF(wsi), we need the maximum normalized value for each set of QoS parameters.

Ivan Magdalenic, Ivo Pejakovic, Zoran Skocir,Mihaela Sokic, Marina Simunic, “Modeling

ebXML Registry Service Architecture” 2003 [55]. In this paper, the authors have modeled

Figure 2.17 Architecture based on WS-QoSMan service broker

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 44

ebXML Registry/Repository architecture and concentrates on its Registry Service part. In their

implementation they have made many improvements over the existing open-source

implementation. They made the ebXML Registry Services server distributed which is very

important knowing that processing of the business documents is highly resource demanding.

Also the system of Registry Services can share same registry items and metadata about them.

Stefan Schulte, Melanie Siebenhaar, and Ralf Steinmetz, “ Integrating Semantic Web

Services and Matchmaking into ebXML Registry” 2010 [76]. In this paper, the authors

presented a solution extending the ebXML Registry by capabilities to handle and provide

SWS. This includes a concept for the integration of SWS into ebXML Registry as well as a

prototypical implementation using SAWSDL and the open source framework freebXML. They

have proposed a quite lightweight interface for matchmakers. The interface is based on the

assumption that service requests are formulated using a “query by example” approach.

Summarizing above papers, UDDI and ebXML have many things in common and can

complement each other. Both technologies provide solutions to integration problems, both use

XML over Internet for Message interchange, and both approaches share a common high-level

architecture. Observing the e-Business world reveals the evolution from tactical systems with

limited scope to strategic e-Business initiatives. This does not mean, however, that UDDI will

soon be abolished and replaced by ebXML. UDDI is a well established and widely adopted

standard. A multitude of experienced developers use the numerous available libraries and

frameworks to guarantee short time to market for their products. In addition to those strengths,

the UDDI domain is much broader than that of ebXML and its architecture is simpler and

easier to handle. As a successor of other middleware technologies, UDDI excel in intra-

enterprise request/response type application integration environments. The major drawbacks of

ebXML are that the specification is not entirely complete and that industry support is still

lacking. If industry fails to provide affordable implementations of ebXML, this standard might

follow the destiny of EDIFACT, which was not widely adopted due largely to its cost. Since

ebXML is powerful, implementations are likely to be complex and might not be easy to handle.

Templates for the most common demands of companies might help to decrease the time-to-

market for system providers that use ebXML implementations. While ebXML is always

intended for e-Business, UDDI is a bottom-up technology that focuses on the technical aspects

of middleware functionality. However, for many in-house projects companies do not need full

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 45

grown e-Business suites. Instead, they need smaller, more reliable, and easier to handle

technologies that have reached a sufficient level of maturity.

Summarizing above discusion, it can be concluded that the two emerging standards which

could have very well impact on the way of conducting e-business in future are UDDI

(Universal Description, Discovery and Integration) and ebXML (electronic business

XML).UDDI is a vendor-sponsored initiative led by IBM, Microsoft, and Ariba, whereas,

ebXML is a UN/CEFACT (United Nations center for Trade Facilitation and Electronic

Business) / OASIS sponsored initiative for creating a single global electronic market. UDDI

and ebXML, make it possible for business organizations to publish information on the Internet

about their products and web services, where the information can be readily and globally

accessed by clients who want to do business. Using UDDI based mechanism, WSCE collect

metadata service information on retrieved interfaces through accessible UBRs, service portals

and search engines. Broker based mechanisms allow user to specify the functional requirement

and QoS parameter values for searching the services. For semantic web service discovery,

DAML-S can be used. DAML-S uses semantic annotations and ontologies to relate each web

service’s description to a description of its operational domain. For example, a DAML-S

description of a stock-reporting service might specify the data it reports, its delay versus the

market, and the cost of using the service.

2.2.3 Alternative mechanisms

2.2.3.1 Federated Registry

Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, “Discovery of Web Services in a

Federated Registry Environment” 2004 [85]. They have presented the implementation of a

peer-to-peer network of private, semi-private and public UDDI registries which allows

transparent access to other registries based on registry federation or domains. An ontology

based approach is used to classify registries and locate them based on the user requirements.

They have also presented the way in which web service discovery is carried out within a

federation. In their initial, naïve implementation registries could only be categorized based on

business domains. Extended Registries ontology (XTRO), represented in OWL, is a

comprehensive ontology containing details of Domains, Registries, Ontologies and Registry

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 46

Registry
Federation

Domain
Ontology

subDomainOf

supports

belongsTo

belongsToDomain

memberOf

Figure 2.18 Classes and their Relationships in XTRO

Registry

Federation and network of relationships among them. All the classes and few important object

properties in XTRO are shown in Fig. 2.18.

Abraham Bernstein, Mark Klein, “Discovering services: Towards High-Precision Service

Retrieval” 2004 [52]. They described a novel service retrieval approach based on the

sophisticated use of process ontologies. They claim that this approach offers qualitatively

higher retrieval precision than existing (keyword and table based) approaches without

sacrificing recall and computational scalability. In this approach, the salient behavior of a

service is captured using process models, and these process models, as well as their

components (subtasks, resources, etc.), are placed in the appropriate locations in the process

ontology. Queries can then be defined (using a process query language – PQL) to find all the

services whose process models include a given set of entities and relationships. The greater

expressiveness of process models, as compared to keywords or tables, offers the potential for

substantively increased retrieval precision, at the cost of requiring that services be modeled in

this more formal way. This process-based approach offers qualitatively increased retrieval

precision, and beside this it can be achieved with a reasonable expenditure of service modeling

effort. The approach has the functional architecture shown in Figure.

Model service
as a process

Index service model
into process ontology Define query

Find matches

Figure 2.19 Service retrieval approach based on process ontology

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 47

Figure 2.21 Architecture of Semantic Web Service Discovery and Composition

Jorge Cardoso and Amit Shet, “Semantic e-Workflow Composition” 2002 [47]. They have

presented a methodology and a set of algorithms for web service discovery based on three

dimensions: syntax, operational metrics, and semantics. This approach allows for web service

discovery not only based on functional requirements, but also on operational metrics.

Jinghai Rao, Dimitar Dimitrov, Paul Hofmann and Norman Sadehw, “A Mixed Initiative

Approach to Semantic Web Service Discovery and Composition : SAP’s Guided Procedures

Framework” 2006 [45]. They described a mixed initiative framework for semantic web service

discovery and composition that aims at flexibly interleaving human decision making and

automated functionality in environments where annotations may be incomplete and even

inconsistent. Fig. 2.21 depicts overall architecture of the system.

Web service integration Web service discovery

Semantic Information

Operational Metrics

Syntactic Description

Figure 2.20 Multidimensional approach to Web Service Discovery and Integration

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 48

Patrick C. K. Hung And Haifei Li, “Web Services Discovery Based on the Trade-off between

Quality and Cost of Service: A Token based Approach” 2003 [67]. They have proposed a

token based approach for web services discovery based on the trade-off between Quality and

Cost of Service (QoS and CoS) to quantify the QoS and CoS for achieving integrative

solutions. In this model, the QoS relates to performance-oriented capabilities and the CoS

relates to services’resource requirements. To achieve an integrative solution, both parties have

to evaluate the list of QoS and CoS alternatives for obtaining an appropriate combination. One

of the negotiation strategies for achieving integrative solutions for both parties is called

logrolling. Logrolling is an important step in web service discovery process in which both web

services providers and web services requestors can find appropriate partners.

Summarizing above papers, it can be concluded that service discovery mechanism should be

based on not only functionality and QoS of the service desired by the user, but also it should

allow them to specify the domain to which that service belongs. Also the user should be able to

evaluate tradeoffs between QoS and CoS in selecting perfect service.

2.3 Limitations of existing mechanisms

A significant amount of literature is available on web service discovery mechanism and

techniques. Still, the pros and cons of these mechanisms and techniques have not been

adequately studied with respect to their performance and interface.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara [2002] focused on discovering Web

services through a centralized UDDI registry. Although centralized registries can provide

effective methods for the discovery of Web services, they suffer from problems associated with

having centralized systems such as a single point of failure, and bottlenecks. In addition, other

issues relating to the scalability of data replication, providing notifications to all subscribers

when performing any system upgrades, and handling versioning of services from the same

provider have driven researchers to find other alternatives.

Jorge Cardoso and Amit Sheth [2002] presented a methodology and a set of algorithms for

Web service discovery based on three dimensions: syntax, operational metrics, and semantics.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 49

This approach allows for Web service discovery not only based on functional requirements, but

also on operational metrics.

Mario Schlosser, Michael Sintek, Stefan Decker, Wolfgang Nejdl [2002] proposed a graph

topology which allows for very efficient broadcast and search, and provide an efficient

topology construction and maintenance algorithm which, crucial to symmetric peer-to-peer

networks, does neither require a central server nor super nodes in the network.

Bernstein, Abraham, and Mark Klein [2002] described a novel service retrieval approached

based on the sophisticated use of process ontologies. This approach offers qualitatively higher

retrieval precision than existing (keyword and table based) approaches without sacrificing

recall and computational tractability/scalability.

Patrick C. K. Hung And Haifei Li [2003] proposed a token based approach for web services

discovery based on the trade-off between Quality and Cost of Service (QoS and CoS) to

quantify the QoS and CoS for achieving integrative solutions. One of the negotiation strategies

for achieving integrative solutions for both parties is called logrolling. Logrolling is an

important step in web service discovery process in which both web services providers and web

services requestors can find appropriate partners.

D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGunneess, B. Barsia,

T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara [2004] and D. Roman, H.

Lausen, and U.Keller [2004] attempted to provide a formal way of expressing service

provider's capabilities and user's requirements. These initiatives are mainly focused on

knowledge representation aspects. Apart from knowledge representation, the web service

discovery is a complex task and need to consider the context of its availability and usability.

U. Keller, R. Lara, A. Polelres, I. Toma, M. Kifer, and D. Fensel [2004] described different

levels of service matches. It is understood that service matches are mandatory but not sufficient

for Web service discovery.

K. Sivashanmugam, K. Verma, and A. Sheth [2004] proposed METEOR-S Web Service

Discovery Infrastructure(MWSDI), an ontology based infrastructure to provide access to

private and public registries divided based on business domains and grouped into federations

for enhancing the discovery process. METEOR-S provides a discovery mechanism for

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 50

publishing Web services over a federated registry sources but, similar to the centralized

registry environment, it does not provide any means for advanced search techniques which are

essential for locating appropriate business applications. In addition, having a federated registry

environment can potentially provide inconsistent policies to be employed which will

significantly have an impact on the practicability of conducting inquiries across the federated

environment and can at the same time significantly affect the productiveness of discovering

Web services in a real-time manner across multiple registries.

K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and J. Miller [2004] presented

METEOR-S Web Services Discovery Infrastructure (MWSDI), a scalable infrastructure for

semantic publication and discovery of Web services. We have presented two algorithms for

semantic publication and discovery using WSDL descriptions.

Fatih Emekci, Ozgur D. Sahin, Divyakant Agrawal, Amr El Abbadi [2004] proposed a

structured peer-to-peer framework for web service discovery in which web services are located

based on both service functionality and process behavior. In addition, they integrate a scalable

reputation model in this distributed peer-to-peer framework to rank web services based on both

trust and service quality.

Shou-jian Yu, Xiao-kun Ge, Jing-zhou Zhang, Guo-wen Wu [2006] presented a flexible Web

service discovery architecture by combining semantic Web service with P2P networks. This

system does not need a central registry for Web service discovery. They use an ontology-based

approach to capture real world knowledge for semantic service annotation.

Eyhab Al-Masri and Qusay H. Mahmoud [2007] proposed a solution by introducing the Web

Service Relevancy Function (WsRF) used for measuring the relevancy ranking of a particular

Web service based on QoS metrics and client preferences for the purpose of finding the best

available Web service during Web services’ discovery process based on a set of given client

QoS preferences or QoS search criteria.

Gang Zhou, Jianjun Yu, Rui Chen, Hui Zhang [2007] proposed a peer-to-peer framework,

which adopts an enhanced Skip Graph named ServiceIndex as the overlay network for service

discovery. To guarantee discovery efficiency, ServiceIndex schemed WSDL-S (Web Services

Semantics) as Semantic Web Services description language and extracted its semantic

attributes as indexing keys in Skip Graph.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 51

Jacek Kopeck´y [2007] intended to research an approach to SWS offer discovery that will

significantly simplify the needed semantic descriptions and thus help ease the adoption of SWS

technologies in the industry.

Qiang He, Jun Yan, Yun Yang, Ryszard Kowalczyk, Hai Jin [2008] proposed a peer-to-peer

based decentralized service discovery approach named Chord4S. To improve data availability,

Chord4S distributes the descriptions of functionally-equivalent services. An efficient routing

algorithm is provided to facilitate queries of multiple candidate service providers.

Eyhab Al-Masri and Qusay H. Mahmoud [2008] proposed Web Service Crawler Engine

(WSCE), a crawler that is capable of capturing service information from various accessible

resources over the Web, to help in conducting investigation of Web services on the Web.

Shuiguang Deng, Zhaohui Wu, Jian Wu and Ying Li [2008] proposed a two-phase semantic-

based service discovery mechanism to discover services in an accurate, efficient and automatic

way. Compared to other approaches, the new method has two salient characteristics: (a) it takes

into account the interface dependencies implied within an operation while performing

matchmaking; (b) it supports two-level matchmaking, namely operation matchmaking and

operation-composition matchmaking.

2.4 The Pilot study

Prior to the main research work, a pilot survey study was conducted in which a questionnaire

was filled up by the around 220 service consumers from different groups of people like

students, teachers, homemakers, software engineers etc. Sampling technique used for

conducting the pilot study was Convenience Sampling and Purposive Sampling. Out of 220

consumers, 20 were service engineers who need to discover the service over the web for

integrating it in their applications for some system related tasks whereas 197 were the direct

users of the service who utilizes online services either for shopping, booking, bank

transactions, bill payments etc. for their own purpose. Among 200 people who filled up the

pilot study survey questionnaire, 3 people had never used any web service. Out of 200

customers, 89 were satisfied, 81 were not satisfied and 30 can’t say anything about the online

services use available over the internet.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 52

It is very obvious that a user’s perception varies from person to person. However, based on the

experiences as an end user who uses online services available over the internet, following

result is inferred on how they perceive the quality of service as compared to their expectation.

Service Domain and No.
of Customers

No. of Customers Satisfied with
Response Time

Overall all Satisfied
Customers

Shopping (68) 16 31
Booking (57) 7 10
Bank Transactions (44) 11 20
Bill Payments (28) 14 28

From Table 2.1, the computed correlation coefficient (0.99) is positive and significant. Hence

there is a strong relationship between Good Response Time and Satisfied Customer.

Service Domain and No.
of Customers

No. of Customers Satisfied with
Reliability

Overall all Satisfied
Customer

Shopping (68) 66 31
Booking (57) 28 10
Bank Transactions (44) 40 20
Bill Payments (28) 26 28

From Table 2.2, the computed correlation coefficient (0.56) is positive. Hence there is a good

relationship between High Reliability and Satisfied Customer.

Service Domain and No.
of Customers

No. of Customers Satisfied with
Availability

Overall all Satisfied
Customer

Shopping (68) 60 31
Booking (57) 18 10
Bank Transactions (44) 30 20
Bill Payments (28) 27 28

From Table 2.3, the computed correlation coefficient (0.76) is positive and significant. Hence

there is a strong relationship between High Availability and Satisfied Customer.

Service Domain and No.
of Customers

No. of Customers Satisfied with
Price

Overall all Satisfied
Customer

Shopping (68) 45 31
Booking (57) 21 10

Table 2.1 : Relation between Good Response Time and Satisfied Customer

Table 2.2 : Relation between High Reliability and Satisfied Customer

Table 2.3 : Relation between High Availability and Satisfied Customer

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 53

Bank Transactions (44) 39 20
Bill Payments (28) 27 28

From Table 2.4, the computed correlation coefficient (0.66) is positive and significant. Hence

there is a good relationship between Good Price and Satisfied Customer.

In Figure 2.22, a graph of number of customers belonging to different service domain satisfied

with different QoS parameter values shows that, customers are not satisfied only with the

service functionality but they also want a desired level of QoS parameter value. E.g. for the

Service Domain and
No. of Customers

No. of
Customers
Satisfied with
Response Time

No. of
Customers
Satisfied with
Reliability

No. of
Customers
Satisfied with
Availability

No. of
Customers
Satisfied
with Price

Overall
Satisfied
Customer

Shopping (68) 16 66 60 45 31
Booking (57) 7 28 18 21 10
Bank Transactions (44) 11 40 30 39 20
Bill Payments (28) 14 26 27 27 28

 Table 2.4 : Relation between Good Price and Happy Customer

Table 2.5 : Customers in different service domain Satisfied with different QoS

0
10

20
30

40
50

60
70

Sh
oppin

g (
68)

Bookin
g (

57
)

Ban
k T

ra
nsa

cti
ons (

44
)

Bill
Pay

ment
s (

28
)

Service Domain

N
o.

 o
f C

us
to

m
er

s

No. of Customers
Satisfied with Response
Time
No. of Customers
Satisfied with Reliability

No. of Customers
Satisfied with
Availability
No. of Customers
Satisfied with Price

Overall all Satisfied
Customer

Figure 2.22 : Customers in different service domain satisfied with different QoS

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 54

customers performing bank transactions online, reliability may be the highest priority QoS

parameter than any other parameter and so on.

Based on consumer’s experiences as a service engineer who needs to find appropriate web

services available over the internet, while designing and developing software applications,

following result is inferred on how the quality of service affects the business application in

terms of complaints received from the customers.

Complaint type Often Sometimes Rarely Never
Slow response 13 6 1 0
Service temporarily unavailable 10 6 4 0
Transaction not completed successfully 11 5 4 0
Costing Issue 10 5 5 0

In Figure 2.23, it is observed that more number of service engineers are facing the complaints

from the customers for ‘Slow response’, ‘Service temporarily unavailable’ and ‘Transaction

not completed successfully’. Many service engineers also fill that the cost of integrating a web

service in an application should not be more than developing the whole application on their

side. Out of 20 engineers, not a single engineer is having zero complaints about service. QoS

parameters have become equally important for the customers along with the service

functionality.

Table 2.6 : Service Engineers receiving complaints about service

Figure 2.23 : Service Engineers receiving complaints about service

0

2

4

6

8

10

12

14

Slow
response

Service
temporarily
unavailable

Transaction
not

completed
successfully

Costing Issue

Complaint Type

Se
rv

ic
e

En
gi

ne
er

s

Often

Sometimes

Rarely

Never

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 55

The pilot study survey result obtained as above signifies the study of existing web service

discovery mechanisms and proposing an efficient mechanism which should be able to discover

the most appropriate web service as per the consumer’s requirement of functionality as well as

quality of service (QoS) and the priority of QoS.

2.5 The present study

The present research study has the objective to identify and evaluate the significant web

service discovery technique which will be efficient in discovering the most appropriate web

service according to the consumer’s requirement of functionality as well as quality.

In the present research study, the approach is to return maximum number of relevant web

services of desired functionality and quality efficiently and rank them according to users’

preference of selecting his choice of QoS .

Thus, the study suggests to evaluate other implementations of algorithms for matching, ranking

and selecting web services efficiently. The evaluation of performance is done on various

parameters identified under the environmental limitations.

 A new tool having a great interface for specifying service requirement, choosing right QoS

values, and setting preference of QoS for ranking the services is also proposed. Algorithms are

proposed for matching, ranking and selecting the web services.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 56

Chapter 3

Service Registries

Service registries are essential part of a Service Oriented Architecture because of three

reasons. First, a registry serves as a system of record for the enterprise’s web services and

becomes the central reference for the distributed and difficult-to-find services. Second, a

registry is a place where service provider can publicize services and consumers can

discover them. And third, it also controls and governs the availability of services,

managing versioning and ensuring compliance with enterprise and external requirements.

Java API for XML Registries (JAXR)

JAXR is a new API that is under development under the Java Community Process (JCP)

and the first public draft of the specification was released on August 10, 2001. Currently,

there are several business registries available in the market. Few of them are UDDI,

ebXML, ISO 11179, OASIS and eCo Framework. For accessing these registries, APIs

vary considerably and this makes difficult for writing portable client programs. The

JAXR specifications tries to unify access to these registries and probably the future

registries by defining a new Java API.

JAXR Architecture

The high level architecture of JAXR consists of the following parts :

 A JAXR client : This is a client program that uses the JAXR API to access a business

registry via a JAXR provider.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 57

 A JAXR provider : This is an implementation of the JAXR API that provides access to

a specific registry provider or to a class of registry providers that are based on a

common specification.

A JAXR provider implements two main packages :

 javax.xml.registry, which consists of the API interfaces and classes that define the

registry access interface.

 javax.xml.registry.infomodel, which consists of interfaces that define the information

model for JAXR. These interfaces define the type of objects that reside in a registry

and how they relate to each other. The basic interface in this package is the

RegistryObject interface. Its subinterfaces include Organization, Service and

ServiceBinding.

The most basic interfaces in the javax.xml.registry package are

 Connection. The Connection interface represents a client session with a registry

provider. The client must create a connection with the JAXR provide in order to use a

registry.

 RegistryService. The client obtains a RegistryService object from its connection. The

RegistryService object in turn enables the client to obtain the interfaces it uses to

access the registry.

The primary interfaces, also part of the javax.xml.registry package are

 BusinessQueryManager, which allows the client to search a registry for information

in accordance with the javax.xml.registry.infomodel interfaces.

 BusinessLifeCycleManager, which allows the client to modify the information in a

registry by either saving it or deleting it.

When an error occurs, JAXR API methods throw a JAXRException or one of its

subclasses.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 58

Figure 3.1 illustrates the architecture of JAXR a JAXR client uses the capability level0

interfaces of the JAXR API to access the JAXR provider. The JAXR provider in turn

accesses a registry. The Application Server supplies a JAXR provider for UDDI

registries.

We present here the registry approach for web service discovery based on the following

two available service registries.

- Universal Description, Discovery and Integration (UDDI) Registry

- Electronic Business XML (ebXML) Registry

3.1 Universal Description, Discovery and Integration (UDDI) Registry

The Universal Description, Discovery and Integration (UDDI) is the specification of a

multi-purpose, platform independent, web-service definition registry. UDDI is an OASIS

standard that allows users to enquire about services available on a given network and also

let the developers publish their services by specifying in the registry the information

related to these services (like their operations, prerequisites or specification). The purpose

JAXR

JAXR API
Capability-Specific Interfaces

ebXML Provider UDDI Provider Other Provider

Registry-Specific
JAXR Provider

ebXML

UDDI

Other

Diverse Registries

Figure 3.1 JAXR Architecture

ebXML/
SOAP

UDDI/
SOAP ???

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 59

of UDDI compliant registries is to provide a service discovery platform on the World

Wide Web. Service discovery is related to being able to advertise and locate information

about different technical interfaces exposed by different parties. Services are interesting

when you can discover them, determine their purpose, and then have software that is

equipped for using a particular type of web service and derive benefit from a service. A

UDDI compliant registry provides an information framework for describing services

exposed by any entity or business. In order to promote cross platform service description,

this description is rendered in cross-platform XML.

The registry itself is based on multiple web protocol standards and technologies like

HTTP, XML, and SOAP. UDDI defines a web service discovery protocol, which let the

clients find web services and a web service description format, which lets clients

understand what those web services do. A UDDI registry typically contains metadata for

a service embodied within a Web Service Description Language (WSDL) document. The

UDDI data structures provide a framework for the description of basic business and

service information, and architect an extensible mechanism to provide detailed service

access information using any standard description language. Using the information

provided in a UDDI registry, three types of searches can be performed as :

1. A white pages search returns basic information such as address, contact, and

identifiers about a company and its services.

2. A yellow pages topical search retrieves information according to industrial

categorizations and taxonomies, such as the NAICS, ISO3166, and UNSPSC

classification systems.

3. A green pages service search retrieves technical information about web services,

as well as information describing how to execute these services.

3.1.1 Data Model of UDDI

Understanding how providers and services are represented in a web service environment

is an essential part of using UDDI services. Although the UDDI API specification

provides a framework within which to perform this modeling task, each UDDI Services

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 60

deployment requires organization-specific definition of four core entities. The

information about web services in a UDDI registry includes a description of the business

and organizations that provide the services, a description of a service’s business function,

and a description of the technical interfaces to access and manage those services. A

UDDI registry consists of instances of four core data structures including the

businessEntity, the businessService, the bindingTemplate and the tModel. The four core

structures and their relationships are shown in following Figure 3.2. This information

comprises everything a user needs to know to use a particular web service.

1. businessEntity - Each businessEntity entity contains descriptive information

about a business or organization and, through its contained businessService

entities, information about the services that it offers. From an XML standpoint,

the businessEntity is the top-level data structure. Each contained businessService

describes a logical service offered by the business or organization. Similarly, each

bindingTemplate contained within a given businessService provides the technical

businessEntity: Information about the
party who publishes information about a
service

businessService: Description of a
service’s business function

bindingTemplate: Technical information
about a service entry point and
implementation specs

tModel: Description of various other
attributes or metadata.

businessEntity contains
businessServices

businessService contains
bindingTemplates

bindingTemplate contains references to
tModels. These references designate the
interface specifications for a service

Figure 3.2 UDDI core data structures

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 61

description of a web service that belongs to the logical service that is described by

the businessService.

2. businessService – Each businessService contains descriptive information about a

group of related technical services including the groupname, description and

category information. A businessService acts as a container for one or more

bindingTemplates.

3. bindingTemplate – Each bindingTemplate contains information needed to invoke

or bind to a specific service. This information includes the service URL, routing

and load balancing facilities and references to interface specifications contained in

a corresponding tModel.

4. tModel - tModels represent unique concepts or constructs. They are used to

describe compliance with a specification, a concept or a shared design. tModels

are used to represent technical specifications such as service types, bindings and

protocols. Also tModels are used to implement category systems that are used to

categorize technical specifications and services. When a particular specification is

registered in the UDDI registry as a tModel, it is assigned a unique key, called a

tModelKey. This key is used by other UDDI entities to reference the tModel, for

example to indicate compliance with the specification. Each specification tModel

contains an overviewURL, which provides the address of the specification itself

e.g. a WSDL document.

5. tModels’ CategoryBags – Additional metadata can be associated with a

specification tModel using any number of identifier and category systems.

Identifiers are grouped in a construct called an identifierBag, and categories are

grouped in a construct called a categoryBag. These bags contain a set of

keyedReference elements. Each keyedReference specifies the tModelKey of the

category system tModel and a name/value pair that specifies the metadata. The

metadata values specified in keyedReference elements can be used as selection

criteria when searching UDDI.

3.1.2 Design Principles in UDDI

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 62

Each core data structure of UDDI is used to represent specific type of data, arranged in

the relationship as shown in Figure 3.2 – UDDI core data structures. A particular instance

of an individual fact or set of facts is expressed using XML according to the definition of

these core types. For instance, two separate businesses may publish information in a

UDDI registry about web services they offer. Information describing each business and

its web services all exist as separate instances of the core data structures stored within the

UDDI registry. Instances of many data structures in UDDI are kept separately and are

accessed individually by way of unique identifiers called keys. An instance in the registry

gets its keys at the time it is first published. Publisher may assign the keys; if they don’t,

the UDDI node must assign them.

3.1.3 UDDI services and API sets

This specification presents APIs that standardize behavior and communication with and

between implementations of UDDI for the purposes of manipulating UDDI data stored

within those implementations. The UDDI API is divided into two main components: the

inquiry API and the publisher API. Clients access information contained in the UDDI

registry using the inquiry API. Publishers of web services use the publisher API to enter

and modify publisher information in the UDDI registry. Both the inquiry API and the

publisher API take the form of an XML message that is placed within the body of a

SOAP message envelope. The receiver URL of the SOAP message is the UDDI site.

Once the UDDI site receives an enquiry SOAP message from a client, the UDDI site

retrieves the requested information from the UDDI registry, which is returned to the

client in the form of a SOAP message. The client receives the SOAP message and

retrieves the response from the body of the SOAP message.

There are three patterns in which a client can query a UDDI registry: the browse pattern,

the drill-down pattern and the invocation pattern.

1. The browse pattern - The browse pattern typically involves starting with some broad

information, performing a search, finding general result sets and then selecting more

specific information for drill-down. Browse pattern inquiries use the find_xx API

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 63

calls, where xx is a type of information contained in a UDDI registry. For example, a

client may want to search for businesses whose names begin with a sequence of

characters.

2. The drill-down pattern - The drill-down pattern is used once a client narrows

choices to a selected group of candidates. Let’s say that the browser pattern search

returned all businesses whose names begin with ABC. The drill-down pattern uses the

get_xx API calls where xx represents a specific kind of information about a particular

business.

3. The invocation pattern – The invocation pattern is the third party inquiry pattern.

The invocation pattern is used to prepare the client application to use the web services

found by inquiring the UDDI site. This process is called binding and requires the

client application to bind data obtained from the UDDI registry for a particular web

service.

 UDDI Invocation Model and UDDI Inquiry API

To invoke a specific web service using information from a UDDI registry, a caller

typically follows these steps:

1. Locates the businessEntity information registered for the business exposing the

web service.

2. Discovers additional details about the web service by accessing the

businessService structure contained within the businessEntity structure. From

there, the caller selects the appropriate bindingTemplate to use.

3. Uses the technical information contained in the tModel corresponding to the

selected bindingTemplate to build the client that will access the web service.

The UDDI inquiry API consists of operations that enable you to browse a registry and to

traverse a registry in order to obtain information about specific businesses and services.

Table 3.1 shows the inquiry API calls that a UDDI registry must support.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 64

Table 3.1 UDDI Inquiry API Methods

Method Description

find_binding Used to locate binding within or across one or more registered

businessServices.

find_business Used to locate information about one or more businesses.

find_relatedBusinesses Used to locate information about businessEntity registrations

that are related to specific business entity whose key is passed in

an enquiry.

find_service Used to locate specific services within the registered business

entities.

find_tModel Used to locate one or more tModel information structure.

get_bindingDetail Used to get bindingTemplate information suitable for making

service requests.

get_businessDetail Used to get the businessEntity information for one or more

businesses or organizations.

get_businessDetailExt Used to get extended businessEntity information.

get_serviceDetail Used to get full details for a given set of registered

businessService data.

get_tModelDetail Used to get full details for a given set of registered tModel data.

 UDDI Publication - Authentication Model and UDDI Publisher API

 A service provider makes services available to clients by publishing services on UDDI

site using publishing API calls. Typically, a service provider selects a UDDI operator site

to publish its services and update registered services. The key operating principal for the

UDDI Publishers’ API is to allow only authorized individuals to publish or change

information within the UDDI business registry. Each individual implementation of the

distributed UDDI business registry maintains a unique list of authorized parties and

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 65

tracks which individuals create each businessEntity or tModel. Further changes and

deletions are allowed only if a change request, through API call, is made by the same

individual who created the information.

The UDDI Publisher API consists of operations for creating, reading, updating, and

deleting the information stored in UDDI registry. A caller can use these operations to

register and/or modify any number of businesses or services. Table 3.2 shows the

publisher API calls that a UDDI registry must support.

Table 3.2 UDDI Publisher API Methods

Method Description

add_publisherAssertions Causes one or more publisherAssertions (the relationship that

one businessEntity has with another businessEntity) to be

added to an individual publisher’s collection of assertions

delete_binding Causes one or more instances of bindingTemplate data to be

deleted from the registry

delete_business Used to delete one or more business registrations from a

UDDI registry

delete_publisherAssertions Causes one or more publisherAssertions to be deleted from a

publisher’s collection of assertions

delete_service Used to delete one or more businessService elements from a

UDDI registry

delete_tModel Used to logically delete one or more tModel structures

discard_authToken Used to inform a node that the passed authorized token is to

be discarded

get_assertionStatusReport Reports the status of current and outstanding publisher

assertions that involve any of the business registration

managed by a publisher

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 66

Method Description

get_authToken Used to obtain an authentication token

get_publisherAssertions Used to obtain the full set of publisher assertions associated

with a publisher

get_registeredInfo Used to obtain an abbreviated list of all businessEntity and

tModel data for a publisher

save_binding Used to save or update a complete bindingTemplate element

save_business Used to save or update information about a complete

businessEntity structure

save_service Adds or updates one or more businessService elements

save_tModel Adds or updates one or more registered tModel elements

set_publisherAssertions Used to replace all of the assertions associated with a

publisher

3.2 Electronic Business XML (ebXML) Registry

Electronic business XML (ebXML) is a set of specifications that allow businesses to

collaborate. ebXML enables a global electronic marketplace where business can meet and

transact with the help of XML-based messages. The businesses may be geographically

located anywhere in the world and could be of any size to participate in the global

marketplace. The ebXML was created in 1999 as a joint partnership by the United

Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) and the

Organization for the Advancement of Structured Information Standards (OASIS). The

current membership includes representation from more than 2000 businesses,

governments, institutions, standard bodies and individuals.

The ebXML framework defines specifications for the sharing of web-based business

services. It includes specifications for a message service, collaborative partner

agreements, core components, business process methodology, a registry and a repository.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 67

ebXML defines a registry and a repository where businesses can register themselves by

providing their contact information, address and so on through a standard document

format. Such information is called the core component. Once the business submits core

components, it can further supply the information about its products and services. After a

business has registered with the ebXML registry, other partners can look up the registry

to locate that business. Once a business partner is located, the core components of the

located business are downloaded. The buyer may then download the technical

specifications for the service. Once the buyer is satisfied with the fact that the seller

service can meet its requirements, it negotiates a contract with the seller. Such

collaborative partner agreements are defined in ebXML. Once both the parties agree on

contract terms, they sign the agreements and do a collaborative business transaction by

exchanging their private documents. The ebXML provides a marketplace and defines

several XML-based documents for business to join and transact in such a marketplace.

the ebXML Registry vision is to provide generic, extensible, secure, federated

information management.

The ebXML Registry provides a set of services that enable sharing of information

between interested parties for the purpose of enabling business process integration

between such parties based on the ebXML specifications. The shared information is

maintained as objects in a repository and managed by the ebXML Registry Services.

3.2.1 ebXML Registry Data Model

The ebXML Registry Information Model (or RIM) defines what metadata and content

can be stored in the registry. An ebXML Registry is capable of storing any type of

electronic content such as XML documents, text documents, images, sound and video.

Instances of such content are referred to as a RepositorytItems. RepositorytItems are

stored in a content repository provided by the ebXML Registry. In addition to the

RepositoryItems, an ebXML Registry is also capable of storing standardized metadata

that MAY be used to further describe RepositoryItems. Instances of such metadata are

referred to as a RegistryObjects (or one of its sub-types). RegistryObjects are stored in the

registry provided by the ebXML Registry. ebXML Registry stores any type of content as

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 68

RepositoryItems in a repository and stores standardized metadata describing the content

as RegistryObjects in a registry.

3.2.2 ebXML Registry Architecture

The ebXML Registry architecture consists of an ebXML Registry and ebXML Registry

Clients. The Registry Client interfaces may be local to the registry or local to the user.

Registry architecture supports three possible topologies with respect to the Registry and

Registry Clients. In the first topology, Registry provides a web based “thin client”

application for accessing the Registry that is available to the user using a common web

browser. In this scenario the Registry Client interfaces reside across the internet and are

local to the Registry from the user’s view. In the second topology, the user is using a “fat

client” Registry Browser application to access the registry. In this scenario the Registry

Client interfaces reside within the Registry Browser tool and are local to the Registry

from the user’s view. The Registry Client interfaces communicate with the Registry over

the internet in this scenario. A third topology made possible by the registry architecture is

where the Registry Client interfaces reside in a server side business component such as a

Purchasing business component. In this topology there may be no direct user interface or

user intervention involved. Instead the Purchasing business component may access the

Registry in an automated manner to select possible sellers or service providers based

current business needs. Clients communicate with the Registry using the ebXML

Messaging Service in the same manner as any two ebXML applications communicating

with each other.

3.3 UDDI Vs ebXML Registry – A Comparative Study

Table 3.2 UDDI Vs ebXML Registry

ebXML Registry and Repository UDDI Registry

Has an integrated registry and repository.

Can store content as well as metadata

Has no repository. Cannot store content.

Can only store metadata about (or pointers

to) content.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 69

Design center is to provide secure,

federated information management of any

type of artifact

Design center is to be like yellow/white

pages for listing businesses and services

Protocols and information model is generic

and extensible

Protocols and information model is focused

and specific

Supports multi-registry topologies using

loosely coupled federation with optional

selective replication.

Supports multi-registry topologies using

replication of every transaction to all

participating registries.

ebXML has always been designed for the management of large amounts of complex

information using standardized and extensible metadata. Also it has extensible data-

model. But, ebXML is a younger technology than UDDI. It’s also a more complex

specification that covers a lot more features than the ones we currently need for our

service registry. In this study, currently only the “registry” part of the specification is

basically required and not the “repository” one. Also, UDDI seems to have a larger user

base than ebXML. From research view point, UDDI is probably a more accessible

technology to facilitate the implementation of the Web Service Discovery tool that is

designed during the research study.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 70

Chapter 4

UDDI based Web Service Discovery Mechanism

4.1 Why UDDI based mechanism ?

Universal Description Discovery & Integration (UDDI) registry provides a

centralized approach in service-oriented architecture and the focus of Universal

Description Discovery & Integration (UDDI) is the definition of a set of services

supporting the description and discovery of (1) businesses, organizations, and other web

services providers, (2) the Web services they make available, and (3) the technical

interfaces which may be used to access those services. Based on a common set of

industry standards, including HTTP, XML, XML Schema, and SOAP, UDDI provides an

interoperable, foundational infrastructure for a web services-based software environment

for both publicly available services and services only exposed internally within an

organization. [2]. In the same centralized approach, if we compare UDDI with other

registry ebXML, it is observed that ebXML as always been designed for the

management of large amounts of complex information using standardized and extensible

metadata; Also it has extensible data-model and is more like repository rather than only

registry, whereas in UDDI, protocols and information model is focused and specific and

is only registry not repository. One more research influencing factor is that ebXML is a

younger technology than UDDI and UDDI seems to have a larger user base than ebXML.

UDDI is a vendor-sponsored registry standard which has emerged taken a

dominant role in standardization process of registries. UDDI was the brain child of Ariba,

IBM, Intel, Microsoft and SAP. In 2002, the OASIS standards group took over UDDI

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 71

from UDDI.org. BEA, Cincom, CA, E2Open, Enthrust, Fujitsu, HP, IBM, Intel, IONA,

Microsoft, Novell, Oracle, SAP, Sun Microsystems and hundreds of other companies

have endorsed it. Moreover, no fees or licenses are required to use this technology. It has

the following benefits as:

- It is a standardized, transparent mechanism for describing services.

- It describes simple methods for invoking the service.

- It specifies an accessible central registry of services.

The reason that UDDI is acceptable to all the vendors is that it is built on the same SOAP

standards that ordinary web services use. This means that a registry can be written in and

accessed by any computer language running on any hardware platform running any

operating system. Every vendor is able to create tools to interact with these registries.

4.2 The Approach

UDDI contains a number of specifications that describe how a registry stores data and

how it can be accessed. Four main specifications of UDDI are as follows :

 The data structure specification describes what kind of data is stored in UDDI.

The UDDI data structure is based on XML and described through an XML

Schema. This schema is actually published as a separate document available from

the UDDI web site.

 The programmer’s API specification contains how an UDDI registry can be

accessed. There are two types of API, publishing functions and inquiry

functions. The publishing functions are used to create and update existing entries

in the registry. The inquiry functions are all read-only and allow the existing

entries to be queried programmatically. The API is programming language-

independent. This is accomplished by describing the request and response data in

terms of an XML document. These request and response structure map the actual

content of the registry quite closely. The existing registries offer access via SOAP

over HTTP which means that request and response XML data is wrapped into

SOAP envelopes. The enquiry functions are available over HTTP, whereas the

publishing functions are accessible via HTTPS and require a user ID and

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 72

password to be sent along with each request. Each UDDI registry provided ways

for a user to obtain a valid user ID and password.

 The replication specification contains descriptions of how registries replicate

information among themselves. This information is only needed for those who

want to implement their own registry and integrate it with other existing

registries.

 Finally, there is the Operator’s specification, which is only for those who are

implementing or running a UDDI registry. It defines policies for security and for

data management. This specification does not make it compulsory for an operator

to follow a certain policy, instead it requires that each operator publish what

policies are enabled and enforced.

The following table shows the type of elements that exists in the registry together with

some of the API functions that are defined for them.

Table 4.1 UDDI elements and API functions for them

Element Type Find Method Get Method Save Method Delete Method

<businessEntity> find_business() get_businessDetail() save_business() delete_business()

<businessService> find_service() get_serviceDetail() save_service() delete_service()

<bindingTemplate> find_binding() get_bindingDetail() save_binding() delete_binding()

<tModel> find_ tModel() get_tmodelDetail() save_tModel() delete_tModel()

Existing web services architecture comprises three roles: Web service Provider,

Web service Consumer and Universal Description, Discovery and Integration (UDDI)

registry as shown in Figure 4.2.

UDDI
Registry

Web Service
Consumer

Web Service
Provider

Publish

Bind

Find

Figure 4.1: Existing Web service Architecture

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 73

The Web service Provider publishes a description of the service in the UDDI

registry, as well as details of how to use the service. UDDI registries use an XML-

based language, Web Services Description Language (WSDL), to describe a Web

service, the location of the service and methods the service exposes. The Web service

Consumer uses the UDDI to find an appropriate service that meets its requirements

using the information provided with the services, chooses one service manually, and

invokes the service. The web service publishing, discovery and binding process is

generally done by consumers at design time.

4.3 UDDI based mechanism : Reputation-Enhanced Web Service Discovery

with QoS

The existing UDDI registries only support web services discovery based on the

functionality of services. As the customers are interested in not only the functionalities

of web services, but also their nonfunct ional characterist ics i.e. quality of service

(QoS), that may have huge impact on the result of web service discovery. If there are

multiple w eb services providing the same functionality in UDDI registries, the QoS

requirement can be used as a finer search constraint. Ziqiang Xu et al [107] proposed

a model of reputation-enhanced web services discovery with QoS to help consumers

find the services that best meet their requirements.

Figure 4.2 : Model of Reputation-enhanced Web Services Discovery with QoS

Service Info

QoS Info

Ratings Discovery
Request/ Result

Reputation Scores

Request/Response
Service Provider Service Consumer

Reputation Manager Discovery Agent

Rating DB

UDDI
Registry

QoS

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 74

In this model, the UDDI registry is enhanced with QoS information, and two new roles,

discovery agent and reputation manger, are added in our model as shown in Figure 4.2.

The UDDI registry stores QoS information of services by using tModels. The discovery

agent acts as a broker between a service consumer, a UDDI registry and a reputation

manager to discover the web services that satisfy the consumer’s functional, QoS

and reputation requirements. The reputation manager collects and processes service

ratings from consumers, and provides service reputation scores when requested by the

discovery agent.

4.3.1 Publishing QoS Information

When a Web Service Provider publishes a web service, it creates and registers a tModel

within a UDDI registry. The QoS information of the Web service is represented in the

tModel, which is referenced in the binding template that represents the web service

deployment. Each QoS attribute is represented by a keyedReference in the

generated tModel. The name of a QoS attribute is specified by the keyName, and its

value is specified by the keyValue. Instead of different units, default units are used for the

QoS attributes values in the tModel. For example, the default unit used for price is CAN$

per transaction, for response time is second, for availability is percentage, and for

throughput is transaction per second. For example a company publishes its Stock Quote

service in a UDDI registry with the following QoS information:

• Service price: CAN $0.01 per transaction

• Average response time: 0.05 second

• Availability: 99.99%

• Throughput: 500 transaction/second

The company creates and registers a tModel that contains the QoS information for this

service before it publishes the service with the UDDI registry. With QoS

information of web services stored in tModels in a UDDI registry, service consumers can

find the services that match their QoS requirements by querying the UDDI registry. The

details of this process are discussed in the section 4.3.3.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 75

Figure 4.3 The tModel with the QoS information

4.3.2 Updating QoS Information

Web service Providers need to update the QoS information of their services in the UDDI

registry frequently to ensure that the QoS information is accurate and up to date. Only a

service provider that publishes a service and its QoS information in a UDDI registry

can modify and update the QoS information. A service provider searches the UDDI

registry to find the tModel that contains QoS information for the service it published

before, updates the QoS information in the tModel, and then saves the tModel with the

same tModelKey assigned previously.

<tModel tModelKey="somecompany.com:StockQuoteService: PrimaryBinding:QoSInformation"">
<name>QoS Information for Stock Quote Service</name>
<overviewDoc>

<overviewURL>
http://<URL describing schema of QoS attributes>

<overviewURL>
<overviewDoc>
<categoryBag>

<keyedReference
tModelKey="uddi:uddi.org:QoS:Price"
keyName="Price Per Transaction"
keyValue=" 0.01" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:ResponseTime"
keyName="Average ResponseTime"
keyValue="0.05" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:Availability"
keyName="Availability"
keyValue="99.99" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:Throughput"
keyName=" Throughput"
keyValue="500" />

</categoryBag>
</tModel>

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 76

4.3.3 Discovering web service through Discovery Agent and Reputation Manager

Service Consumer’s request is received by a discovery agent first, it finds the services in

the registry that match their requirements and then returns the response to the consumers.

A request for web service discovery consists of functional, QoS, and reputation

requirement of the web service. The format of request for web service discovery

specifying the details of how to specify functional, QoS and reputation requirements is

given in Figure 4.4. These types of SOAP messages for discovery requests are not

generated manually by the service consumer, instead developers specify QoS and

reputation requirements in a Java program that automatically generates required SOAP

messages sent to the discovery agent. Customers can specify the following request

parameters in the discovery request:

 Maximum number of services to be returned by the discovery agent

 Functional requirements: keywords in service name and description

 Service price: the maximum service price a customer is willing to pay

 Service performance and other QoS requirements such as response time,

throughput, and availability.

 Dominant QoS attribute.

 Service reputation requirements.

 Weights for the QoS and reputation requirements

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 77

The dominant QoS attribute is the one that consumers consider as the most important and

is used in the calculation of the QoS score for each service candidate in the service

matching process. A consumer can specify QoS requirements only or both QoS and

reputation requirements in the request. The weights for QoS and reputation requirements

indicate their importance and they range from zero to one, where zero means no

requirement for QoS or reputation while one means it is the only requirement on QoS or

reputation. The sum of the weights must to one. Instead of setting the preference to each

QoS attribute, a dominant QoS attribute is to be set having highest preference as it is

easier for customers to sekect the most important QoS attribute than to specify separate

priority for each of the QoS attributes. This will greatly simplify the calculation of QoS

scores in the service ranking process.

As the discovery agent receives the request for service discovery, it find services in

<?xml version="1.0" encoding="UTF-8" ?>
<envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<body>
<find_service generic="1.0" xmlns="urn:uddi-org:api">

<functionalRequiremen>
Keywords in service name and description

</functionalRequirement>
<qualityRequirement weight=QoS Weight>

<dominantQoS>Dominant QoS</dominantQoS>
<QoS attribute 1>Value</QoS attribute 1>
<QoS attribute 2>Value</QoS attribute 2>
<QoS attribute 3>Value</QoS attribute 3>

……
<QoS attribute n>Value</ QoS attribute n>

</qualityRequirement>
<reputationRequirement weight=Reputation Weight>

<reputation>Reputation Score</reputation>
</reputationRequirement>

<maxNumberService>Value</maxNumberService>
</find_service>

</body>
</envelope>

Figure 4.4 Service Discovery Request Format

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 78

UDDI registry that match the functional requirements specified as keywords in service

name and also obtain QoS information of each stored in corresponding tModels. Then it

matches the published QoS information with the QoS requirements specified in the

request, finds the matched services, ranks the matches by QoS scores and/or reputation

scores and returns the result to the customer. The QoS scores of services is calculated by

the formula given as below :

where QoSScorei is the QoS score of ith service,

i is the position of the service in the list of matched services,

DominantQoSi is the value of the dominant QoS attribute of service i,

BestDominantQoS is the highest/lowest value of the dominant QoS attribute of

the matched services when the dominant attribute is monotonically

increasing/decreasing.

The adjusted Reputation scores of services is calculated by the formula given as below :

where AdjRepuScorei is the adjusted reputation score of service i,

DominantQoS i
BestDominantQoS

BestDominantQoS
DominantQoS i

if dominant QoS attribute is monotonically increasing

if dominant QoS attribute is monotonically decreasing

QoSScore
i
=

RepuScorei

h
AdjRepuScorei =

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 79

i is the position of the service in the list of matched services,

RepuScorei is the original reputation score of service i,

h is the highest original reputation scores of the matched services.

The final overall scores of services required for ranking is given by the equation below:

where OverallScorei is the overall score of

service i,

i is the position of the service in the list of matched services,

QoSScorei is the QoS score of service i,

QoSWeight is the weight of QoS requirement specified by service consumers,

AdjRepuScorei is the adjusted reputation score of service i,

RepuWeight is the weight of reputation requirement specified by consumers.

A reputation manager in this service discovery model is based on the models proposed by

Majithia et al. and Wishart et al. A QoS reputation score is calculated based on feedback

by service consumers. Service Reputation Manager collects the data based on feedback

from the service consumer, processes it and updates the reputation score. After using the

web service, the service consumer rates it on a scale of 1 to 10 where, 10 means extreme

satisfaction, 5 means average satisfaction and 1 means extreme dissatisfaction. Awarding

bonus points to the consumers for their feedback will encourage them to provide valid

ratings of the used services which can be used in service discovery to reduce the cost of

the discovery.

The service rating storage is based on SuperstringRep, a protocol proposed by Wishart et

al. The ratings of services by consumers are stored in the reputation manger’s local

database. Each rating record consists of service ID, consumer ID, rating value and a

timestamp fields. The service key in the UDDI registry of the service is referred as

the service ID, and the service consumer’s IP address is used as the consumer ID.

OverallScorei = QoSScorei × QoSWeight + AdjRepuScorei × RepuWeight

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 80

Following table shows ratings records for services.

Table 4.2 Ratings record for services along with Timestamp

Service ID Consumer ID Rating Timestamp

8221cb6e-e8c9-4fe3-9ea8-3c99b1fd2fk6 117.239.43.139 7 2011-09-03 10:15:34

8221cb6e-e8c9-4fe3-9ea8-3c99b1fd2fk6 172.50.43.30 8 2011-09-12 11:25:07

8221cb6e-e8c9-4fe3-9ea8-3c99b1fd2fk6 117.195.125.201 5 2011-09-11 19:20:12

53164900-f0b0-11d5-bca4-002035223h97 116.23.56.23 7 2011-09-21 12:15:02

8221cb6e-e8c9-4fe3-9ea8-3c99b1fd2fk6 117.239.43.137 5 2011-09-21 09:20:22

53164900-f0b0-11d5-bca4-002035223h97 172. 50.43.87 6 2011-10-29 09:20:22

b6cb1cf0-3aaf-11d5-80dc-002035245u62 117.239.43.131 7 2011-09-22 19:10:56

53164900-f0b0-11d5-bca4-002035223h97 117.239.43.134 6 2011-10-11 12:23:43

53164900-f0b0-11d5-bca4-002035223h97 116.23.56.26 8 2011-08-12 09:20:22

There are three services in the above table with Service ID “8221cb6e-e8c9-4fe3-9ea8-

3c99b1fd2fk6”, “53164900-f0b0-11d5-bca4-002035223h97” and “b6cb1cf0-3aaf-11d5-

80dc-002035245u62”, respectively. Each of the three services receives some ratings

from consumers. Only one rating for a service per consumer is stored in the table. New

ratings from the consumer for the same service replace older ratings. The timestamp is

used to determine the latest rating for a particular service rating.

Reputation score for a web service is calculated on the basis of the work by Majithia et

al. and the work by Wishart et al. Majithia et al. propose a method to calculate the

reputation score as weighted sum of ratings for a service, where a coefficient is the

weight attached to a particular context. Wishart et al. propose an aging function that

applies a factor to each of the ratings regarding a service. In this model, the reputation

score (U) of a service is calculated as the weighted average of all ratings the service

received from customers, where an inclusion factor is the weight attached to each of the

ratings for the service:

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 81

N

di

N

∑ Siγ i
U = i

=1

∑ γ i
i =1

γ i = λ

where U is the reputation score for a service,

Si is the ith service rating,

γi is the aging factor for ith service rating,

λ is the inclusion factor, 0 < λ < 1,

di is the number of the days between the two times tc and ti:

tc is the current time when the reputation score is computed,

ti is the time of the ith rating for the service.

The inclusion factor λ is used to adjust the responsiveness of the reputation score to the

changes in service activity. When λ is set to 0, all ratings, except the ones that are

provided by consumers on the same day as the reputation score is computed, have a

weight of 0 and are not be included in the computation. When λ is set to 1, all ratings

have equal weight of 1 and used in the computation. A smaller λ means only recent

ratings are included and a larger λ means more ratings are included.

Here, service matching, ranking and selection algorithm is based on the matching

algorithm proposed by Maximilien and Singh. Simplified flowchart of improved

algorithm is given below :

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 82

Function Match

Reputation
Requirement ?

QoS Match

QoS
Requirement ?

QoS Rank QoS + Reputation Rank

Select Services

Yes

Yes

No

No

Figure 4.5 Flowchart for Matching, Ranking and Selecting service

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 83

Example :

SOAP Request for Web Service Discovery

SOAP Response for Web Service Discovery

On the request from service consumer, the discovery agent finds two services that match

the requirements in the request, ranks the services using their QoS scores and reputation

scores, and returns one service to the consumer since the request specifies the maximum

number of services to be returned is 1. A SOAP message of service discovery response is

shown in following Figure.

<?xml version="1.0" encoding="UTF-8" ?>
<envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<body>
<find_service generic="1.0" xmlns="urn:uddi-org:api">

<functionalRequirement>
Stock Quote

</functionalRequirement>
<qualityRequirement weight=0.4>

<dominantQoS> availability</dominantQoS>
<price>0.01</price>
<responseTime>0.1</responseTime >
<throughput>400</throughput>
<availability>99.9</availability>

</qualityRequirement>
<reputationRequirement weight=0.6>

<reputation>8</reputation>
</reputationRequirement>

<maxNumberService>1</maxNumberService>
</find_service>

</body>
</envelope>

Figure 4.6 Service Discovery Request SOAP Message

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 84

Summarizing above discussion on Reputation-Enhanced Web Services Discovery with

QoS, it can be concluded that a reputation management system provides a mechanism to

help a service discovery agent to improve the possibility to find services those match a

consumer’s functional, QoS and reputation requirement also provide consistently stable

QoS performance. The problem of the accountability of those who provide ratings to the

services still remain unsolved. In real world, ratings of a service could be provided by its

competitors and trade partners or even the providers itself. Hence, assuming the service

ratings are all trustworthy, service consumers could be easily misguided in case of service

selection. A third party standard for ensuring the quality of service is needed.

<?xml version="1.0" encoding="UTF-8" ?>
<envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<body>
<serviceList generic="1.0" xmlns="urn:uddi-org:api" truncated="false">

<serviceInfos>
<serviceInfo
serviceKey="9521db61-eac1-42e4-5ab0-1d87b8f1876a"
businessKey="8e4a1bc28-afb7-32a9-17ab-c2a32e6e1a27">

<name>Stock Quote Canada</name>
<qualityInformation>

<price>0.01</price>
<responseTime>0.08 </responseTime >
<throughput>800</throughput>
<availability>99.99</availability>

</qualityInformation>
<reputationInformation>9</reputationInformation>

</serviceInfo>
</serviceInfos>

</serviceList>
</body>

</envelope>

Figure 4.7 Service Discovery Response SOAP Message

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 85

4.4 UDDI based mechanism : Web service QoS-Certifier based Web Service

Discovery

As we have discussed in earlier section, there is a need of some certifier agency who will

certify the claims of quality of services or their ratings before publishing it to the UDDI

registry to make it trustworthy. Shuping Ran [83] proposed framework that can serve to

the service consumers needing quality of service assurance. There are four roles in this

proposed model: Web service supplier, Web service consumer, Web service QoS

certifier, and the new UDDI registry. As before, the Web service provider offers Web

service by publishing the service into the registry, the Web service consumer needs the

Web service offered by the provider, the new UDDI registry is a repository of registered

Web services with lookup facilities and the new certifier’s role is to verify service

provider’s QoS claims for publishing. The proposed new registry differs from the current

UDDI model by having information about the functional description of the web service

as well as its associated quality of service registered in the repository. Web service can be

discovered by functional description of the desired web service, with the required quality

of service attributes as requirement criteria. The new role in this model is the web service

QoS certifier that does not exist in the original UDDI model. The certifier verifies the

claims of quality of service for a web service before its registration.

 Figure 4.8 Web services registration and discovery model with QoS Ceritifier

UDDI
Registry

Web Service
Consumer

Web Service
Provider

Bind

Find
(Retrieve

WSDL and
Certified QoS)

Web Service
QoS Certifier

Certify QoS Verify QoS

Register
(Publish

WSDL and
Certified QoS)

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 86

As shown in above figure, a web service provider supply service description along with

its functional aspect as well as quality of service information related to the proposed web

service. The claimed quality of service needs to be certified and registered in the

repository. The web service provider first communicates its QoS claim to the web service

QoS certifier before publishing in the UDDI registry. The certifier verifies the claims and

either certifies or down grade the claim. The report is sent back to the service provider

with certification identification information. This information is also registered in the

certifier’s repository identified by a certification Id. The certifier provides a set of web

services for any interested parties to access its repository about QoS claims for

verification purposes. After the QoS certification been issued by the certifier, the supplier

then registers with the UDDI registry with both functional description of the service and

its associated certified quality of service information. The UDDI registry cross checks it

with the certifier to ensure the existence of the certification. On successful checking, the

registry then registers the service in its repository. In this framework, a new role is

introduced– QoS Certifier who verifies the QoS claims from the web service suppliers

and its role is very similar to rating agencies in other domains such as the financial sector,

service industry etc, but the details regarding its implementation are unexplored yet.

4.5 jUDDI Registry working

jUDDI (pronounced "Judy") is an open source Java implementation of the Universal

Description, Discovery, and Integration (UDDI v3) specification for (Web) Services.

jUDDI is a pure Java web application and as such can be deployed to any application

server or servlet engine that supports version 2.1 or later of the servlet API. jUDDI also

requires an external datastore in which to persist the registry data it manages. Typically

this is a relational database management system such as MySQL, Oracle or DB2. Support

for several open source and commercial database products are included.

jUDDI consist of a core request processor that unmarshalls incoming UDDI requests,

invoking the appropriate UDDI function and marshalling UDDI responses (marshalling

and unmarshalling is the process of converting XML data to/from Java objects). To

invoke a UDDI function, jUDDI employs the services of three configurable sub-

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 87

components or modules that handle persistence (the DataStore), authentication (the

Authenticator) and the generation of UUID's (the UUIDGen). jUDDI is bundled and pre-

configured to use default implementations of each of these modules to help the registry

up and running quickly. These sub-components are described briefly as below.

Persistence (jUDDI DataStore)

jUDDI needs a place to store it's registry data so it is understandable that jUDDI is pre-

configured to use JDBC and any one of several different DBMSs to do this. The process

of setting this up is simple. Start by creating a new jUDDI database using the instructions

for the preferred DBMS, in my case I have used MySQL.

To complete the DataStore set up, it is required to configure a JNDI Datasource with a

name of 'jdbc/juddiDB' in the application server, in my case I am using Apache Tomcat

as a application server for deplyment. Datasource setup varies on an product-by-product

basis.

Authentication (jUDDI Authenticator)

Authenticating a jUDDI publisher is a two-step process. The first step confirms that the

ID/password combination provided by the user in a get_authToken request is valid. The

default Authenticator implementation simply approves any authentication attempt. It is

expected that a typical jUDDI deployment will use an external authentication mechanism.

The second step confirms that the publisher has been defined to jUDDI. A publisher is

said to be defined when a row identifying the publisher exists in the PUBLISHER table

of the jUDDI datastore.

The PUBLISHER table consists of several columns but only four of them are required

and they are defined as follows:

Table 4.3 Publisher table

Column Name Description

PUBLISHER_ID The user ID the publisher uses when authenticating.

PUBLISHER_NAME The publisher's name.

ADMIN
Indicate if the publisher has administrative privileges. Valid

values for this column are 'true' or 'false'.

ENABLED
Indicate if the publishers account is enabled and eligible for

use.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 88

The jUDDI web application will be extended to facilitate the Publisher creation process.

The value of the ADMIN column in the PUBLISHER table above will be used to

determine who has the privilege to create new jUDDI publishers.

UUID Generation (jUDDI UUIDGen)

The UDDI specification indicates that each Business, Service, Binding and TModel is to

be uniquely identified by a Universally Unique ID (UUID). Additionally, jUDDI also

uses the UUID generator to create AuthTokens.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 90

Chapter 5

Smart Web service discovery enhanced with QoS Monitor

In Chapter 3, we have discussed two different web service registries, based on centralized

approach, namely UDDI registry and ebXML registry which allow service providers to

register their web services and service consumers to discover them. Though both of these

registries are playing important role in e-business applications based on Service Oriented

Architecture and have many things in common, in many aspects UDDI is architecturally

superior to ebXML. Some more reasons to choose UDDI registry for service discovery are

ebXML repositories are intended for more general purpose storage as compared to UDDI

registry whereas UDDI is more focused on the kind of information that can be stored in the

White, Yellow and Green pages; ebXML provide a global e-business standard of bigger size

and magnitude that takes time and patience, which the industry either can't afford or chooses

not to provide at this time whereas UDDI is not trying to own the world of e-business, but

simply trying to facilitate all web-based services for query and introspection.

In Chapter 4, two different mechanisms based on UDDI registry are discussed in detail,

which can be used to publish a web service along with its QoS information and discover a

web service according the service consumer’s functional and QoS requirement. However,

Reputation enhanced model for web service discovery model lacks trustworthiness of web

service QoS claimed by service provider and QoS Certifier based mechanism just suggest the

need of introducing a role of certifier in service oriented architecture, but lacks in

implementation of the certifier. In this Chapter, we have discussed a new mechanism for web

service discovery based on QoS which will rank services according to user’s preference of

QoS and monitor ratings, at the same time ensuring those QoS values by monitoring them at

regular intervals.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 91

Even though many of previously discussed approaches also emphasize on web service

discovery with QoS, none of them tackle the issue of trustworthiness of the published QoS

information which is given by service provider themselves. Also there was no provision for

specifying the priorities for each QoS parameter by the service consumer. In our proposed

model, services whose QoS information is stored in the UDDI registry are monitored by

Service Monitor on regular intervals and based on the deviation between published and actual

QoS value, monitor ratings are given for each service. These monitor ratings are stored over

the time period and used to calculate monitor score for each service. If the service consumer

requests for a web service, he can specify his functional requirement, QoS requirement,

domain requirement and monitor score requirement. Accordingly the Discovery agent will

match, rank and select the services. Algorithms are proposed for service matching, ranking

and selection which takes service monitoring into account in the ranking process.

The standard SOA based models for web service publish and discovery comprise of three

roles as service consumer who inquires for a web service, service provider who provides

a web service and UDDI registry where information regarding web service is published.

Figure 5.1 : Service QoS Monitor Based Model For Web Services Discovery

Service Info

QoS Info

Ratings
Discovery
Request/ Result

Monitor Scores

Request/Response
Service Provider Service Consumer

QoS Monitor Discovery Agent

MonitorRating DB

UDDI
Registry

QoS

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 92

In the proposed model, apart from these three roles, the UDDI registry is enhanced with

QoS information, and two additional roles as a Discovery Agent and a Service Monitor as

shown in Figure 5.1. QoS information of services provided by service consumer is stored

in tModels in UDDI registry at the time of publishing a web service. The Discovery

Agent assists service consumer to find the desired web service in the UDDI registry

based on his service QoS requirement, domain requirement and monitor requirement with

the help of a Service Monitor. The Service Monitor regularly (every week) monitors the

services for verifying the QoS information provided by the service provider at the time of

service publishing and updates monitor rating database. Based on those ratings, it

provides service monitor scores to the discovery agent during web service discovery.

5.1 Publishing and updating QoS Parameters

QoS information of a web service is stored in one of the data structure of UDDI registry,

tModel. When a service provider publishes a new web service in a UDDI registry, a

tModel is created which stores the QoS information of the service and is registered with

the registry. This tModel is referenced in the bindingTemplate that represents the web

service deployment. Each QoS parameter is represented by a keyedReference in the

generated tModel. The QoS parameter is specified by the keyName, and its value is

specified by the keyValue. We assume default units for the values of QoS parameters and

hence are not represented in the tModel.

QoS Parameters

The international quality standard ISO 8402 (part of the ISO 9000 (ISO9000 2002))

define quality as “the totality of features and characteristics of a product or service that

bear on its ability to satisfy stated or implied needs.” We define quality of service as a set

of non-functional characteristics that may affect the ability of the service to perform. QoS

support for web services can provide a new business value to service providers by

assuring a certain service quality for users. QoS parameters which we have discussed

here are response time, reliability, availability, scalability and cost.

 Response time – The guaranteed max time required to complete a service request. In

general, high quality web services should provide faster response time. The request

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 93

time is the time when the client submits a request to the Web server, and the response

time is the time when the server replies after processing the request. We have

considered unit for measuring response time is second. It can be measured by keeping

track of the timestamps at the service request time and service response times. If the

time at which the client requests for web service is t1 and the time at which the client

receives response is t2, then the response time can be calculated as

Response time = t2 – t1

For Example, if the timestamp (t1) of client request is 15:25:00.812 and the

timestamp (t2) of response to client is 15:25:01.968, then the response time of web

service can be calculated as 1.156 seconds

 Throughput –Throughput is the number of requests completed over a period of time.

Throughput can be measured by keeping track of the timestamps at the request time

and response times. It is computed as the total number of requests divided by the

elapsed time between the request time and the response time.

Throughput = (number of requests processed)/(unit time)

For Example, if the timestamp (t1) of client request is 16:09:00.324 and the

timestamp (t2) of response to client is 16:09:00.350, then its throughput can be

calculated as 1/0.026 request per second.

i.e. Throughput =~ 38 requests per second.

 Reliability – Reliability is the ability of a web service to perform its required

functions under given conditions for a specified time interval. It also refers to the

assured and ordered delivery for messages being sent and received by service

requestors and service providers. Reliability determines the percentage of the times an

event is completed with success. This will help service consumer to expect the

probability of a failure during a transaction. Service invocation attempt may either

succeed or fail, and there is no middle way in that issue. Therefore, total number of

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 94

service invocation attempts will be the number of failures added to the number of

successful service invocations. We have measured reliability in %. Let d denote the

number of days a web service is monitored for recording the number of failures. Let n

be the number of failures encountered during that period. Here failures are considered

as it is easy to count the number of failures than the successful service invocations. If

N is the total number of events (number of successful service invocations plus

number of failures), then the reliability or the success rate in one day can be derived.

Ratio of failure in d days = n / N

Daily average failure rate = n / (N * t)

Success rate or Reliability = 1 – (n /(N * t))

For Example, if the service consumer sent requests to the web server for 5 days and

the number of failures was counted and the reliability was calculated as follows:

Total number of service invocation attempts (number of successful service invocation

plus number of failed events) in d days (N) = 520000 where d = 5 days.

Failures in d days (n) = 20000.

Failure rate (n /(N * d)) = 0.0077

Success rate or Reliability = 1 – 0.0077 = 0.9923

Hence, Reliability (%) = 99.23%

 Availability – Availability is the probability that the web service is up and in a readily

consumable state. The web Service should be ready and available immediately when

it is invoked. High availability ensures that the system failures or server failures

would be less even during the peak times when there is heavy traffic to and from the

server and that the given service is available continuously at all times. Let us say the

“down time” is when a web service is not available. As the web service is either

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 95

available or unavailable, the remaining time after subtracting the down time can be

termed as the “up time” that means the web service is available.

Availability = 1 – [(down time)/(unit time period measured)]

If a web service ws1 is monitored over 1 week i.e. 7 days x 24 hours x 60 minutes x

60 seconds = 604800 seconds, we found it was down for 2 hours i.e. 2 hours x 60

minutes x 60 seconds = 7200 seconds in the whole week. The availability of web

service ws1 can be computed as –

Availibility = 1 – (7200/604800) = 0.9881

Availibility (%) of ws1 is 98.81%

 Cost – Cost is the measure of the cost of requesting a service, which is specified by

service provider at the time of publishing a service. It may be charged per service

requests, or could be a flat rate charged for a period of time. For Example cost of ws1

is $10 per year.

For example, a company XYZ publishes its Currency Converter service in a UDDI

registry with the following QoS information:

 Response time: 0.10 second

 Throughput: 250 transaction/second

 Reliability: 99.9%

 Availability: 99.9%

 Cost: USD 0.01 per transaction

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 96

The company XYZ creates and registers a tModel that contains the QoS information for

this service before it publishes the service with the UDDI registry. An Application

Programming Interface (API) to the UDDI registry, such as UDDI4J [34], may be used to

facilitate the service publishing process. Above Figure shows an example of this tModel.

Service consumers can find the desired web service that match their QoS requirement

with its QoS information stored in tModels as shown above in a UDDI registry, by

querying the UDDI registry.

<tModel tModelKey="xyz.com:CurrencyConverterService: PrimaryBinding:QoSInformation"">
<name>QoS Information for CurrencyConverterService </name>
<overviewDoc>

<overviewURL>
http://xyz.com/qos.xsd

<overviewURL>
<overviewDoc>
<categoryBag>

<keyedReference
tModelKey="uddi:uddi.org:QoS:ResponseTime"
keyName="ResponseTime"
keyValue="0.10" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:Throughput"
keyName=" Throughput"
keyValue="250" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:Reliability"
keyName="Availability"
keyValue="99.9" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:Availability"
keyName="Availability"
keyValue="99.9" />

<keyedReference
tModelKey="uddi:uddi.org:QoS:Cost"
keyName="Cost"
keyValue=" 0.01" />

</categoryBag>
</tModel>

Figure 5.2 The tModel with the QoS information

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 97

If QoS information of a web service stored in tModel in UDDI registry need to be

updated, only service provider has the right to modify and update it. To facilitate the

process of updating QoS information, an API to the UDDI registry, such as UDDI4J may

be used. At the time of updating service QoS information, first it retrieves the registered

tModel for the service from the UDDI registry, updates its content and saves it with the

same tModelkey.

5.1.1 Algorithm for Publishing Service in UDDI Registry

When a new service provider wants to publish his services in the UDDI registry, he has

to first register with the registry. After registration a user id and password is assigned to

him, with which they will create a businessEntity and save it in the registry. Under that

businessEntity, a web service is published along with its QoS information according the

steps shown in algorithm in Figure 5.3

Algorithm 5.2.1: Publishing Web Service

Input : authToken, businessInfo, serviceInfo, QoS of service, domain

Output : Published services for a.business

Method :

1. Accept an authToken by passing user id and password registered at the

UDDI registry

2. Create a business entity to represent the provider

3. For each service to be published

(i) Create a tModel to represent the QoS information and domain

for the service, save it in the UDDI registry

(ii) Create a bindingTemplate containing a reference to the tModel

(iii) Create a service entity to represent the service that the provider

is publishing

(iv) Set the reference to the bindingTemplate in the service entity

(v) Add the service entity to the business entity

4. Save the business entity in the UDDI registry, receive a businessKey and

a list of service keys assigned by the UDDI registry

Figure 5.3 Algorithm of Publishing Web Service

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 98

5.1.2 Algorithm for Updating Service QoS information in UDDI Registry

Over the time period, if the service provider need to update QoS information for a

particular web service published in the UDD registry, he can retrieve the business entities

and service entities by providing the businessKey and serviceKey. Figure 5.4 shows a

detailed algorithm for service QoS information update process.

5.2 Discovering Service in UDDI Registry

A service consumer sends a request for a web service to the registry in which he

specifies the functional requirement, QoS and/or monitoring requirement. As a

discovery agent receives the request, it matches the service requirements with the

registered services, ranks the matched services according to the QoS and/or monitoring

requirement specified and returns them to the consumers. Figure 5.5 shows the detailed

Algorithm 5.2.1: Updating Service QoS Information

Input : authToken, businessKey, serviceKey, new QoS of service

Output : Updated service with new QoS information

Method :

1. Accept an authToken by passing user id and password registered at the

UDDI registry.

2. Find the business entity representing the provider with businesskey.

3. For each service to be updated

(i) Find the service entity representing the service that is to be

updated with the servicekey.

(ii) Find and update the tModel representing the QoS information

for the service with new QoS information, save it in the UDDI

registry with the same tModelkey.

Figure 5.4 Algorithm of Updating Service QoS Information

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 99

algorithm of how discovery agent finds services that meet a consumer’s functional, QoS

and/or monitoring requirements

For example, consider a company looking for a Currency Converter service for its

business application. The company specify the following service requirement details as

shown in Table 5.1 :

Algorithm 5.2.1: Discovering a Web Service

Input : authToken, functionalReq, QoSReq, domainReq

Output : Published services for a.business

Method :

1. Accept an authToken by passing user id and password registered at the UDDI

registry

2. Find services that match the customer’s functional requirements.

3. For each of the services that meet the customer’s functional requirements

(i) Find the service entity representing service in the UDDI registry with

the serviceKey.

(vi) Find the tModel representing the QoS information and domain for the

service.

(vii) Add the serviceKey to the short listed service list if the service’s QoS

information in the tModel meets the customer’s QoS requirements

and domain match the customer’s domain specification.

4. Determine ranking of each service in the short listed list based on their QoS

score and Monitor score, arrange them in ascending order of their rank and

return the specified number of services based on the consumer’s requirement

Figure 5.5 Algorithm of Discovering a Web Service

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 100

Service name or description : Currency Converter

QoS Parameter QoS Value Preference Order

Response time: 0.05 second 1

Throughput: 500 trans/sec 4

Reliability: 99.0% 2

Availability: 99.0% 3

Cost: USD 0.02 per trans 5

Monitor Score : > 9.0

The company relies more on monitor score (more QoS assured service) than on QoS of

the service, so it specifies a weight of 0.6 to the monitor requirement and a weight of 0.4

to the QoS requirement in the discovery request. Preference order for each QoS is also

specified in the request as shown in Table 5.1. Figure 5.6 shows a SOAP request example

for service discovery with these QoS and Monitor requirements.

Table 5.1 : Service requirements – functional, QoS and monitoring requirement

<?xml version="1.0" encoding="UTF-8" ?>
<envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<body>
<find_service generic="1.0" xmlns="urn:uddi-org:api">

<functionalRequirement>
Currency Converter

</functionalRequirement>
<qualityRequirement weight=0.4>

<responseTime pref = “1”>0.05</responseTime >
<throughput pref = “4”>500</throughput>
<reliability pref = “2”>99.0</ reliability >
<availability pref = “3”>99.0</availability>
<price pref = “5”>0.02</price>

</qualityRequirement>
<monitorRequirement weight=0.6>

<monitorScore>8</monitorScore >
</monitorRequirement>
<maxNumberService>3</maxNumberService>

</find_service>
</body>

</envelope>

Figure 5.6 : Service Discovery Request SOAP Message

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 101

<?xml version="1.0" encoding="UTF-8" ?>
<envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<body>
<serviceList generic="1.0" xmlns="urn:uddi-org:api" truncated="false">

<serviceInfos>
<serviceInfo
serviceKey="9521db61-eac1-42e4-5ab0-1d87b8f1876a"
businessKey="8e4a1bc28-afb7-32a9-17ab-c2a32e6e1a27">

<name>Currency Converter1</name>
<qualityInformation>

<responseTime>0.05</responseTime >
<throughput>400</throughput>
<reliability>98.0</ reliability >
<availability>97.0</availability>
<price>0.03</price>

</qualityInformation>
<monitorScore>9</monitorScore>

</serviceInfo>
<serviceInfo
serviceKey="9643cb23-bca3-51f4-6ab1-2b76f3e5215b"
businessKey="7d3b2cd54-abc8-43b6-24cf-d3c13e7e2b16">

<name>Currency Converter2</name>
<qualityInformation>

<responseTime>0.06</responseTime >
<throughput>350</throughput>
<reliability>97.0</ reliability >
<availability>98.0</availability>
<price>0.02</price>

</qualityInformation>
<monitorScore>9</monitorScore>

</serviceInfo>
<serviceInfo
serviceKey="7221bd32-abc2-12d5-2cb3-4c01b4d1876a"
businessKey="6f4b2bb64-afc4-22b3-24ac-b3a24e5e1a18>

<name>Currency Converer3 </name>
<qualityInformation>

<responseTime>0.07</responseTime >
<throughput>350</throughput>
<reliability>97.0</ reliability >
<availability>97.0</availability>
<price>0.02</price>

</qualityInformation>
<monitorScore>9</monitorScore>

</serviceInfo>
</serviceInfos>

</serviceList>
</body>

</envelope>

Figure 5.7 : Service Discovery Response SOAP Message

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 102

When this SOAP request from service consumer is received by the discovery agent, it

finds 10 web services that meet the requirements specified in the request, ranks them

using their QoS scores and monitor scores and returns 3 top ranking services to the

consumer as the request specifies the maximum number of services to be returned are 3.

The discovery agent generates a SOAP message response of service discovery as shown

in Figure 5.7

5.2.1 Discovery Agent Workflow

Find services based
on functionality

Find services
matching QoS
requirements

QoS
requirement
specified ?

Rank matched
services with QoS

score

Rank matched
services with QoS
and Monitor scores

Display discovered services according to
max. no. of services specified

Yes

Yes

No

No

Figure 5.8 : Discovery Agent Workflow for Matching, Ranking and Selecting service

Monitor
requirement
specified ?

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 103

Figure 5.8 gives an idea of the high level view of the discovery agent workflow and

Figure 5.9 shows the steps of an overall algorithm for discovering the services.

In the above algorithm,

funct_Match returns a list of services that satisfy the functional requirement.

qosMatch returns the services that satisfy the QoS requirements.

Figure 5.9 : Overall Algorithm for service discovery

Algorithm 5.3.1: Overall algorithm for finding Services
Input : functReq, qosReqt, MonitorReq, maxNumServices
Output : Ranked services
Method :

findServices (functReq, qosReqt, domain, MonitorReq, maxNumServices)
{

// find services that match the functional requirements
funct_Matched = funct_Match(functReq);

if QoS requirements are specified in request

// find services that match QoS requirements
qosMatches = qosMatch (funct_Matched, qosReqt);

 else
 // return services according to the maxNumServices to be returned
 return selectServices(funct_Match, maxNumServices, “RANDOM”);

 if MonitorReq specified
 // rank matched services with QoS and Monitor scores
 shortlisted = monitorRank(qosMatches, qosReqt, MonitorReq);

/* return services according to the maxNumServices to be returned based
on overall score */
return selectServices(shortlisted, maxNumServices,

“OVERALL_SCORE”);

 else
 // rank matched services with QoS score
 shortlisted = qosRank(qosMatches, qosReqt);

/* return services according to the maxNumServices to be returned based
on QoS score */
return selectServices(shortlisted, maxNumServices, “QOS_SCORE”);

}

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 104

qosRank calculates QoS scores of all the services returned by the method qosMatch and

returns a list of services sorted by the QoS score in descending order.

monitorRank calculates monitor score of all the services returned by the method

qosMatch, removes services whose monitor scores are below the monitor requirement,

calculates overall scores for remaining services and returns a list of services sorted by the

overall score in descending order.

selectServices returns a list of services according to the maximum number of services to

be returned in the discovery request.

5.2.1.1 Service QoS Matching

In an algorithm given in Figure 5.10, a list of functionally matched services

funct_Matched and QoS requirements qosReqt are specified by service consumer are

given as input. For every services in the functionally matched service list, QoS

requirements specified by the consumer are matched with the published QoS information

and if matched, then those QoS matched services are returned as qos_matched.

Algorithm 5.3.2: Find services that match QoS requirements

Input : funct_Matched, qosReqt

Output : Matched services

Method :

1. Initialize qos_matched to empty list.

2. For each service s in funct_Matched service list

(i) Obtain QoS information qosPub from UDDI registry

(ii) If qosPub is available and match with qosReq, then add service s in

qos_matched list.

3. Return service list qos_matched.

Figure 5.10 : Service QoS Matching Algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 105

5.2.1.2 Service QoS Ranking

In an algorithm given in Figure 5.11, QoS matched services qos_matched, QoS

requirement vales qosReqt and preference order pref_val of each QoS specified by

service consumer are given as input. Assuming the default units for QoS parameter

values, first its type is checked as whether a particular QoS is mono increasing or mono

decreasing. Based on the type, QoS score is calculated for each service. In calculation of

QoS score, preference order pref_val of each QoS parameter is also considered. Then

services are sorted in descending order of QoS score and these QoS ranked services are

returned.

Algorithm 5.3.3: Rank matched services by QoS information

Input : qos_matched, qosReqt, pref_val

Output : QoS Ranked services

Method :

1. For each service s in qos_matched list

(i) For each QoS parameter in qosReqt,

a) Find the highest QoS value bestQoSVal

b) If qosReqt.QoS.type is monoIncreasing, then calculate QoS_Score

of each service as

s.QoS_Score = sum(qosReqt.QoS.value / bestQoSVal) * pref_val

 Else

s.QoS_Score = sum(bestQoSVal / qosReqt.QoS.value) * pref_val

2. Sort the service list on the basis of calculated QoS_Score in descending order.

3. Return the sorted service list.

Figure 5.11 : Service QoS Ranking algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 106

5.2.2 Monitoring Service QoS

Web Services are designed, developed and used like any other typical software.

However, various roles are involved during each phase of life cycle of a web service. In a

web service publishing/registration phase, service provider publishes service description

as well as QoS information in UDDI registry. A service consumer finds the desired

services by specifying functionality i.e. keyword and preferences of QoS parameters

retrieved from the UDDI registry. During this process, a service consumer also expects

service quality assurance. QoS Monitor component of Smart WebService Discovery

system continuously monitors web service qualities and based on the deviation found

between monitored and published QoS information, gives monitor ratings to each

registered service. These monitor ratings are used for calculating monitor score needed to

rank the services during service discovery process.

If the service consumer specifies a monitoring requirement in the service discovery

request, the discovery agent removes those services from the matched service list whose

monitor score is either unavailable or below the specified requirement. During this if only

one service remains, without processing further, it is returned to the consumer as it is the

only service that meets the consumer’s QoS and monitor requirement. If there are more

that one services meeting the consumer’s QoS and monitor requirement, QoS scores are

calculated for each as described in earlier section. Monitor scores of those matched

services are then adjusted using a factor f so that adjusted monitor scores range from 0.1

to 1. Factor f is calculated as f = 1 / h, where h is the highest monitor score in the matched

service list. Then all monitor scores are multiplied by the factor f so that the the score of

the service with best monitoring result is adjusted to 1, and the other services’ scores are

adjusted based on their original monitor scores. At the end, the discovery agent calculates

an overall score, which is as weighted sum of the QoS score and the adjusted monitor

score, for all services based on the weights of the QoS and monitor requirements

specified by the customer in the discovery request. Then a number of services are

selected according to the maximum number of services(N) to be returned in the request.

If N is greater than 1, the top N services with the highest overall scores are returned to

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 107

the consumer else one service is randomly selected from those whose overall score is

greater than LowLimit.

Figure 5.12 shows the steps for finding out those services from the QoS matched service

list, whose monitor rating is available and meed the consumer monitor requirement.

Monitor ratings are calculated according the algorithm given in Figure 5.13. This

algorithm will be auto executed weekly for monitoring the services registered in UDDI.

A test client application for measuring real time QoS will be invoking all the registered

web services on every week. The result of it containing monitored values of QoS along

with the timestamp on which the monitoring was done is recorded in Monitor Rating

database. Based on the deviations found between published QoS values and monitored

QoS values during monitoring services, monitor ratings will be calculated and stored in

the database which will be used for calculating monitor score of services.

Algorithm 5.3.4: Find QoS matched services those also match Monitor requirements

Input : qos_matched, qosReqt, MonitorReq

Output : Monitor Ranked services

Method :

1. For each service s in qos_matched list

(i) Obtain Monitor_rating from Monitor

(ii) If Monitor_rating is available and above MonitorReq value, then add

service s in monitor_matched list

(iii) Else remove service s from the list.

2. Return the service list monitor_matched list.

Figure 5.12 : Service QoS and Monitor Matching Algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 108

Algorithm 5.3.5: Calculate Monitor rating for each service
Input : services, qosPub, qosMon
Output : Services with Monitor rating for each service
Method :

1. For each service s in services list

(i) for each qos parameter, compute qosMon as
a) for each timestamp i from 1 to n (no. of timestamps ie. weeks)

qosMon = sum_qos / n

b) Compute deviation factor as,

qos_diff = qosPub – qosMon

c) If qos_diff <= 5 then

rating = 10
 Else if qos_diff <= 10 then

rating = 9
 Else if qos_diff <= 15 then

rating = 8
Else if qos_diff <= 20 then

rating = 7
 Else if qos_diff <= 25 then

rating = 6
Else if qos_diff <= 30 then

rating = 5
Else if qos_diff <= 35 then

rating = 4
 Else if qos_diff <= 40 then

rating = 3
 Else if qos_diff <= 45 then

rating = 2
Else if qos_diff <= 50 then

rating = 1
 Else
 rating = 0

(ii) Compute final Monitor_rating as,

Monitor_rating = sum of all ratings / number of qos parameters

2. Return the service list services with Monitor_rating.

Figure 5.13 : Monitor Rating Algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 109

In this algorithm, the monitor score of a service is computed as the weighted average of

all monitor ratings the service received from service monitor, where an inclusion factor

is the weight attached to each of the ratings for the service. The inclusion factor λ (0 < λ

< 1) is used to adjust the responsiveness of the monitor score to the changes in service

activity. When λ is set to 0, all ratings, except the ones that are provided by monitor on

the same day as the monitor score is computed, have a weight of 0 and are not be

included in the computation. When λ is set to 1, all ratings have equal weight of 1 and

used in the computation. A smaller λ means only recent ratings are included and a larger

λ means more ratings are included. Figure 5.14 shows an algorithm to calculate monitor

score for all services and returns those services for further processing.

Algorithm 5.3.6: Calculate Monitor score for each service

Input : services, S (Service Rating), Rating Time

Output : Services with monitor score

Method :

1. For each service s in services list

(i) Initialize sum_ratings, sum_aging to 0.

(ii) For each rating i to n

a) Calculate aging factor as

aging factor (γi) = λ
di

 where
di = the number of the days between the

 current time when the monitor score is

 computed and the time of the ith rating for

 the service

b) sum_ratings = sum_ratings + Si * γi

c) sum_aging = sum_aging + γi

(iii) Compute monitorScore as

monitorScore = sum_ratings / sum_aging

2. Return the service list services with monitorScore.

Figure 5.14 : Monitor Score Calculation Algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 110

Figure 5.15 shows the algorithm for calculating adjusted monitor score which will be

used for calculating overall score of each service.

In the algorithm shown in Figure 5.16, overall score for each service is calculated with

QoS Score, adjusted monitor score (obtained from above algorithms) and QoS weight,

Monitor weight requirement specified in service consumer’s request.

5.3.2 Service Selection

Algorithm 5.3.7: Calculate adjusted Monitor score for each service and rank them

Input : services

Output : Ranked service List with adjusted Monitor score for each service

Method :

1. Find the highest monitor score bestMonScore from the service list servicse.

2. For each service s in services list

Compute s.adj_monitorScore = s.monitorScore / bestMonScore

3. Sort the service list on the basis of calculated monitorScore in descending order

4. Return the service list services.

Figure 5.15 : Adjusted Monitor Score Calculation Algorithm

Algorithm 5.3.8: Calculate overall score for each service

Input : services, qosWeight, monWeight

Output : Adjusted Monitor score for each service

Method : Service List with overall score for each service

1. For each service s in services list

Compute s.overallScore as

s.overallScore = s.QoSScore * qosWeight + s.adj_monitorScore * monWeight

2. Return the service list services.

Figure 5.16 : Overall Score Calculation Algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 111

Figure 5.17 shows algorithm for service selection according to the maximum number of

services returned.

Algorithm 5.3.9: Select services according to the maximum number of services

returned

Input : services, option, maxNumServices

Output : Ranked services

Method :

1. Initialize final_servicelist to empty list of services.

2. If maxNumServices > 1, then

i. Initialize count to 0.

ii. while (count < maxNumServices and count < qos_matched.size())

a) final_servicelist.add(services[count])

b) Increment count by 1.

3. Else

i. Initialize candidate_services to empty list of services.

ii. If option = “RANDOM” then,

candidate_services = services

iii. Else

a) For each s in services

If option = “QOS_SCORE” then

If s.QoS_Score >= LowLimit, then add service s to

candidate_services

 Else

If s.overallScore >= LowLimit, then add service s to

candidate_services

 End For

b) rnum = random(0, candidate_services.size())

c) final_servicelist.add(services[rnum])

4. Return final_servicelist.

Figure 5.17 : Service Selection Algorithm

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 112

Chapter 6

Experiments and Results Analysis

In this chapter, we describe the experimental setup and implementation of the proposed

model for service discovery in the first section. In the next section, the results of the

evaluation of the experiments performed are presented. To demonstrate the working of

the model, we have illustrated two scenarios as : service providers publishing services

with QoS information in the UDDI registry and service consumers discovering services

that meet their functional and QoS requirements through discovery agent and service

monitor. A set of experiments is performed to evaluate our service matching, ranking and

selection algorithm and discussed the experimental results. Ultimately, the objective of

this evaluation is to show that by using the proposed model based on the algorithms

stated in Chapter 5, there are higher chances of selecting the most appropriate web

services with the desired and assured QoS for the consumer than those that do not meet

these requirements.

The implementation of service discovery model and the results of two scenarios are

described in section 6.1.The experimental setup for evaluating the proposed algorithms

and their results are presented in section 6.2.

6.1 Service Discovery Model implementation

The Service discovery model is implemented with the three components running on three

separate machines, as shown in Figure 6.1:

UDDI Registry and Discovery Agent : We have used jUDDI (Version 2.0rc5 based on

UDDI 2.0) to set up our own UDDI registry on the one machine, which is connected to a

local MySQL (Version 5.0.0) database. Our registry jUDDI and discovery agent program

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 113

based on the proposed algorithms run on TomCat 6.0 on the same server.

Service Consumer: A Java Program simulated as a service consumer run on second

machine. This program can send a service discovery request to the discovery agent

program running on the registry server to find services that meet its requirements.

Service Providers: A Java Program simulated as a service provider run on third machine.

This program publishes the web service, its QoS and updates it.

The three machines we used in our experiments are HP Compaq PC with Windows XP

operating system. The configuration of each PC is 1.60 GHz Intel Pentium 4 processor

and 2 GB RAM.

Scenario 1: Web Service Publishing with QoS

In this scenario, we have demonstrated about how the service providers publish their web

 UDDI Database
(MySQL) UDDI Registry

Service Discovery
Agent

Service Consumer Service Provider

Figure 6.1 : Service Discovery Model

Find services

Discover services

Publish services

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 114

services with QoS information in the UDDI registry. There are five different service

providers who publish their individual Currency Converter web service in the UDDI

registry with different QoS values. After executing the service provider program for

publishing service, another program to find the published service and its QoS tModel, is

executed using the service key assigned by the UDDI registry during publishing process.

The QoS tModel for the given service key is found and its contents are checked.

Scenario 2: Web Service Discovery

In this scenario, the demonstration of how service consumer finds services that meet their

functional and assured QoS requirements though a discovery agent. In the experiment,

the service consumer looks for Currency Converter web service whose response time is

0.02 sec, availability is 98%, reliability is 99%, throughput is 400 trans/sec and price is

$0.1. The preference order of QoS required for the web service is as response time 1st,

reliability 2nd, availability 3rd, throughput 4th, and price 5th. This means faster response is

the highest priority comparing to the price of the web service. When a service consumer

program is executed, a service discovery request is send to the discovery agent program.

The agent inquires the UDDI registry to find the services those meet the consumer’s

functional requirements (ie. Currency Converter), retrieve the QoS tModel for each of the

matched services and checks if the published QoS parameter values in the tModel

matches the required QoS in the discovery request. For each of the matched services,

monitor score will be calculated based on the monitor ratings obtained from the monitor

over the period of 1 month. If the live monitor score matches with the monitor score

specified in the request, those services are short listed for the selection. Then, maximum

number of services to be returned, as specified in the request are selected from that list

and send in the response to the service consumer.

6.2 Experimental Setup and Evaluation

We have described experimental setup and execution of discovery request in this section.

In the end, a set of experiments designed to evaluate the proposed algorithms and results

of experiments are presented. From the experimental results we have shown that the

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 115

chances of selecting a service that best match the consumer’s requirements are increased

by using the algorithms. We showed that the service those show higher deviation

between published QoS and actual QoS, that means whose monitor score is less, are less

likely to be selected than those services with higher monitor score. We also showed that

based on the QoS score and Monitor score weightage specified by the consumer in the

requirement, the service selection is affected. An observation of selecting a suitable

inclusion factor for reducing inconsistency in monitor score is also noted.

The experimental setup for the proposed algorithms is shown in Figure 6.2. Service

consumers send service discovery requests with different QoS and monitor requirements.

When the discovery agent program receives the request from the consumer, it retrieves

the QoS information from the database and executes the matching algorithm. If the

consumer specifies a monitoring requirement in the request, the agent program

communicates with service monitor program, which calculates and returns the monitor

score to the agent. The discovery agent ranks the matched services based on their QoS

and monitor scores, selects services that best meets the consumer’s requirements and

returns them to the consumer. In the following experiments, we have considered all

services having the same functionalities. All the consumers request the same functional

requirements which are satisfied by these services. The QoS information of all these

services varies according to the providers. The values of QoS parameters exhibited here

are for experiment purpose only and are not intended to reflect the real level of quality of

these services. Machines used in our experiments are HP Compaq PC with Windows XP

operating system. The configuration of each PC is 1.60 GHz Intel Pentium 4 processor

and 2 GB RAM.

6.2.1 Service Monitor Ratings and Execution of Discovery Requests

For the experiment purpose, different QoS parameter values are provided for the same

services on different timestamps so that service monitor can rate them based deviation

between published QoS and monitored QoS. The monitor score of the service is

calculated based on these ratings. Each consumer sends a discovery request to the

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 116

discovery agent after each new rating is given and stored in ratings table. Hence, the

monitor score of a service may be varying because a new monitor rating may be different

from earlier one. In the starting of each experiment, there is only one monitor rating for

each service. As the experiment progresses, a new rating is calculated and stored by the

service monitor for each service on each timestamp. The number of ratings are equivalent

to the number of timestamps for which monitoring was done.

6.2.1.1 Results obtained by specifying Only Functional Requirement

In the first experiment, for a customer C1, a service discovery request is executed for

functional requirement only without specifying QoS and Monitoring of QoS requirement.

Table 6.1 Customer C1 Requirement

Functional Requirement Currency Converter Service

Max. no. of services 5

After specifying input as functional requirement only and maximum number of services

for the selection, as a result service consumer C1 obtained 5 services for selection from

functionally matched set of 50 web services WS1 to WS50 on the basis of maximum

number of services to be returned and service publish timestamp. The ranking for these 5

services will be done on the basis of the time on which service was published in the

UDDI registry. The recent one will be having top rank and so on.

Table 6.2 Services returned for Customer C1

Every time when a new service is published in the registry, it will match it for functional

requirement and return the maximum number of latest services requested by the

consumer. Consumer C1 requested 5 maximum numbers of services from the UDDI

Service
Name

Response Time
(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($) Rank

WS50 0.05 98.00 98.00 300 3.00 1

WS49 0.06 99.00 99.00 400 5.00 2

WS48 0.07 99.90 98.00 400 4.00 3

WS47 0.03 99.00 99.90 200 6.00 4

WS46 0.04 99.99 98.50 300 6.00 5

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 117

registry for the selection. He has to evaluate those 5 services on the basis of its non

functional characteristics manually and select the appropriate service according to his

requirement. Disadvantages of this type of service selection are as – (1) The services

which are returned in the result for the selection are only based on their time of

publishing, irrespective of their nonfunctional attributes. The chances of the best service

selection are reduced as all the functionally matched services are not available for

evaluation and selection. (2) As the evaluation of the services returned in the result is

manual, it is tedious, time consuming and may be inaccurate. (3) The quality attributes of

the services shown in the result are published by the service providers themselves at the

time of service publishing/updating which may not trustworthy always and may vary over

the time.

Hence, if Customer C1 sends discovery request for the same functionality 10 times with

some days of time interval gap, during which many services matched with this

functionality are published in the UDDI registry, he may get different results returning

latest services irrespective of their appropriateness for him.

6.2.1.2 Results obtained by specifying Functional Requirement and QoS

requirement

In this experiment, for a customer C2, a service discovery request is executed in which he

specified a functional as well as QoS requirement without preference for QoS parameters

as follows :

Table 6.3 Customer C2 Requirement

Functional Requirement : Currency Converter
QoS Requirement :

QoS Parameter QoS Value

Response Time (seconds) 0.05 second

Reliability (%) 99.0%

Availability (%) 99.0%

Throughput (trans/sec) 300 trans/sec

Price ($) USD 0.02 per trans

Max. no. of services 5

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 118

When a Customer C2 sends a discovery request with the input as functional requirement,

QoS requirement and maximum number of services for the selection, as specified in

above table, he obtained the output with the result from functionally and QoS matched set

of 50 web services WS1 to WS50 on the basis maximum number of services to be

returned as shown in the following table. The ranking for these 5 services will be done on

the basis of QoS Score calculated for each service. The service with the highest QoS

score will be ranked first and so on.

The services along with QoS Score available for selection are as follows :

Table 6.4 Services returned for Customer C2

As a result, the most appropriate web service with the highest QoS score is WS23 (QoS

score = 4.6000).

In this experiment, from those services whose functional and QoS requirements are

matched, are shortlisted for the final selection. For each of these service QoS score is

calculated and based on this score set of services is sorted in ascending order. The

Service
Name

Response Time
(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($)

QoS
Score

WS20 0.04 99.00 99.00 350 4.00 4.3610
WS23 0.05 99.50 99.90 400 3.00 4.6000
WS31 0.04 99.10 99.50 400 4.00 4.4920
WS40 0.03 99.10 99.50 300 4.00 4.4920
WS43 0.05 99.00 99.00 380 3.00 4.5910

We b Se rv ice s e xhibiting the ir QoS score

4.2000
4.2500
4.3000
4.3500
4.4000
4.4500
4.5000
4.5500
4.6000
4.6500

WS20 WS23 WS31 WS40 WS43

W eb Services

Q
oS

 S
co

re
s

Figure 6.2 Graph of obtained web services with their QoS score for customer

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 119

maximum number of services to be returned in the result as specified in the consumer

request, are shown to the service consumer in the output and then he will make the final

service selection. Though, in this type of service selection, along with functional

requirement, QoS of service is also taken into consideration for making the service

available for the selection, some of the disadvantages in this type of service selection are

as – (1) As QoS score is calculated giving equal weight to each QoS parameter, customer

is unable to select the service according to his choice of parameters. E.g. in the above

experiment QoS score of web service WS23 is highest (4.6000), whereas the response

time of WS40 is highest(0.03 sec) as compared to WS23(0.05 sec) and rest of the QoS

parameter values of WS40 are lesser than those of WS23. The probability of selecting

web service WS23 is more than rest of the shortlisted services as its QoS score is higher.

In this case, if the customer want a service with the preference order of QoS parameter as

response time, availability, reliability, throughput and price, this selection won’t allow

him. (2) Another problem which remain as we have stated earlier that the quality

attributes of the services shown in the result are published by the service providers

themselves at the time of service publishing/updating which may not trustworthy always

and may vary over the time.

6.2.1.3 Results obtained by specifying Functional Requirement and QoS

requirement with QoS preference order

In this experiment, for a customer C3, a service discovery request is executed in which he

specified a functional as well as QoS requirement with preference for QoS parameter as

follows :

Table 6.5 Customer C3 Requirement

Functional Requirement : Currency Converter
QoS Requirement :

QoS Parameter QoS Value QoS Preference Order

Response Time (seconds) 0.05 second 1

Reliability (%) 99.0% 2

Availability (%) 99.0% 3

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 120

Web Services exhibiting their QoS score

11.5000

12.0000

12.5000

13.0000

13.5000

14.0000

14.5000

15.0000

WS20 WS23 WS31 WS40 WS43

Web Services

Q
oS

 S
co

re
s

Figure 6.3 Graph of obtained web services with their QoS score for customer C3

Throughput (trans/sec) 300 trans/sec 4

Price ($) USD 0.02 per trans 5

Max. no. of services 5

When a Customer C3 sends a discovery request with the input as functional requirement,

QoS requirement along with the QoS parameter preference order and maximum number

of services for the selection, as specified in above table, he obtained the output with the

result from functionally and QoS matched set of 50 web services WS1 to WS50 as shown

in the following table. The ranking for these 5 services will be done on the basis of QoS

Score calculated for each service. In the calculation of QoS score, QoS parameter value

as well as its preference order is also taken into consideration. The service with the

highest QoS score will be ranked first and so on.

The services along with QoS Score available for selection are as follows :

Table 6.6 Services returned for Customer C3

Service
Name

Response Time
(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($)

QoS
Score

WS20 0.04 99.00 99.00 350 4.00 12.9629

WS23 0.05 99.50 99.90 400 3.00 14.6000

WS31 0.04 99.10 99.50 400 4.00 13.4799

WS40 0.03 99.10 99.50 300 4.00 12.7299

WS43 0.05 99.00 99.00 380 3.00 14.3629

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 121

As a result, the most appropriate web service with the highest QoS score is WS23 (QoS

score = 14.6000) with the preference order as Price, Throughput, Availability, Reliability

and Response Time.

The same experiment is executed for the customer C4 with the different preferences

given for the QoS parameters having similar QoS values requirement given in below

table :

Table 6.7 Customer C4 Requirement

Functional Requirement : Currency Converter
QoS Requirement :

QoS Parameter QoS Value QoS Preference Order

Response Time (seconds) 0.05 second 5

Reliability (%) 99.0% 4

Availability (%) 99.0% 3

Throughput (trans/sec) 300 trans/sec 2

Price ($) USD 0.02 per trans 1

Max. no. of services 5

The services along with QoS Score available for selection are as follows :

Table 6.8 Services returned for Customer C4

Service
Name

Response Time
(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($)

QoS
Score

WS20 0.04 99.00 99.00 350 4.00 13.2029

WS23 0.05 99.50 99.90 400 3.00 13.0000

WS31 0.04 99.10 99.50 400 4.00 13.4719

WS40 0.03 99.10 99.50 300 4.00 14.2219

WS43 0.05 99.00 99.00 380 3.00 12.8529

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 122

As a result, the most appropriate web service with the highest QoS score is WS40 (QoS

score = 14.2219) with the preference order as Response Time, Reliability, Availability,

Throughput, and Price.

The same experiment is executed for the customer C5 with the different preferences

given for the QoS parameters having similar QoS values requirement given in below

table :

Table 6.9 Customer C5 Requirement

Functional Requirement : Currency Converter
QoS Requirement :

QoS Parameter QoS Value QoS Preference Order

Response Time (seconds) 0.05 second 2

Reliability (%) 99.0% 4

Availability (%) 99.0% 3

Throughput (trans/sec) 300 trans/sec 5

Web Services exhibiting their QoS score

12.0000

12.5000

13.0000

13.5000

14.0000

14.5000

WS20 WS23 WS31 WS40 WS43

Web Services

Q
oS

 S
co

re
s

Figure 6.4 Graph of obtained web services with their QoS score or customer C4

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 123

Price ($) USD 0.02 per trans 1

Max. no. of services 5

The services along with QoS Score available for selection are as follows :

Table 6.10 Services returned for Customer C5

As a result, the most appropriate web service with the highest QoS score is WS31 (QoS

score = 14.2219) with the preference order as Price, Response Time, Availability,

Reliability and Throughput.

In this experiment, according to the service consumer’s requirements, those services

Service
Name

Response Time
(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($)

QoS
Score

WS20 0.04 99.00 99.00 350 4.00 13.5779

WS23 0.05 99.50 99.90 400 3.00 14.2000

WS31 0.04 99.10 99.50 400 4.00 14.2219

WS40 0.03 99.10 99.50 300 4.00 13.4719

WS43 0.05 99.00 99.00 380 3.00 13.9029

Web Services exhibiting their QoS score

13.0000

13.2000

13.4000

13.6000

13.8000

14.0000

14.2000

14.4000

WS20 WS23 WS31 WS40 WS43

Web Services

Q
oS

 S
co

re
s

Figure 6.5 Graph of obtained web services with their QoS score for customer C5

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 124

whose functional and QoS requirements are matched, are shortlisted for the final

selection. For each of these services, QoS score is calculated considering QoS parameter

value and its preference weight. A set of shortlisted services is sorted in descending order

of this QoS score. From this sorted list of services, the maximum number of services to

be returned in the result as specified in the consumer request, are shown to the service

consumer in the output and then he will make the final service selection. Even though all

the three customers C3, C4 and C5 in this experiment specify the similar functional and

QoS requirements but different QoS parameter preference order, the most appropriate

service for customer C3 is obtained as WS23, C4 is obtained as WS40 and C5 is obtained

as WS31. From this it can be inferred that, QoS preference order has great impact on the

service selection.

In this type of service selection, along with functional requirement, QoS of service and

the QoS parameter preference order is also taken into consideration for making the

service available for the selection. Hence the customers are allowed to prioritize their

QoS requirement, but still the problem of trustworthiness of the QoS parameter values is

still remaining and need to overcome.

6.2.1.4 Results obtained by specifying Functional requirement, QoS requirement

and Monitor requirement

To overcome the problem of trustworthiness of the QoS parameter values published by

the service provider themselves at the time of service publishing, we have introduced the

concept of monitor who will be monitoring the published web services in the registry on

regular time intervals by directly invoking the service through the service URL provided

in web service description document which is stored in the UDDI registry. This monitor

will rate the monitored services on those timestamps between 0 to 10 and these ratings

are stored in the ratings table in the registry database. In this experiment, from the set of

functionally and QoS matched services with the specified QoS parameter preference

order, monitor ratings for the period of one month are considered for finding the most

appropriate service for the consumer with the desired functionality and QoS parameter

values. Again there is choice for the customer to give different weightages for QoS and

Monitor ratings depending on whether he wants the service with highest QoS score value

or with the assured QoS score value.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 125

Table 6.11 Published QoS with QoS Score for each QoS matched service

Web Service
Name

Response
Time

(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($)

QoS
Score

WS20 0.04 99.00 99.00 350 4.00 13.2029

WS23 0.05 99.50 99.90 400 3.00 13.0000

WS31 0.04 99.10 99.50 400 4.00 13.4719

WS40 0.03 99.10 99.50 300 4.00 14.2219

WS43 0.05 99.00 99.00 380 3.00 12.9730

Ratings given to the shortlised services on monitoring timestamps are as shown in the

following table :

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 126

Table 6.12 Actual QoS and Monitor Ratings for QoS matched services over one

month

Web Service
Name

Response Time
(seconds)

Reliability
(%)

Availability
(%)

Throughput
(trans/sec)

Price
($)

Monitor
Rating Timestamp

WS20 0.05 97.00 96.00 300 4.00 8 2013-06-03 10:10:42

WS20 0.06 96.00 97.00 320 4.00 7 2013-06-10 10:01:27

WS20 0.05 98.00 98.00 300 4.00 8 2013-06-17 10:12:15

WS20 0.04 98.50 96.00 340 4.00 10 2013-06-24 10:08:14

WS23 0.07 97.00 95.00 300 3.00 7 2013-06-03 10:25:33

WS23 0.08 96.00 96.00 320 3.00 6 2013-06-10 10:21:25

WS23 0.07 96.00 97.00 330 3.00 7 2013-06-17 10:28:22

WS23 0.08 95.00 96.00 310 3.00 6 2013-06-24 10:21:23

WS31 0.05 97.00 96.00 350 4.00 8 2013-06-03 10:46:29

WS31 0.06 96.00 95.00 370 4.00 7 2013-06-10 10:39:46

WS31 0.05 95.00 96.00 380 4.00 9 2013-06-17 10:46:16

WS31 0.06 97.00 97.00 360 4.00 7 2013-06-24 10:42:36

WS40 0.04 96.00 95.00 250 4.00 8 2013-06-03 11:04:23

WS40 0.05 95.00 97.00 200 4.00 5 2013-06-10 10:56:26

WS40 0.04 96.00 96.00 280 4.00 8 2013-06-17 11:05:03

WS40 0.05 97.00 97.00 220 4.00 6 2013-06-24 10:58:24

WS43 0.07 97.00 97.00 350 3.00 8 2013-06-03 11:22:38

WS43 0.08 95.00 95.00 280 3.00 6 2013-06-10 11:17:14

WS43 0.07 96.00 96.00 340 3.00 8 2013-06-17 11:19:17

WS43 0.06 98.00 96.00 320 3.00 9 2013-06-24 11:15:26

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 127

Table 6.13 Services returned with Overall score having different ranking for

different weights given to QoS and Monitor Score

 Overall Score

Web
Services

Name

QoS weight =
0.5 & Monitor
weight = 0.5

QoS weight = 0.3
& Monitor weight

= 0.7

QoS weight =
0.7 & Monitor

weight = 0.3

QoS weight = 0.1
& Monitor

weight = 0.9

QoS weight = 0.9
& Monitor

weight = 0.1

WS20 0.964173754 0.978504252 0.949843256 0.992834751 0.935512757

WS23 0.850980755 0.825739968 0.876221542 0.800499181 0.901462329

WS31 0.943329199 0.941755095 0.944903303 0.940180991 0.946477406

WS40 0.909090909 0.872727273 0.945454545 0.836363636 0.981818182

WS43 0.925788141 0.931230460 0.920345821 0.936672780 0.914903502

Figure 6.6 Graph of obtained web services with Overall score with

increasing Monitor weight
In this case, web service WS20 is showing the best overall score if consumer gives equal

or more weightage to Monitor ratings.

Overall Score with increasing Monitor Weight

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

WS20 WS23 WS31 WS40 WS43

Web Services

O
ve

ra
ll

Sc
or

e

Overall Score
QoS weight = 0.5 & Monitor
weight = 0.5
Overall Score
QoS weight = 0.3 & Monitor
weight = 0.7
Overall Score
QoS weight = 0.1 & Monitor
weight = 0.9

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 128

Figure 6.7 Graph of obtained web services with Overall score with

increasing QoS weight
In this case, web service WS40 is showing the best overall score if consumer gives more

weightage to QoS score obtained from published QoS parameter values.

Therefore, we can say that giving different weightage to Monitoring and published QoS

parameter values the result may be affected as the candidate services for the selection are

changed. Though it is obvious that more weightage given to monitor rating is

appreciable, it is quite possible that ratings of the services may be changed over the time

and its monitored QoS parameter values may be nearer to its published QoS parameter

values for some time period and in that case given more weightage to monitor rating may

miss out the best QoS web service from the selection.

Overall Score with increasing QoS Weight

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

WS20 WS23 WS31 WS40 WS43

Web Services

O
ve

ra
ll

Sc
or

e

Overall Score
QoS weight = 0.5 & Monitor
weight = 0.5
Overall Score
QoS weight = 0.7 & Monitor
weight = 0.3
Overall Score
QoS weight = 0.9 & Monitor
weight = 0.1

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 129

6.2.1. 5 Effect of inclusion factor λ on monitor ratings

An inclusion factor λ is used to adjust the responsiveness of the monitoring score based

on the changes in service behavior over the time period. We evaluate the effect of λ on

the monitoring score and the result is shown in following figure. The monitoring score of

a service is plotted as a function of the number of ratings provided by the monitor. When

the inclusion factor is set to 0.25, only the recent ratings are taken into consideration for

calculating the monitor score. Contrary to that when the factor is set to 0.75, more ratings

are taken in the calculation of monitor score. The maximum inclusion factor value 1

makes the monitor score become stable but insensitive to changes in the ratings. The

smaller inclusion factor vale 0 makes the monitor score respond quickly to changes in the

ratings but may vary randomly.

Figure 6.8 Graph showing effect of aging factor on Monitor score

Monitor score based on aging factor λ

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 3 5 7 9 11 13 15 17 19

Ratings

M
on

ito
r S

co
re

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 130

6.3 Summary of Results Obtained

As can be seen from the above experiments’ results and analysis,

1. Web service discovery by specifying functional as well as non-functional attributes

ie. QoS parameter will yield better result as compared to only functional

requirements.

2. Adding QoS requirement in the discovery request is not sufficient, but also customer

should be able to specify the QoS preference order in the request.

3. By specifying the weightage of QoS score and monitored QoS score will narrow the

search by matching them with the specified QoS score and monitor score weight.

4. Monitor ratings for a longer period will give more stable QoS which may be useful

for the service selection.

Results are summarized more concretely in the next chapter.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 131

Chapter 7

Summary and Conclusion

7.1 Summary

As a large number of web services with similar functionalities are published in the

registry by different service providers nowadays, the service consumers are flooded with

the services. Smart Web Service Discovery mechanism mainly emphasizes on finding the

service that best fits the consumer’s requirement. For finding the best service that meets

the consumer’s requirement, he must be able to specify his functional and QoS

requirements along with his priorities. However, current UDDI registries do not provide

any mechanism for service providers to publish and store the QoS information of their

services in the registry. Moreover, the published QoS information of the services may not

be always trustworthy and hence need some monitoring mechanism which will assure the

service consumers about the QoS information published by the service providers. Also

service consumers need a good registry browser tool which will be user friendly using

which consumer will be able to specify his service discovery request with functional and

QoS requirement with his priority for QoS for optimum service selection.

We are proposing a monitor-enhanced web service discovery model, Smart Web Service

Discovery (SWSD). The QoS information published by the service provider is stored

using tModels in a UDDI registry and is expressed in XML format. Using SWSD,when a

service consumer sends a service discovery request, the discovery agent will find

functionally and QoS matched services from the UDDI registry, retrieve monitor ratings,

calculate monitor score and based on consumer’s requirement of monitor score, the

optimum services will be ranked on the overall score (ie. QoS and Monitor score) and

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 132

returned to the consumer. Service Monitor will be regularly monitoring the published

services and rate them based on their actual QoS values on monitored timestamp.

7.2 Contribution

In this research study, we have examined some of the existing web service discovery

mechanisms and identified some major issues and challenges in publishing service QoS

information and finding the appropriate service that best meet the service consumer’s

requirement by matching published QoS with consumers QoS requirement. Also there

was a major concern regarding trustworthiness of published QoS as it was published by

the service providers themselves. As a solution, we have proposed a monitor-enhanced

web service discovery model, Smart Web Service Discovery (SWSD). We have stated

the service matching, rating, ranking and selection algorithm in this model to tackle the

optimum service discovery issue.

We have developed a discovery model with a discovery agent and a service monitor. The

discovery agent finds services those best satisfy a service consumer’s functional, QoS

and Monitor requirements that are specified in a discovery request. The Service Monitor

monitors the published services by invoking them over the regular time interval and

based on this, rates them on each monitored timestamp. These ratings are stored in the

ratings table and fetched by the discovery agent to calculate a monitor score for each QoS

and functionally matched services to rank them during the discovery process.

We have also developed a user-centric registry browser tool which will be assisting the

service consumer to specify the functional as well as QoS and monitor requirements in a

service discovery request which will also allow the consumer to specify the QoS priority.

To store published QoS information of services, a current feature in UDDI registry –

tModel is used. When a business publishes a new web service, it creates a tModel in a

UDDI registry. The QoS information of the web service is expressed in XML format in

tModel which is referenced in a bindingTemplate of a web service.

We have stated service matching, rating, ranking and selection algorithms to find the

services that match service consumer’s requirements, to rate the services, to rank the

matched services using their QoS and Monitor scores and to select services based on the

service consumer’s priority in the service discovery request.

After implementing the SWSD model, we have evaluated the model by conducting

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 133

experiments. For the experiment purpose, before sending the service discovery requests, a

large number of web services(approximately 1000) with different combinations –

different functionalities and different QoS, similar functionalities and different QoS,

similar functionalities and similar QOS, different functionalities and similar QoS were

published in the UDDI registry. In the experiment, different consumers send the service

discovery request with different functional, QoS and Monitor requirements. At the end

we discussed the experimental results which demonstrate that the proposed service

discovery model (SWSD) can find the most appropriate web service for the service

consumer.

7.3 Conclusion

From the research study, we conclude that :

 The proposed Smart Web Service Discovery (SWSD) model provides a simple

solution to a service discovery problem with less complexity at the same level of

standards such as WSDL and UDDI as compared to other models based on WSLA.

 A Service Monitor in our model helps a service discovery agent to increase the

chances of finding the services that provide assured QoS performance consistently

and that match consumer’s QoS and monitor requirements by assigning ratings to

each service and providing those ratings to service discovery agent for optimum

service selection.

 The monitor score based on historical service monitor ratings are playing crucial role

in finding the service with high assurance of QoS and that best fit for the consumer’s

requirements. The sensitivity of monitor scores to changes in the monitor ratings is

adjusted by the inclusion factor.

Summarized observation from the research work is given in the table below :

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 134

Table 7.1 : Summarized comparison of results obtained

Observation Existing UDDI

registry browser

-

UB 0.2

SWSD with

Functional match

SWSD with

Functional

and QoS

match

SWSD with

Functional, QoS

match and QoS

preference

SWSD with

Functional,

QoS match

with QoS

preference

and

Monitoring

No. of web

services

found

50 05 05 05 05

Web Services All functionally

matched services

WS1 – WS50

WS50, WS49,

WS48, WS47,

WS46

WS20, WS23,

WS31, WS40,

WS43

WS20, WS23,

WS31, WS40,

WS43

WS20, WS23,

WS31, WS40,

WS43

Service

Ranking for

selection

No service

ranking. Services

published recently

are at the top of

discovered service

list

No service ranking.

Services published

recently are at the

top of discovered

service list

WS23

WS43

WS40

WS31

WS20

Top ranked

service : WS23

WS23

WS43

WS31

WS20

WS40

Top ranked

service : WS23

WS20

WS31

WS43

WS40

WS23

Top ranked

service : WS20

Relevancy of

Services

Less Less More More More (with

assured QoS)

7.4 Future Enhancements

There is a saying about software projects as - “A software project is never finished, only

abandoned”. Consequently, there is always scope for the improvements in the design and

implementation of any software project. Some of the important issues that should be

addressed in any future implementation or enhancement are listed below :

1. In future, integration of semantic information of services into Smart Web Service

Discovery could be investigated in order to increase the flexibility and accuracy of

the service discovery. Semantic-based service categorization and semantic-based

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 135

service selection will extend the service discovery from only syntactical information

to a semantic level which may lead to more precision and relevance of the discovered

services.

2. For automated service discovery, integrating Smart Web Service Discovery

framework with the service consumer application would be one of the interesting

project.

3. Smart Web Service Discovery may be further enhanced with the capability to allow

the service consumer to specify their own QoS parameters and its values at the same

time providing the default QoS parameters in absence of the user specified QoS

parameters.

4. As service monitor regularly monitors all the published services in the UDDI registry

and there may thousands of services registered in the registry in every month, there is

large overhead on the monitor to rate each and every service though some of them

may be continuously rated bad. Hence there is a need to improve Service Monitoring

by keeping the services with consistent bad rating out of monitoring and increase the

performance of discovery mechanism.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 135

References

 [1] Al-Masri, E.; Mahmoud, Qusay H., "Discovering Web Services in Search Engines,"
Internet Computing, IEEE , vol.12, no.3, pp.74,77, May-June 2008

[2] Al-Masri, E.; Mahmoud, Qusay H., "Interoperability among Service Registry
Standards," Internet Computing, IEEE , vol.11, no.3, pp.74,77, May-June 2007

[3] Al-Masri, E.; Mahmoud, Qusay H., "Toward Quality-Driven Web Service
Discovery," IT Professional , vol.10, no.3, pp.24,28, May-June 2008

[4] Al-Masri, E.; Mahmoud, Qusay H., "Web Service Discovery and Client Goals,"
Computer , vol.42, no.1, pp.104,107, Jan. 2009

[5] Al-Moayed, A.; Hollunder, B., "Quality of Service Attributes in Web Services,"
Software Engineering Advances (ICSEA), 2010 Fifth International Conference on ,
vol., no., pp.367,372, 22-27 Aug. 2010

[6] Anadiotis, G.; Kotoulas, S.; Lausen, H.; Siebes, R., "Massively Scalable Web Service
Discovery," Advanced Information Networking and Applications, 2009. AINA '09.
International Conference on , vol., no., pp.394,402, 26-29 May 2009

[7] Apache Software Foundation. (2005). "Welcome to jUDDI". Retrieved May 23, 2006
from http://ws.apache.org/juddi/

[8] Artaiam, N.; Senivongse, T., "Enhancing Service-Side QoS Monitoring for Web
Services," Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2008. SNPD '08. Ninth ACIS International
Conference on , vol., no., pp.765,770, 6-8 Aug. 2008

[9] Bisignano, M.; Di Modica, G.; Tomarchio, O., "JaxSON: A Semantic P2P Overlay
Network for Web Service Discovery," Services - I, 2009 World Conference on , vol.,
no., pp.438,445, 6-10 July 2009

[10] Blake, M.B.; Sliva, A.L.; Muehlen, M.z.; Nickerson, J.V., "Binding Now or Binding
Later: The Performance of UDDI Registries," System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on , vol., no., pp.171c,171c, Jan. 2007

[11] Bonderud, P.; Sam Chung; Endicott-Popovsky, Barbara, "Toward Trustworthy
Service Consumers and Producers," Internet and Web Applications and Services,
2008. ICIW '08. Third International Conference on , vol., no., pp.451,456, 8-13 June
2008

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 136

[12] Chakraborty, D.; Joshi, A.; Yesha, Y.; Finin, T., "Toward Distributed service
discovery in pervasive computing environments," Mobile Computing, IEEE
Transactions on , vol.5, no.2, pp.97,112, Feb. 2006

[13] Chenthati, D.; Mohanty, H.; Damodaram, A., "RDBMS for Service Repository and
Matchmaking," Intelligent Systems, Modelling and Simulation (ISMS), 2011 Second
International Conference on , vol., no., pp.300,305, 25-27 Jan. 2011

[14] Chi-Chun Lo; Ding-Yuan Cheng; Ping-Chi Lin; Kuo-Ming Chao, "A Study on
Representation of QoS in UDDI for Web Services Composition," Complex, Intelligent
and Software Intensive Systems, 2008. CISIS 2008. International Conference on , vol.,
no., pp.423,428, 4-7 March 2008

[15] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGunneess,
B. Barsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara [2004]:
Bringing Semantics to Web Services: The OWL-S Approach. In Proceedings of the
First International Workshop on Semantic Web Services and Web Process
Composition.

[16] D. Roman, H. Lausen, and U.Keller [2004]: Web Service Modelling Ontoloty -
Standard. WSMO Working Draft, v0.2.

[17] D'Ambrogio, A., "A Model-driven WSDL Extension for Describing the QoS ofWeb
Services," Web Services, 2006. ICWS '06. International Conference on , vol., no.,
pp.789,796, 18-22 Sept. 2006

[18] Diamantini, Claudia; Potena, Domenico; Cellini, J., "UDDI registry for Knowledge
Discovery in Databases services," Collaborative Technologies and Systems, 2007.
CTS 2007. International Symposium on , vol., no., pp.321,328, 25-25 May 2007

[19] Emekci, F.; Sahin, O.D.; Agrawal, D.; El Abbadi, A., "A peer-to-peer framework for
Web service discovery with ranking," Web Services, 2004. Proceedings. IEEE
International Conference on , vol., no., pp.192,199, 6-9 July 2004

[20] Eyhab Al-Masri and Qusay H. Mahmoud [2007]: Discovering the Best Web Service.
WWW 2007.

[21] Eyhab Al-Masri, Qusay H. Mahmoud [2008]: Investigating Web Services on the
World Wide Web. WWW 2008 Track: Web Engineering - Web Service Deployment.

[22] F. Banaei-Kashani, C.-C. Chen, and C. Shahabi. Wsdp [2004]: Web services peer-to-
peer discovery service. International Conference on Internet Computing.

[23] Fuzhi Zhang; Yan Wang; Lin Wang, "A Web service discovery algorithm based on
dynamic composition," Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, 2007. SNPD 2007. Eighth ACIS International
Conference on , vol.2, no., pp.42,46, July 30 2007-Aug. 1 2007

[24] Gang Ye; Chanle Wu; Jun Yue; Shi Cheng, "A QoS-Aware Model for Web Services
Discovery," Education Technology and Computer Science, 2009. ETCS '09. First
International Workshop on , vol.3, no., pp.740,744, 7-8 March 2009

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 137

[25] Gang Zhou; Jianjun Yu; Rui Chen; Hui Zhang, "Scalable Web Service Discovery on
P2P Overlay Network," Services Computing, 2007. SCC 2007. IEEE International
Conference on , vol., no., pp.122,129, 9-13 July 2007

[26] Garcia, D.Z.G.; de Toledo, M.B.F., "A Web Service Architecture Providing QoS
Management," Web Congress, 2006. LA-Web '06. Fourth Latin American , vol., no.,
pp.189,198, Oct. 2006

[27] Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A., "Web Service Discovery
Mechanisms: Looking for a Needle in a Haystack?", International Workshop on Web
Engineering, 2004

[28] Giallonardo, E.; Zimeo, Eugenio, "More Semantics in QoS Matching," Service-
Oriented Computing and Applications, 2007. SOCA '07. IEEE International
Conference on , vol., no., pp.163,171, 19-20 June 2007

[29] Godse, M.; Bellur, U.; Sonar, R., "Automating QoS Based Service Selection," Web
Services (ICWS), 2010 IEEE International Conference on , vol., no., pp.534,541, 5-10
July 2010

[30] Gorbenko, A.; Romanovsky, A.; Kharchenko, V., "How to Enhance UDDI with
Dependability Capabilities," Computer Software and Applications, 2008. COMPSAC
'08. 32nd Annual IEEE International , vol., no., pp.1023,1028, July 28 2008-Aug. 1
2008

[31] Hicks, J.; Govindaraju, M.; Weiyi Meng, "Enhancing Discovery of Web Services
through Optimized Algorithms," Granular Computing, 2007. GRC 2007. IEEE
International Conference on , vol., no., pp.695,695, 2-4 Nov. 2007

[32] http://www.ebxml.org/specs/ebRS.pdf

[33] http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebrim.pdf

[34] http://www.researchgate.net/publication/229010558_JRegistry_An_Extensible_UDDI
_Registry

[35] http://www7b.software.ibm.com/dmdd/

[36] Hui Zhang; Weiying Gao, "A Research on QoS-based Ontology Model for Web
Services Discovery," Knowledge Discovery and Data Mining, 2009. WKDD 2009.
Second International Workshop on , vol., no., pp.786,789, 23-25 Jan. 2009

[37] Huimin He; Haiyan Du; Dongxia Han; Yuemei He, "Research on the Models to
Customize Private UDDI Registry Query Results," Innovative Computing Information
and Control, 2008. ICICIC '08. 3rd International Conference on , vol., no.,
pp.205,205, 18-20 June 2008

[38] Huiyuan Zheng; Jian Yang; Weiliang Zhao, "QoS Analysis and Service Selection for
Composite Services," Services Computing (SCC), 2010 IEEE International
Conference on , vol., no., pp.122,129, 5-10 July 2010

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 138

[39] Hunaity, M.A.R., "Towards an Efficient Quality Based Web Service Discovery
Framework," Services - Part I, 2008. IEEE Congress on , vol., no., pp.261,264, 6-11
July 2008

[40] Ioan Toma, Brahmananda Sapkota, James Scicluna, Juan Miguel Gomez, Dumitru
Roman, and Dieter Fensel (2005). "A P2P Discovery mechanism for Web Service
Execution Environment". in Second WSMO Implementation Workshop

[41] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
2001. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM '01). ACM, New York, NY,
USA, 149-160

[42] Jacek Kopeck´y [2007]: Semantic Web Service Offer Discovery. OTM 2007 Ws, Part
I, LNCS 4805.

[43] Jianjun Yu; Rui Chen; Hao Su; Shengmin Guo, "Web Services Publishing and
Discovery on Peer-to-Peer Overlay," Services Computing, 2006. APSCC '06. IEEE
Asia-Pacific Conference on , vol., no., pp.329,334, Dec. 2006

[44] Jianxun Liu; Jie Liu; Lian Chao, "Design and Implementation of an Extended UDDI
Registration Center for Web Service Graph," Web Services, 2007. ICWS 2007. IEEE
International Conference on , vol., no., pp.1174,1175, 9-13 July 2007

[45] Jinghai Raoa, Dimitar Dimitrovb, Paul Hofmannb and Norman Sadeha [2006]: A
Mixed Initiative Approach to Semantic Web Service Discovery and Composition
:SAP’s Guided Procedures Framework.

[46] Jiuxin Cao; Jingyu Huang; Guojin Wang; Jun Gu, "QoS and Preference Based Web
Service Evaluation Approach," Grid and Cooperative Computing, 2009. GCC '09.
Eighth International Conference on , vol., no., pp.420,426, 27-29 Aug. 2009

[47] Jorge Cardoso and Amit Sheth [2002] : Semantic e-Workflow Composition.
Technical Report# 02-004, LSDIS Lab, Computer Science Department, University of
Georgia, Athens GA, July 2002.

[48] K. Verma, K. Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna Oundhakar, John
Miller : METEOR–S WSDI [2003]: A Scalable P2P Infrastructure of Registries for
Semantic Publication and Discovery of Web Services.

[50] Kawamura, T.; Hasegawa, T.; Ohsuga, A.; Paolucci, M.; Sycara, K., "Web services
lookup: a matchmaker experiment," IT Professional , vol.7, no.2, pp.36,41, Mar-Apr
2005

[51] Keshan Zhu; Zhenhua Duan; Jianli Wang, "Quality of Service in Web Services
Discovery," Advanced Management of Information for Globalized Enterprises, 2008.
AMIGE 2008. IEEE Symposium on , vol., no., pp.1,5, 28-29 Sept. 2008

[52] Klein, M.; Bernstein, A., "Toward high-precision service retrieval," Internet
Computing, IEEE , vol.8, no.1, pp.30,36, Jan-Feb 2004

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 139

[53] Lei Yang; Yu Dai; Bin Zhang, "Trustworthiness QoS Driven Service Selection in the
Context of Environment," Distributed Computing and Applications to Business
Engineering and Science (DCABES), 2010 Ninth International Symposium on , vol.,
no., pp.366,370, 10-12 Aug. 2010

[54] Libing Wu; Yanxiang He; Dan Wu; Jianqun Cui, "A Novel Interoperable Model of
Distributed UDDI," Networking, Architecture, and Storage, 2008. NAS '08.
International Conference on , vol., no., pp.153,154, 12-14 June 2008

[55] Magdalenic, I.; Pejakovic, I.; Skocir, Z.; Sokic, M.; Simunic, M., "Modeling ebXML
registry service architecture," Telecommunications, 2003. ConTEL 2003. Proceedings
of the 7th International Conference on , vol.2, no., pp.543,550 vol.2, 11-13 June 2003

[56] Mario Schlosser, Michael Sintek, Stefan Decker, Wolfgang Nejdl [2002]: A Scalable
and Ontology-Based P2P Infrastructure for Semantic Web Services.

[57] Menasce, D., "QoS issues in Web services," Internet Computing, IEEE , vol.6, no.6,
pp.72,75, Nov/Dec 2002

[58] Meng Li; Junfeng Zhao; Lijie Wang; Sibo Cai; Bing Xie, "CoWS: An Internet-
Enriched and Quality-Aware Web Services Search Engine," Web Services (ICWS),
2011 IEEE International Conference on , vol., no., pp.419,427, 4-9 July 2011

[59] Mobedpour, D.; Chen Ding; Chi-Hung Chi, "A QoS Query Language for User-
Centric Web Service Selection," Services Computing (SCC), 2010 IEEE International
Conference on , vol., no., pp.273,280, 5-10 July 2010

[60] Ni Yulin; Si Huayou; Li Weiping; Chen Zhong, "PDUS: P2P-Based Distributed
UDDI Service Discovery Approach," Service Sciences (ICSS), 2010 International
Conference on , vol., no., pp.3,8, 13-14 May 2010

[61] Oracle9i Database Administrator's Guide

[62] Ouzzani, M.; Bouguettaya, A., "Efficient access to Web services," Internet
Computing, IEEE , vol.8, no.2, pp.34,44, March-April 2004

[63] Overhage, S.(2002): On Specifying Web Services Using UDDI Improvements. 3rd
Annual International Conference on Object-Oriented and Internet-based
Technologies, Concepts, and Applications for a Networked World Net.ObjectDays,
Germany

[64] Paliwal, A.V.; Shafiq, B.; Vaidya, J.; Hui Xiong; Adam, N., "Semantics-Based
Automated Service Discovery," Services Computing, IEEE Transactions on , vol.5,
no.2, pp.260,275, April-June 2012

[65] Pantazoglou, M.; Tsalgatidou, A.; Athanasopoulos, G.; Pilioura, T., "A Unified
Approach for the Discovery of Web and Peer-to-Peer Services," Web Services, 2006.
ICWS '06. International Conference on , vol., no., pp.901,902, 18-22 Sept. 2006

[66] Paolucci, M.; Sycara, K., "Autonomous Semantic Web services," Internet Computing,
IEEE , vol.7, no.5, pp.34,41, Sept.-Oct. 2003

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 140

[67] Patrick C. K. Hung, Haifei Li [2003]: Web Services Discovery Based on the Trade-
off between Quality and Cost of Service: A Token based Approach. ACM SIGecom
Exchanges, Vol. 4, No. 2.

[68] Pei Li; Comerio, M.; Maurino, A.; De Paoli, F., "Advanced Non-functional Property
Evaluation of Web Services," Web Services, 2009. ECOWS '09. Seventh IEEE
European Conference on , vol., no., pp.27,36, 9-11 Nov. 2009

[69] Ping Wang; Kuo-Ming Chao; Chi-Chun Lo; Chun-Lung Huang; Yinsheng Li, "A
Fuzzy Model for Selection of QoS-Aware Web Services," e-Business Engineering,
2006. ICEBE '06. IEEE International Conference on , vol., no., pp.585,593, Oct. 2006

[70] Preeda Rajasekaran, John Miller, Kunal Verma, Amit Sheth [2004]: Enhancing Web
Services Description and Discovery to Facilitate Composition.

[71] Qiang He; Jun Yan; Yun Yang; Kowalczyk, R.; Hai Jin, "A Decentralized Service
Discovery Approach on Peer-to-Peer Networks," Services Computing, IEEE
Transactions on , vol.6, no.1, pp.64,75, First Quarter 2013

[72] Qiang He; Jun Yan; Yun Yang; Kowalczyk, R.; Hai Jin, "Chord4S: A P2P-based
Decentralised Service Discovery Approach," Services Computing, 2008. SCC '08.
IEEE International Conference on , vol.1, no., pp.221,228, 7-11 July 2008

[73] Qianhui Liang; Chung, J. -Y, "A Federated UDDI System for Concurrent Access to
Service Data," e-Business Engineering, 2008. ICEBE '08. IEEE International
Conference on , vol., no., pp.71,78, 22-24 Oct. 2008

[74] Richard Monson Haefel, The Ultimate Guide J2EE Web Services, Pearson Education,
2011

[75] Sapkota, B.; Roman, D.; Kruk, S.R.; Fensel, D., "Distributed Web Service Discovery
Architecture," Telecommunications, 2006. AICT-ICIW '06. International Conference
on Internet and Web Applications and Services/Advanced International Conference
on , vol., no., pp.136,136, 19-25 Feb. 2006

[76] Schulte, S.; Siebenhaar, M.; Steinmetz, R., “Integrating Semantic Web Services and
Matchmaking into ebXML Registry,” Proceedings of the Fourth International
Workshop SMR2 on Service Matchmaking and Resource Retrieval in the Semantic
Web; Shanghai, China, 2010

[77] Sellami, M.; Tata, S.; Maamar, Z.; Defude, B., "A Recommender System for Web
Services Discovery in a Distributed Registry Environment," Internet and Web
Applications and Services, 2009. ICIW '09. Fourth International Conference on , vol.,
no., pp.418,423, 24-28 May 2009

[78] Serhani, M.A.; Dssouli, R.; Hafid, A.; Sahraoui, H., "A QoS broker based architecture
for efficient Web services selection," Web Services, 2005. ICWS 2005. Proceedings.
2005 IEEE International Conference on , vol., no., pp.113,120 vol.1, 11-15 July 2005

[79] ShaikhAli, A.; Rana, O.F.; Al-Ali, R.; Walker, D.W., "UDDIe: an extended registry
for Web services," Applications and the Internet Workshops, 2003. Proceedings. 2003
Symposium on , vol., no., pp.85,89, 27-31 Jan. 2003

[80] Sharma, A.; Adarkar, H.; Sengupta, S., "Managing QoS through prioritization in Web
services," Web Information Systems Engineering Workshops, 2003. Proceedings.
Fourth International Conference on , vol., no., pp.140,148, 13 Dec. 2003

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 141

[81] Shou-jian Yu, Xiao-kun Ge, Jing-zhou Zhang, Guo-wen Wu [2006]: Web Service
Discovery in Large Distributed System Incorporating Semantic Annotations.

[82] Shuiguang Deng, Zhaohui Wu, Jian Wu and Ying Li [2004]: An Efficient Two-Phase
Service Discovery Mechanism. WWW 2008, April 2008.

[83] Shuping Ran, “A Framework for discovering web services with Desired Quality of
Services Attributes”, IEEE International Conference on Web Services, Las Vegas,
Nevada, USA, June 2003.

[84] Si Won Choi; Jin Sun Her; Soo Dong Kim, "Modeling QoS Attributes and Metrics for
Evaluating Services in SOA Considering Consumers' Perspective as the First Class
Requirement," Asia-Pacific Service Computing Conference, The 2nd IEEE , vol., no.,
pp.398,405, 11-14 Dec. 2007

[85] Sivashanmugam, K.; Verma, K.; Sheth, A., "Discovery of Web services in a federated
registry environment," Web Services, 2004. Proceedings. IEEE International
Conference on , vol., no., pp.270,278, 6-9 July 2004

[86] Skoutas, D.; Sacharidis, D.; Simitsis, A.; Sellis, T., "Ranking and Clustering Web
Services Using Multicriteria Dominance Relationships," Services Computing, IEEE
Transactions on , vol.3, no.3, pp.163,177, July-Sept. 2010

[87] Sycara, K.; Paolucci, M.; Soudry, J.; Naveen Srinivasan, "Dynamic discovery and
coordination of agent-based semantic Web services," Internet Computing, IEEE ,
vol.8, no.3, pp.66,73, May-Jun 2004

[88] Tamilarasi, K.; Ramakrishnan, M., "Design of an intelligent search engine-based
UDDI for web service discovery," Recent Trends In Information Technology
(ICRTIT), 2012 International Conference on , vol., no., pp.520,525, 19-21 April 2012

[89] Thio, N.; Karunasekera, S., "Automatic measurement of a QoS metric for Web
service recommendation," Software Engineering Conference, 2005. Proceedings.
2005 Australian , vol., no., pp.202,211, 29 March-1 April 2005

[90] Tian, M.; Gramm, A.; Naumowicz, T.; Ritter, H.; Freie, J.S., "A concept for QoS
integration in Web services," Web Information Systems Engineering Workshops,
2003. Proceedings. Fourth International Conference on , vol., no., pp.149,155, 13
Dec. 2003

[91] U.Keller, R. Lara, A. Polelres, I. Toma, M. Kifer, and D. Fensel [2004]: WSMO Web
Service Discovery. WSMO Working Draft, v0.1.

[92] UDDI Spec TC, “UDDI Spec Technical Committee Draft, Dated 20041019”
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[93] UDDI Spec TC, “Using WSDL in a UDDI Registry, Version 2.0” - http://www.oasis-
open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

[94] Ulrich K, Birgitta K, Mirco S., Michael K. DIANE [2007]: An Integrated Approach to
Automated Service Discovery, Matchmaking and Composition, International
Conference on World Wide Web (WWW’07).

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient
web service discovery mechanism

Research study by Netra Patil 142

[95] Verma, K. Mulye, R. Zhong, Z. Sivashanmugam, K. and Sheth, A.: Speed-R:
Semantic p2p environment for diverse web service registries. [Online] W3C
Technical Report. Available from http://webster.cs.uga.edu/~mulye/SemEnt/Speed-
R.html, 2004

[96] Vuong Xuan Tran; Tsuji, H., "QoS Based Ranking for Web Services: Fuzzy
Approaches," Next Generation Web Services Practices, 2008. NWESP '08. 4th
International Conference on , vol., no., pp.77,82, 20-22 Oct. 2008

[97] W3C Working Group (2004). “Web Services Architecture, W3C Working Group
Note 11 February 2004”. http://www.w3.org/TR/ws- arch

[98] W3C Working Group Notes (2004) “Web Service Architecture Requirements, W3C
Working Group Note 11 February 2004”. http://www.w3.org/TR/wsa-reqs

[99] Wenli Dong, "QoS Driven Service Discovery Method Based on Extended UDDI,"
Natural Computation, 2007. ICNC 2007. Third International Conference on , vol.5,
no., pp.317,324, 24-27 Aug. 2007

[100] Ying Yin; Bin Zhang; Xizhe Zhang, "QoS-Driven Transactional Web Service
Reselection for Reliable Execution," Information Science and Management
Engineering (ISME), 2010 International Conference of , vol.2, no., pp.79,82, 7-8
Aug. 2010

[101] Youngkon Lee, "QoS Management for SOA by Synchronizing Quality Context in
UDDI," Future Generation Communication and Networking Symposia, 2008. FGCNS
'08. Second International Conference on , vol.1, no., pp.17,22, 13-15 Dec. 2008

[102] Youngkon Lee, "Quality Context Composition for Management of SOA Quality,"
Semantic Computing and Applications, 2008. IWSCA '08. IEEE International
Workshop on , vol., no., pp.117,122, 10-11 July 2008

[103] Youngkon Lee, "Web Services Registry Implementation for Processing Quality of
Service," Advanced Language Processing and Web Information Technology, 2008.
ALPIT '08. International Conference on , vol., no., pp.538,543, 23-25 July 2008

[104] Yunsong Tan, "A Peer-to-Peer Based Web Service Discovery Mechanism," Web
Mining and Web-based Application, 2009. WMWA '09. Second Pacific-Asia
Conference on , vol., no., pp.175,177, 6-7 June 2009

[105] Yunsong Tan, "A Peer-to-Peer Based Web Service Discovery Mechanism," Web
Mining and Web-based Application, 2009. WMWA '09. Second Pacific-Asia
Conference on , vol., no., pp.175,177, 6-7 June 2009

[106] Zamanifar, K.; Zohali, A.; Nematbakhsh, N., "Matching Model for Semantic Web
Services Discovery," Advanced Information Networking and Applications Workshops,
2009. WAINA '09. International Conference on , vol., no., pp.50,54, 26-29 May 2009

[107] Ziqiang Xu; Martin, P.; Powley, W.; Zulkernine, F., "Reputation-Enhanced QoS-
based Web Services Discovery," Web Services, 2007. ICWS 2007. IEEE International
Conference on , vol., no., pp.249,256, 9-13 July 2007

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 143

Appendix – I

Glossary of relevant terms

 Web Service : A Web service is a reusable software component designed to support

interoperable machine-to-machine interaction over a network.

 RPC : Remote Procedure Call (RPC) is a protocol that one program can use to

request a service from a program located in another computer in a network without

having to understand network details..

 SOA : Service Oriented Architecture (SOA) is an application architecture in which

all functions, or services, are defined using a description language and have invokable

interfaces that are called to perform business processes.

 DCOM : Distributed Component Object Model (DCOM) is a proprietary Microsoft

technology that allows Component Object Model (COM) software to communicate

across a network.s

 CORBA : Common Object Request Broker Architecture (CORBA) is a specification

developed by the Object Management Group (OMG) which describes a messaging

mechanism by which objects distributed over a network can communicate with each

other irrespective of the platform and language used to develop those objects

 UDDI : Universal Description Discovery and Integration (UDDI) is a set of

specifications defining a registry service for Web services and for other electronic and

non-electronic services. A UDDI registry service is a Web service managing

information about service providers, service implementations and service metadata.

Providers advertise their Web services on the UDDI registry. Consumers then use

UDDI to discover Web services suiting their requirements and obtain the service

metadata needed to consume those services.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 144

 WSDL : Web Services Description Language (WSDL) is an XML-based language

that describes Web services and their uses. It describes the abstract functionality of a

service and provides a framework for describing the concrete details of a service

description.

 SOAP : Simple Object Accsess Protocol (SOAP) is a protocol for implementing Web

services. SOAP allow communication via the Internet between two programs, even if

they run on different platforms, use different technologies and are written in different

programming languages

 QoS : Quality of service which specify the non-functional properties of service.

 ebXML : Electronic business extensible markup language (ebXML) is an extensible

markup language used to perform electronic business over the web. Enterprises

conduct standard business by using ebXML over the Web through exchanging

business messages, conducting trade relationships, communicating data in common

terms and defining and registering business processes.

 businessEntity : A businessEntity entity contains descriptive information about a

business or organization.

 businessService : A businessService contains descriptive information about a group

of related technical services including the groupname, description and category

information.

 bindingTemplate : A bindingTemplate contains information needed to invoke or

bind to a specific service including the service URL, routing and load balancing

facilities.

 tModel : A tModel is used to represent technical specifications such as service types,

bindings and protocols. Also used to implement category systems that are used to

categorize technical specifications and services.

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 145

Appendix – II

jUDDI database ERD

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient web
service discovery mechanism

Research study by Netra Patil 146

Appendix – III

Pilot Study Questionnaire
Questionnaire – 1

Questionnaire on the Quality of Web Services from Service Engineer’s perspective

Based on your experiences as a service engineer who needs to find appropriate web services

available over the internet, while designing and developing software applications, please provide

information on how you perceive the quality of service you use in comparison to your

expectations.

1. How many years have you been with the organization?
 Less than a year
 1 - 3 years
 4 - 6 years
 More than six years

2. What is the employee strength of your organization ?
 Less than 100 employee
 100 - 500 employee
 501 - 1000 employee
 More than 1000 employee

3. Your organization is providing services in which domain ?
 Retailing
 Tourists and Traveling
 Healthcare
 Insurance
 Banking
 Any other, please specify __________________________________

4. Has your organization adopted web services ?
 Yes
 No

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient web
service discovery mechanism

Research study by Netra Patil 147

5. Adopting web service has reduced the cost of developing an application.
 Strongly Disagree
 Disagree
 Agree
 Strongly Agree

6. Applications are developed in-house and not outsourced from other company.
 Yes
 No

7. How many hits does your website record in a day?
 Above 10000
 Between 5001 - 10000
 Between 1000 - 5000
 Below 1000

8. How frequently customers complaint of slow response while performing transaction
through your system?
 Often
 Sometimes
 Rarely
 Never

9. How frequently customers complaint of ‘Service temporarily unavailable’ issue
through your system?
 Often
 Sometimes
 Rarely
 Never

10. How frequently customers complaint of ‘Transaction not completed successfully’
issue through your system?
 Often
 Sometimes
 Rarely
 Never

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient web
service discovery mechanism

Research study by Netra Patil 148

11. How frequently customers complaint of ‘System is too slow’ issue?
 Often
 Sometimes
 Rarely
 Never

12. An average cost of web service integrated in an application is acceptable as compared
to developing the whole application.
 Strongly Disagree
 Disagree
 Agree
 Strongly Agree

13. Suggestion if any –

 Name of Company:

 Your Name:

 Designation

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient web
service discovery mechanism

Research study by Netra Patil 149

Questionnaire – 2

Questionnaire on the Quality of Web Services from Service Consumer’s perspective

Based on your experiences as an end user who uses online services available over the internet,

please provide information on how you perceive the quality of service you use in comparison to

your expectations.

1. For What purpose/purposes, you have used online services available over the internet
from the following?
 Shopping Books, CDs, Cloths, Footwear etc.
 Railway Ticket Booking
 Air Ticket Booking
 Bus Ticket Booking
 Internet Banking
 Payment Gateway

2. How frequently you use online services available over the internet?
 Daily
 Weekly
 Monthly
 Rarely
 Never

3. Are you happy with online services available over the internet ?
 Yes
 No
 Can’t Say

4. Which websites you prefer for using online services ?
 www.amazon.in
 www.easybillindia.com
 www.makemytrip.com
 Bank Portals
 Any other, please specify __________________________________

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient web
service discovery mechanism

Research study by Netra Patil 150

5. The response time of the most recent online services used by you was low.
 Strongly Disagree
 Disagree
 Agree
 Strongly Agree

6. While evaluating your most recent online service experience, the success rate of
completing the transaction was high.
 Strongly Disagree
 Disagree
 Agree
 Strongly Agree

7. While evaluating your most recent online service experience, you find that online
services were always readily available.
 Strongly Disagree
 Disagree
 Agree
 Strongly Agree

8. The charges incurred for using online services are nominal.
 Strongly Disagree
 Disagree
 Agree
 Strongly Agree

9. Rate the following parameters for online service selection on the scale of 1 to 5
(1 – Least significant, 5 – Most significant).

1. Response Time 1 2 3 4 5

2. Reliability 1 2 3 4 5

3. Availability 1 2 3 4 5

4. Throughput 1 2 3 4 5

5. Price 1 2 3 4 5

Comparative study of mechanisms for discovering the most appropriate web service and proposing an efficient web
service discovery mechanism

Research study by Netra Patil 151

Thank you for your feedback. I sincerely appreciate your honest opinion.

10. Do you want to give equal weightage to all the parameters for service selection ?
 Yes
 No
 Can’t Say

11. Suggestion if any –

 Name :

 Gender : Male Female

 Age :

 Qualification :

 Profession :

Comparative study of mechanisms for discovering the most appropriate web service and proposing an
efficient web service discovery mechanism

Research study by Netra Patil 152

Appendix – IV

Research Paper Repository

 Published a paper in International Journal of Computer Science and Application,
ISSN 0974-0767, Issue-III, December 2012 Edition on "Assessment of UDDI and
ebXML Registry for e-Business Application".

 Published a paper in International Journal of Computer Applications, ISSN 0975-
8887, January 2011 Edition on “Comparative Study of mechanisms for Web Service
Discovery based on Centralized approach focusing on UDDI”.

 Published a paper in International Journal of Computer Science and Application,
ISSN 0974-0767, Issue-I, January 2011 Edition on "Enhancing UDDI registry for
storing Qos in tModel for discovering web services".

 Published a paper in “International Journal of Computer Science and Communication
Volume-I, Number-II of September 2010”, ISSN 0973-7391 on “Ranking Web-
services based on QoS for best-fit search”.

 Published a paper in “International Journal of Computer Science and Application”,

ISSN 0974-0767, Issue-II, January 2010 on “Quantifying Web Services on Quality
Parameters for Best-fit Web-service Selection”.

 Published a paper in International Conference IACC 2010 at Thapar University,
Patiala on “Comparative Study of Centralized and Decentralized Approaches for Web
Service Discovery Mechanism”.

 Published a paper in International Conference ICDM 2008 at IIM Ghaziabad, Delhi
on “Model proposed for the senior management of an organization for utilizing
resources effectively to adopt web services”.

	00_Title Page
	01_Declaration
	02_Certificate
	03_Acknowledgement
	04_Index
	05_List_of_Figures
	06_List_of_Tables
	07_Chapter_1
	08_Chapter_2
	09_Chapter_3
	10_Chapter_4
	11_Chapter_5
	12_Chapter_6
	13_Chapter_7
	14_References
	15_Appendix_I
	16_Appendix_II
	17_Appendix_III_Q1
	17_Appendix_III_Q2
	18_Appendix_IV

