EXTRACTION OF CONNECTOR CLASSES
FROM
OBJECT ORIENTED SYSTEM
WHILE RECOVERING SOFTWARE
ARCTITECTURE

A thesis submitted to
Tilak Maharashtra University, Pune
For the Degree of Vidyavachaspati (Ph.D.)
in the

Computer Management

Under the Faculty of Management
By
Mrs. Shivani Budhkar

Under the Guidance of

Dr. Arpita Gopal
Director-MCA
Sinhagad Institute of Business Management and Redgsea
Kondhwa, Pune - 411048
July 2013



| hereby declare that the thesis entitf€traction of connector classes from object
oriented system while recovering Software Architectre” completed and written by

me has not been previously formed the basis foatterd of any Degree or other similar

title upon me of this or any other university oasxning body.

Place: Pune (Shivani Budhkar)

Date: 3¢ July 2013 Research Student



Certificate

This is to certify that the thesis entitl&8xtraction of connector classes from object

oriented system while recovering Software Architeatre " which is being submitted
for the degree of Doctor of Vidyavachaspati (PhibD.Computer Management to Tilak
Maharashtra University is an original piece of egsh work completed by Mrs. Shivani

Budhkar under my supervision and guidance.

To the best of my knowledge and belief the worlomporated in this thesis has not been
formed the basis for the award of any Degree oiilaintitle of this or any other

university or examining body upon her.

Place: Pune Dr. Arpita Gopal
Date: 30" July 2013 Director-MCA
Sinhgad Institute of Business Administration

and Research, Kondhwa-Bk, Pune — 411048



Acknowledgement

It would not have been possible to write this daadtthesis without the help and support
of the kind people around me, to only some of whbms possible to give particular
mention here.

I would like to express my deepest gratitude toAbpita Gopal, my research supervisor,
for her patient guidance, valuable support, entaigi encouragement, useful critiques of

this research work and assistance in keeping myress on schedule.

My heartfelt thanks go to my fellow research schaled friend, Chandrani Singh, whose

valuable support and help kept me on track.

| am particularly grateful for the assistance gibgmmy friend Aniket Gujarathi. | would
like to thank him, who as a good friend was alweying to help and give his best

suggestions.

| would also like to thank my parents, my youngstes, and brother in law. My parents
are always big source of inspiration for me. Thegrevalways supporting me and
encouraging me with their best wishes for whichmmsre expression of thanks likewise

does not suffice.

| deeply grateful to my husband, Mr.Ashutosh Budhka constant support and sharing
the household responsibilities with me to let ragentime to focus on my work. He was
always there cheering me up and stood by me thrtluglgood times and bad. To my

sweet little daughter, Devashree, who was alway#exk to see my research work and



was happy to see my research publications. She destarbed me when | was doing my

research work at home and did her studies at har ow

To my in laws who are very excited to see my comaglegesearch study. Their constant
encouragement and blessing were always with megluny research work.express my

deepest gratitude.

| am indebted to Dr. Prof. K.R.Joshi, Principal Mod College of Engineering, Pune,
who always has a positive attitude towards acadeamd research endeavours and
provided me with ample opportunities to work anglexe her academic leadership, and
guest for excellence have always been a souraespiration. | would also like to thank

Dr. Prof. Desai A.D., vice- principal, Modern Cake of Engineering, Pune, Dr. Ekbote
G.R. Chairman, P.E.Society, Pune for their valuabjeport.

Finally I would like to thank all my friends who esuraged me during my research

work. Thank you all.

Shivani Budhkar

Research student



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Contents
LISt Of FIQUIES ...t e e e e e e e e e e e %
LISt Of TabDIES. .. e e Vil
Chapter 1  Introduction
1.1.Software ArchiteCture RECOVEIY .......cvuiiie it e e eee e 3
1.2.Issues in Component Based Software Archited@®very ....................... 4
1.3.Approaches towards Software Architecture Regove...........c.covvvvvevnenn. 6
1.3.1 Inputs for Software Architecture Recovery...................... 6
1.3.2 Software Architecture Recovery based opréaches used....... 9
1.3.3 Software Architecture Recovery based arhiigues used...... 11
1.4.Research Hypothesis .......c.oioii i e e e e 14
1.5.Research Methodology adopted ... 14.
1.6.Theoretical and Practical Significance of PeggbWork.......................... 17
1.7.0rganization Of TRESIS ... e e e 17
Chapter 2 Review of Literature
2.1. Software ArchiteCture RECOVEIY ......cciii i e e e 19
2.2. Software Architecture Recovery Approaches basegdmiques used ...... 20
2.2.1 Quasi manual teChNIQUES..........ovii i e e e 20
2.2.2 Semi-automatic teChNiqUES ..........coiiiiie i s 24
2.2.3 Quasi-automatic teChNIQUES ..........oviiiiiiiiiiie e e e 25

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

2.3 Other APProaches ... e e e 45
2.4 Observations from Literature REVIEW............ocviiiiiieiiiiiine e e e 54
2.5 Limitations of Existing Methods...............ooo i e 54
2.6 The Present StUY ... ..o e e e e e e e e 56
Chapter 3  Study of Existing Reverse Engineering Tals, Frameworkand
Selecting Clustering Process for proposed Methodaly
3.1. Study of Existing Reverse Engineering TOOIS ..........c.ocoviieviiiinnnnn. 58
3.1.1 Extracting Classes from Given Objece@ed System using Tool ....58
3.1.2 Examine Model Properties of these Tools...............cccoceeiinn. 60
3.1.3 Comparison of the TOOIS ..o e 62
3.2. Study of Existing OSGi Framework for Implementingr@ponents
CrRALEM ...t e 70
3.2.1 OSGIMOEI ... e e e 70
3.2.2 Creating Bundle using OSGI Framework.............cc.covvvmeennnen. 71
3.2.3 Activators Management in OSGi FrameworK ... ... . eeeeeeen 72
3.2.4 Guidelines for Implementing Components irGdBramework ........ 73
3.3. Selection of Clustering Process for the Methodolagy....................... 76
3.3.1 Identification of Features and Entitieshia System ..................... 76
3.3.2 Selection of Similarity MEasure ...........cooeveeviiiiiiineciceamennns 76
3.3.3 Selection of Clustering Algorithm ..............cocooii i 77
3.3.4 Selection of Evaluation Criteria for Assessatrof Components........ 78

Chapter 4  Proposed Component Based Software Arclatture Recovery

4.1. The Proposed Component Based Software Archite&aoevery

APPIOACKH. .. e 79
4.2. Rationale for Component Based Software ArchitecReeovery ............. 81
4.3. The Proposed Framework and TOOl............coo i 82

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

4.3.1 Identify Dependencies in Existing Objectedted System ............. 84

4.3.2 Identify COMPONENTS ......uitiieie i et e e e e e 88

4.3.3. Component Evaluation and Interface Idemifan..................... 95
4.4. YU 0] 0= 98

Chapter 5  Implementation of proposed component b&sl software architecture

recovery framework

5.1 Implementation of the Proposed Framewotto ithe tool..................... 99
5.1.1. Module 1: Identify Dependencies in Erig Object Oriented
S S I et 100
5.1.2. Module 2: Identify Components ..............cceevvivicmeneneennn.. 101
5.1.3. Module 3: Component Evaluation andrfatee Identification....... 103
5.2 SUMMAIY ...ttt e e e e e et e e e e e e e e e e e 108

Chapter 6  Results & Analysis

6.1. Module 1: Identify Dependencies in Existing Objéctented System ...... 110
6.2. Module 2: Identify COMPONENLS ......oviiiiiiiie s e 13
6.3. Module 3: Component Evaluation and Interface |dmatiion................ 132
6.4. Sample Case studies — Analysis Chart ............cooiiiiiii i i e 142
6.5. Comparative Study of Proposed Tool verses Exisépgproaches .......... 146
6.6. ReSearch OUICOME ..ot e e e e e 148

Chapter 7 Summary & Conclusion

0 R U [ 01 0 = Y 149

7.2 CONCIUSION L.uee it e e e e e e e e e 152

7.3 Suggestions for Further Research.............cccooi i 154
REIEIEBNCES. .. ... 155-166
Appendix | Glossary of Relevant Terms ..........cccocviviiiviiiiiinnnnns 167-169

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Appendix Il — (a) Experimental Environment & Sample Programs .......... 176-
Appendix Il — (b) Clustering ConcCeptS. .. ....ovviii i 176-191

Appendix Il —(c) Research Paper Repository

a. Component evaluation and component interface ifiesiion from object
oriented System by Shivani Budhkar, Dr. Arpita Gppalnternational Journal of
Advanced Research in Computer Science, ISSN N06-88987, Volume 3, No.
4, pp. 84-90,July- August 2012

b. Component identification from existing object otiesh system using Hierarchical
clustering by Shivani Budhkar, Dr. Arpita Gopal ISR Journal of Engineering,
ISSN: 2250-3021, Vol. 2(5) pp: 1064-1068, May. 2012

c. Component based software architecture recovery fobpect oriented system
using existing dependencies among classes by ShBadhkar, Dr. Arpita
Gopal,in International Journal of Computationaleliigence Techniques ISSN:
0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue Q12 pp.-56-59, April
2012

d. Reverse Engineering Java Code to Class DiagramExXperience Report, by
Shivani Budhkar, Dr. Arpita Gopal, in Internationdburnal of Computer
Applications (0975 — 8887) Volume 29— No.6, pp.43-September 2011

e. Component interactions from software architectevery by Shivani Budhkar,
Dr. Arpita Gopal, in International Journal of Conu Science and
Communication Vol. 2, No. 1, pp. 149-15, JanuangeJA011

f. Extraction of Connector Classes from Object —Oadrfbystem while recovering
Software Architecture by Shivani Budhkar, Dr. AgitGopal, in IEEE

International Advance Computing Conference (IACCO20 Patiala, India,
pp.1826-1828, 6—-7March 2009

31 01 L I-xVii

Research study by Shivani Budhkar iv



Extraction of connector classes from object oridrsgstem while recovering Software architecture

List of Figures

Figure 1.1
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6

Architecture Recovery steps of FOCUS

Proposed Approach

Class Diagram of Arithmetic24 game from Rose

Class Diagram of Arithmetic24 game from ArgoUML
Class Diagram of Arithmetic24 game from Reverse

Class Diagram of Arithmetic24 game from EnterpAsehitecture
CASE Tools Analysis Chart

Example of OSGi Bundle

Representation of bundles for ‘Arithmetic24’ ganpplécation
Proposed Frameworks and Tool

Process for Identifying Dependencies

Process for Identifying Components

Class diagram with Method Coupling

Class diagram with Inheritance Coupling

Process for Identification of Interfaces and CongdrEvaluation

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.1

Figure 6.2

Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8 a)

Figure 6.8 b)

Figure 6.9

Figure 6.10

Figure 6.11

Method, Composition, Inheritance Dependency idesatifrom
Proposed Approach & Tool of ‘Arithmetic24’ Gamdtsare
Integrated Coupling identified from Proposed Apgto& Tool of
Arithmetic24 Game software

Distance table created using integrated coupling

Cluster levels created for ‘Arithmetic24’ game

Remaining cluster levels created for ‘Arithmetic2&me
Components created for ‘Arithmetic24’ game

Components created and interface details among @oembs
UML Component Diagram for Arithmetic24 game

UML Components with interfaces as packages forniwmetic24
game

Component Evaluation by using Component Size, Com@pb
Coupling and Component Cohesion Metrics

Sample Case Studies Analysis Chart

Performance of Proposed Tool

Research study by Shivani Budhkar

Vi



Extraction of connector classes from object oridrsgstem while recovering Software architecture

List of Tables

Table 3.1 Elements found by CASE Tools

Table 4.1 Distance Calculation using Method Coupling

Table 4.2 Distance Calculation using Inheritance Coupling.

Table 6.1 Candidate components recovered from Proposed agp&aool
for “Arithmetic24” game

Table: 6.2 Sample Case studies — Analysis Chart

Table 6.3 Comparison of the proposed tool and other appr@ache

Research study by Shivani Budhkar

vii



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 1

Introduction

Computing environments are evolving from mainfrasystems to distributed system.
Many legacy systems today are object oriented. yodaaddition to object oriented
techniques in software development, componentsised. Development of distributed
systems is more and more based on the use of cemptechnology. Components are
regarded as being more course-grained compareddibidnal reusable artifacts such as
objects and provide high level representation ef domain. Components can be used
more effectively and are better suited for reusentbsing objects. Maintainability and
reliability of software is improved by reusing exig elements / components. Hence, we
should derive reusable components and connectors frlasses in object oriented
systems and change object oriented systems intqoa@oenmt based systems. These
component based systems are suitable for distdbsgstems and multiple systems can

make use of these components and connectors.

Software reuse is one of the most researched dsbjesoftware engineering. Software
reuse is the process of implementing and / or upglaoftware systems using existing
software assets. This results in improved softvepraity and productivity. This in turn

reduces the time to market.

According to Suk Shin et al [91] Component basedeltgpment is an effective reuse
technology which extensively utilizes object ormshtdesign; therefore, it is economical
approach to generate component based design fgaatabiented design.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Component based software development extends objesited software development
paradigm. It assembles and reuses pre- existingva@ components. Creating new
Component based development cost is higher thaveational software development .It
is better to use existing object oriented code reate components and migrate into

component based system.

One of the most prominent maintenance objectivemigrating systems to distributed

computing environments using components.

To maintain and understand large applications, @riicial to know software architecture.
Software Architecture plays very important rolealh phases of software development.
Most of the existing systems do not have reliabléwsare architecture and some legacy
systems are designed without software architecdesign phase. Thus software
architecture recovery is very important task. Regeengineering will always be

necessary and play important role for software itgcture recovery from the existing

software. So, by doing reverse engineering, werettieve component based software
architecture from existing object oriented softwat€omponent based software
architecture is beneficial as it is useful for liegs system parts represented as
components. The software architecture of the sydtemescribed as a collection of

components along with the interaction among thesaponents, where as the main
system functional block are components, they styodgpend on connectors — which is

abstraction capturing nature of these interactions.

Therefore we should derive reusable componentscandectors from classes in object
oriented system and change object oriented systenmcomponent based system suitable
for distributed environment where many systems malke of components and

connectors.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

1.1. Software Architecture Recovery

Software architecture definitions in general camtdhree elements: components,
connectors and rationales, such as e.g. ‘The ateicof the components of a
program/system, their interrelationships, and pplles and guidelines governing their
design and evolution over time’ described by Watigat al [100]. Gall et al [23] defined
architecture recovery as a process of identifyimgl @xtracting higher level of
abstractions from existing software systems. Agtttiire recovery and reengineering to
handle legacy code is critical for large and compdystems. Software architecture
recovery is a set of methods for the extractiorar@hitectural information from lower
level representations of a software system, sudoace code. The abstraction process
to generate architectural elements frequently we®lclustering source code entities
(such as files, classes, functions etc.) into sstiesys according to a set of criteria that
can be application dependent or not. It is desdribeWikipedia [112] that Architecture
recovery from legacy systems is motivated by tret fhat these systems do not often
have an architectural documentation, and when teythis documentation is many
times out of synchronization with the implementgdtem.Alae-Eddine et al [3] defined
Component-based software architecture as a high &bstraction of a system using the
architectural elements: components which describectional computing, connectors
which describe interactions and configuration whigpresents the topology of

connections between components.

The figure 1.1 shows architecture recovery stepsgusOCUS approach proposed by
Nenad Medvidovic and Vladimir Jakobac[55]. This light weight approach for

recovering and evolving architectures of undocum@@bject oriented applications.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 1.1: Architecture Recovery Steps of FOCUS

Logical Architecture i Physical Architecture
I —
I ¥ 5
\ # LT TN
| ¢ Propose idealized Y ! i - '
| \__architectural model /! /Identify )
" / : | \ Components
II II| i o e F
| vl L _
|I Vs {;___‘_ I
\/ E— | /’/
Identify key % !
| use cases L N
|
|

% /L&"-\— ]
/~ Map components ~

|
( : ) '
< onto architecture / i

/ Analyze companent 3
'\ interactions

.e‘_)’)’_/
/" Generate Refined \I
I Architecture

_--.._\_:_\__ f—_—:\-\

1.2. Issues in Component Based Software Architecture Revery
- There is a distinct lack of a complete methodoldgy reengineering an object
oriented legacy system into system that consistoofponents described by Eunjoo

Lee Byungjeong [18].

- Object oriented design (OOD) can be transformed @dmponent —based design
(CBD) suggested by Suk Shin [91]. For this approach can have object oriented

design specification available, which is mostly agéilable for legacy systems.

- According to Mishra et al [74] there are varioup@aches which deal with partial

recovery of component based architecture i.e. mrugable components are identified

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

through reverse engineering. Using weighted dice@gsmph and hybrid clustering
algorithm, object oriented software is partitiotedgroups as components, described

by Qifen et al [66] but no details about interfabesween classes or components,.

- Simon, Houari et al [83] and Aline et al [1] useateuting execution traces which are
generated by using use cases as dynamic depensiémadaentify components from
object oriented system. Then using global searehdtic algorithm), and local search
(Simulating Annealing algorithm) components arerdsd. For this approach, system
use cases are needed. If no documentation is hleaifar use cases, it becomes
difficult to start with.

- Formal concept analysis technique can also be tasigéntify methods shared by use
case implementation. Each concept in the genecateceptual lattice encompasses a
set of use cases and their shared methods. Howteeelattice does not make clear
where a source code entity, such as class, muktcheed in the architecture, since

same entity appears in more than one concept, steghby Thomas Tilley et al [95].

- Some of the approaches which support dynamic asafgg component based
software architecture, described by Lei Ding andn&dil Medvidovic [48], which is

not automated.

- For many existing legacy systems, software architec representation is not
available. This is required in every phase of saftey mostly in software maintenance
phase and migrating to new technology. Cost wise ieneficial to reuse existing

source code rather than developing entire new isyste

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Most of the transformations from object orientedteyn to component based systems
require lots of human experts like designers ofsylstem, maintainers, user etc. Fully

automated approaches are very less in this kiichngformation.

1.3.  Approaches towards Software Architecture Recovery

Several excellent approaches and techniques haregreposed in literature to support

software architecture recovery. Sylvain Chardigmyak[93] distinguish these works

according to process input used, approach and itpedsused to extract architecture.

1.3.1 Inputs For Software Architecture Recovery:

The various works proposed in the literature haagous inputs for software recovery

process. Inputs used for software architecture viesgocan be of two types: Non

architectural input and architectural input.

Non architectural input : Pollet et al [64] suggested non architectural iapare
source code e.g. RMTool, symbolic textual inforrmatavailable in comments or in
the method names e.g. Anquetil and Lethbridge mcaxchitecture from the source
file names, dynamic information like run time ewersuch as method calls, CPU
utilization, network bandwidth, physical organipatiof application in terms of files
and folders often tells architectural informatioraDMSART and Softwarenaut work
from the structural organization of physical eletsesuch as files, folders, or
packages. Some approaches map packages or classemponents and use the
hierarchical nature of the physical organizationaashitectural input. It is then
important to consider the influence of the humagaaization on the extracted
architectures or views. Bowman et al [39] useddéeeloper organization to form an
ownership architecture that helps stakeholdersnsgoact the software architecture.
According to Pollet et al [64] non architecturdiamnmation like historical information

is rarely used in software architecture recoveFpr example ArchView is a recent

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

approach that exploits source control system dath kg reports to analyze the
evolution of recovered architectural views. To sissa reverse engineer in
understanding dependency gaps in a reflexion mddagssan and Holt, Murphy
annotates entity dependencies with sticky noteses&hsticky notes record
dependency evolution and rationale with informatextracted from version control
systems. ArchEvo produces views of the evolutiomotiules that are extracted from
source code entities. Human expertise as non aotaral information is very helpful
when it is available. At high abstraction levelsft%are architecture recovery is
iterative and requires human knowledge to guided to validate results. To specify
a conceptual architecture, reverse engineers lagttly system requirements, read
available documentation, interview stakeholderspver design rationale, investigate
hypotheses and analyze the business domain. Huxpantise is also required when
specifying viewpoints, selecting architectural s$yl or investigating orthogonal
artifacts. While software architecture recovery gesses involve strategy and
knowledge of the domain and the application itselily a few approaches take
human expertise explicitly into account. Ivkovicdagodfrey [36] proposed to
systematically update a knowledge base that woaltbime a helpful collection of

domain-specific architectural artifacts.

Most often it works from source code representaliohit also considers other kinds
of information. Most of them are non-architectufabr example - human expertise
used in interactive way in order to guide the psscé&Some works use architectural
input like style. For example Focus approach predoBy Lei Ding and, Nenad

Medvidovic [48] uses style in order to infer a ceptual architecture that will be
mapped to a concrete architecture extracted fromarceo code. Some uses
documentation as input along with source code. Ating to Pollet et al RMTool

[64] directly query the source code using regutgpressions as non architectural
inputs. Finally most works are based on human é¢iggerSome use expertise of

architect which uses tool as input.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Architectural inputs: Architectural inputs can be architectural style &isivpoints.

Style: Architectural styles such as pipes and filtergetad system, data flow are
popular because like design patterns, they represeunrrent architectural situations.
They are valuable, expressive, and accepted abstrador software architecture
recovery and more generally for software understandExamples of architectural
styles are pipes and filters, blackboard, and EyRecognizing them is however a
challenge because they span several architecterakats and can be implemented in
various ways. The question that turns up is whesiofiware architecture recovery
helps reverse engineers specify and extract aothred styles suggested by Pollet et
al [64]. For Examples: In Focus, Ding et al [48kuarchitectural styles to infer a
conceptual architecture that will be mapped to rcoete architecture extracted from
the source code. Medvidovic et al [54] introduceagproach to stop architectural
erosion Their approach considers architecturakstgs key design idioms since they
capture a large number of design decisions, tlatiomale, effective compositions of
architectural elements, and system qualities thiatikely result from using the style.
Viewpoints: The system architecture acts as a mental modeledhamong
stakeholders. Since the stakeholders’ interestdiae¥se, viewpoints are important
aspects that software architecture recovery magiden Viewpoint catalogues were
built to address this issue: the 4 + 1 viewpoirft&uchten; the four viewpoints of
Hofmeister et al [7], the build-time viewpoint inttuced by Tu and Godfrey or the
implicit viewpoints inherent to the UML standardollet et al [64] described that
most software architecture recovery approachesnstaect architectural views
according only to a single or a few preselectedvpmnts. For Examples: The
Symphony approach of Van Deursen et al [98] aimgeabnstructing software
architecture using appropriate viewpoints. Viewp®iare selected from a catalogue
or defined if they don't exist, and they evolvedihghout the process. They constrain

SAR to provide architectural views that match theksholders’ expectations, and

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

ideally are immediately usable. The authors show tw define viewpoints step by
step, and apply their approach on four case stwdithsdifferent stakeholder goals.
They provide architectural views to reverse engméalowing the viewpoints, these
reverse engineers typically use during design ghd2ellet et al [64] described that
Riva proposed a view-based SAR approach called fdirbased on Symphony:
Nimeta is a full SAR approach that uses the Symphoethodology to define

viewpoints.

Mixed inputs: Most approaches work from a limited source of infation, even if

multiple inputs are necessary to generate rich @ifférent architectural views.

Kazman et al [68] advocate the fusion of multipdeirees of inputs to produce richer
architectural views: for example, they produce ripiedcess communication and file
access views. Lange and Nakamura [17] mix dynamda dtatic views to support
design pattern extraction. Pollet et al [64] ddssli ArchVis uses source code,
dynamic information such as network log or messaggsds and file structures.
Multiple inputs must be organized and Ivkovic anad@ey [37] proposed a

systematic way to organize application domain krolgk into a unified structure.

1.3.2 Software Architecture Recovery Based on Approachassed:

Software Architecture Recovery processes classifiasded on their flow to identify

architecture: bottom-up, top down or hybrid.

Bottom-up approach

In this approach we start with low level knowledgee source code and gradually

discover the complete architecture. Several tagigart this bottom-up process.

The Dali tool by Rick et al. [69] [70] supportsypical example of a bottom-up process:

(1) Heterogeneous low-level knowledge is extradtech the software implementation,

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

treated and stored in a relational database. (R)guike Rigi visualization tool by Hausi
et al [30], a reverse engineer visualizes and nBnabstracts this information. (3) A
reverse engineer specifies patterns by selectingceanodel entities with SQL queries
and abstracting them with Perl expressions. Basddadi, Guo et al [26] proposed ARM

which focuses on design patterns conformance.

Other examples of bottom-up approaches include VAmh, Revealer and ARES,
ARMIN Gupro described by Pollet and Ducasse [64lsS)AROMANTIC approach
proposed by Chardigny, et al [93] is bottom up apph.

- Top-down approach

In this approach we first build conceptual arcHitee of system in terms of some pattern.
The software system is then searched to find iestrof that pattern. Conceptual

architecture is formed with the help of requirensemt architectural styles.

Top-down processes start with high-level knowledgech as requirements or
architectural styles and aim to discover architectby formulating conceptual

hypotheses and by matching them to the source ddue.term architecture discovery
often describes this process. For example RefleMiodel of G. Murphy [20] is a typical

example of Top- Down process. In this model revensgineers first defines his high-
level hypothesized conceptual view of the applaratihen he specifies how this view
maps to the source code concrete view. The revagmeer iteratively computes and

interprets reflexion models until satisfied.

- Hybrid approach

This approach is a combination of the previous twBottom-up and Top-down. On one
hand, low level knowledge is abstracted up usegous techniques. On the other hand
high level knowledge is refined.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

For example, Igor et al [36] proposed a hybrid aedbture recovery methodology called
Dynamo-I, which recovers conceptual architectureedaon documentation available. It
also identifies key use cases by analyzing usezl Ibehavior of the application. The
approach also uses source code of the applicatraeéovering of software architecture.

Tzerpos et al [97] presented a hybrid process irchvthey combined extracted code
facts and information derived from interviewing d&pers to determine the architectural
structure of a legacy system. This approach is coation of the classic top down and
bottom up approaches. The approach is based onriexge with large industrial

application.

FOCUS proposed by Ding and Medvidovic [48] alsosukgbrid process. Other hybrid
processes are Nimeta, ManSART, ART, X-Ray, ARM BigtoTect described by Pollet
and Ducasse [64].

As with any classification, the borders are fuzaythese categories.
1.3.3 Software Architecture Recovery Based on Techniquassed:

The research community has explored various tedksido reconstruct architecture that
can be mainly classified according to their autoomalevel.

- Quasi-manual

The reverse engineer manually identifies architattelements using a tool to assist him
to understand his findings. There are two categomé this technique namely:
Construction based techniques and Exploration baéselghiques. Construction based
techniques reconstruct the software architecturentanually abstracting low level
knowledge e.g. Rigi, CodeCrawler described by Pade al [64].Exploration based

techniques give reverse engineers an architectigal of the system by guiding them

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

through the highest-level artifacts of the impletaéon, like in Softwarenaut by Mircea

Lungu et al [51]. The architectural view is thensgly related to the developer’s view.

Another example of quasi-manual technique is, Fdoyding and Medvidovic [48]

regroups classes and maps the extracted entities tolealized architecture obtained
from an architectural style according to the hureapertise. It is one of the bottom-up
approaches, where it is assumed that little or o@uchentation is available for system
modification. In addition to this, the basic areliiure of the original system and desired

properties of the application are assumed to b&vkno
- Semi-automatic

It automates repetitive aspects of the extractiomcgss but reverse engineer steers
iterative refinement or abstraction, leading to ithentification of architectural elements.
That is the reverse engineer manually instructstdloé how to automatically discover

refinements or recover abstractions.

For example, in Dali reverse engineer specifiesable abstraction rules and execute
them automatically using SQL described by Sylvaial ¢93].

Some approaches build analyses as plain objeattedeprograms. Stéphane Ducasse et
al described [89] For example; the groupings maddehe Moose environment are
performed as object-oriented programs that maniputeodels representing the various
inputs.

- Quasi-automatic

Pure automatic techniques for reconstructing thiéwsoe architecture tend towards
automatic process but still reverse engineer migstr shem. Concept, dominance and
cluster analysis are the techniques which are aftenbined for software architecture

recovery in quasi-automatic techniques.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Concepts: Formal concept analysis is a branch of latticetheised to identify design
patterns, features or modules. Tilley et al [95¢gent a survey of work using formal

concept analysis.

Clustering Algorithms: Clustering algorithms identify groups of objectshose
members are similar in some way. They have beed ts@roduce software views of
applications. To identify subsystems, Anquetil drethbridge [56] cluster files using
naming conventions. Some approaches automaticalliitipn software products into
cohesive clusters that are loosely interconneatgdested by Spiros et al [87] and Theo
Wiggerts et al [94]. Maher Salah [49] described thhustering algorithms are also used

to extract features from object interactions.

Dominance: In directed graph, a node D dominates a node &l ijpaths from a given
root to N go through D. In software maintenancemoh@ance analysis identifies the
related parts in an application .Lundberg and L{d44] outline a unified approach
centered around dominance analysis. On the one Hayldemonstrate how dominance
analysis identifies passive components. On therdied, they state that dominance
analysis is not sufficient to recover the compbhatehitecture: it requires other techniques

such as concept analysis to take component intensdhto account.

Recent example of quasi-automatic approach is ROWMA&Napproach developed by
Chardigny et al [93]. It is also bottom-up approaeimich uses other semantic
information about the system like architecture aats, architectural quality to extract
architecture in addition to source code and deesetiee need of human expertise.

Even though software architecture recovery worlks dassified according to process
input used, approach and techniques used to exdrabitecture, but the process of
software architecture recovery depends on whath&rstakeholders’ goals; how does the

general reconstruction proceed; what are the @lailsources of information, based on

Research study by Shivani Budhkar 13



Extraction of connector classes from object oridrsgstem while recovering Software architecture

this entire software architecture approach is cetiénd finally what kind of knowledge

does the process provide.

1.4 Research Hypothesis

The proposed work is aimed at providing assistattcesoftware maintenance for
transforming existing object oriented system to ponent based system. Thus, reusing
existing code and migrating to new environment sawest, efforts of redesign and
redeveloping the system which suits to new evolvemyironment. This is what the

software industry always prefers.

This research work endeavors to achieve the foligwi

- To develop approach and tool for migration frobjest oriented system to component

based system.

- The tool will assist to extract components antbriace details from object oriented

system to form component based system.

- Maximum automation and less human interventioh n@duce human efforts and cost
of software development by reusing existing obmoénted system instead of starting

development from scrap.

- Extracted components will also be evaluated byl for quality monitoring using

metrics like size of component, coupling of comparend cohesion within component.

1.5 Research Methodology adopted

The proposed research work is divided into 3 steps

Before using proposed approach and tool, use avif teverse engineering tool to

generate class diagram, which will help to comgheeresults from step-l. To extract

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

classes from existing object oriented system, aydgyuality reverse engineering tool
like IBM’s Rational Rose or Enterprise architectwan be used .By experiments find
which tool extracts maximum and accurate infornmati@mbout classes from object

oriented system.

Step — | Component Based Architecture Recovery fronDbject Oriented System

from Existing Dependencies among Classes

The proposed approach is based on the identifitatiosource code entities and the
relationship between them. The list of possiblatrehships between object oriented
systems includes inheritance, composition, invocatrelationship etc. Also these
dependencies are used to generate input needetxorstep i.e. identify components.

Thus this step consists of

- Existing java source code from folder is inputhe tool

- Identify and display dependencies among classes likheritance coupling,
composition coupling, method coupling and integtateupling of them in tabular

format.

Step -1l Component Identification from Existing Object Oriented System using

Hierarchical Clustering -

- Using identified dependencies and clustering atgorj cluster levels will be formed

and components will be defined.

- We will propose agglomerative hierarchical Clustgralgorithm for this step. Input

for the algorithm is taken from the previous step dependencies among classes

Step-lll Component Evaluation and Component Interface Identification from

Object Oriented System -

Research study by Shivani Budhkar

15



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Identified group of classes working together wilbrh components. Using the

components created in previous step interfaceldetali be identified and components

will be evaluated for quality using component giyainetrics. The interface details can
be bundled into packages, which will act as corordmttween the components. Thus this
step consists of

- ldentify interface details for the components ceddh the previous step.

- Evaluate the components for quality monitoring gsimetrics like size of component,

coupling of component and cohesion within component

Once components are evaluated, interface detalgxracted and the component based

software representation is ready.

The above mentioned methodology will be simulatedagava application. The study is
specific to Java object oriented source code brgsggeneral idea about proposed tool
and entire approach.

This work is not proposes for deploying componertd connectors. It is assumed that
software maintenance person knows how to deploygushe component based
framework or model, the organization uses. For etamf a software company uses
OSGi model, then extracted interface details cabw®lled into package which can be
imported and exported as per requirement. So daase interfaces play a role of
required and provided interfaces.

The software maintenance person can use the esdrdettails from proposed approach
and using his or her knowledge can rewrite compnand connectors by giving names
to them. For example, the tool extracts componeitis the names e.g. ComponentO,
Componentl, Component2 etc. He should rename ttefee time of implementation
like in ATM system component-bank, component- teation etc. Thus user should be

able to create packages with the component name.

Research study by Shivani Budhkar 16



Extraction of connector classes from object oridrsgstem while recovering Software architecture

1.6 Theoretical and Practical Significance of Proposetlvork

Theoretically this research will contribute to tegisting component based software
recovery approaches from object oriented systenteimgnted and followed in software
industry.

Outcome of this research will be of practical intpace to software developer and
software maintenance person and to the Managenhesaftavare industry for migrating
the software into new computing environment by irggiexisting object oriented system

and reducing cost of software development with kessan efforts.

1.7 Organization of Thesis

Chapter 2 presents the review of literature andekground material. First it addresses
details about software architecture recovery. \tegithe details of component based
architecture extraction approaches and lists @it #hortcomings. We have proposed the

guasi- automatic approach along with its relatiseamtages and disadvantages.

Chapter 3 will describe which clustering algorithype we will choose for proposed
approach and why. In proposed approach, it helgeb ereate components from object
oriented classes. The chapter presents study sfirxireverse engineering tools and

existing component based framework OSGi.

Chapter 4 discusses proposed entire process appaoactool. It discusses about class
extraction using reverse engineering tool, idemtgydependencies among the classes,
clustering algorithm defined, creating inputs fd¥e talgorithm, components created,

component evaluation and interface details extactrocess for creating connectors.

We have proposed agglomerative hierarchical clusfealgorithm and inputs required

for algorithm are generated. The process of inpaegation is defined in this chapter.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Quality metrics for components are proposed foduateon of components, criteria is
mentioned here so that it can be easily find tbatmonents created are of good quality.
It also briefly discusses the clustering technigquesnponent based system, advantages

of using it.

Chapter 5 gives actual implementation of tool psgubin chapter4. The chapter presents

various algorithms to implement proposed tool.

Chapter 6 provides results and analysis of vareseriments conducted for proposed
extraction process is performed. It discusses #ee study of “arithmetic24” game,
developed in java, this gives guideline for userd@ating components and connectors of
any java object oriented system. This chapter pies/ia comparative study with various
java application systems and comparison of the geeg approach with other existing

approaches.

Chapter 7 presents summary and conclusion. Ittalks about suggestions and scope for

future work.

Appendix — | lists relevant definitions for undenstling of fundamental about software

architecture recovery.

Appendix — Il (a) lists the experimental enviramh to implement the proposed

approach and sample programs of proposed tool.

Appendix — Il (b) contains overview of clusterirdjfferent kinds of clustering methods
which are used for software Architecture recovékg partitional clustering algorithms
and hierarchical clustering algorithm. It also dd#srs similarity measures based on
which similar clusters are grouped together.

Appendix — Il (c) contains a copy of all the pubbsl papers during this research work.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 2

Review of Literature

Component based software architecture recovery fsbjact oriented system has been
handled since 1998. The present study gives thbrougderstanding of different
approaches used to recover component based sofanarigecture from object oriented

system. The result of literature survey of theggr@gches is presented here.
2.1 Software Architecture Recovery

Gall H et al [23] defined software architectureaeery as a process of identifying and
extracting higher level of abstractions from exigti software systems. Software
Architecture recovery and reengineering to handgaty code is critical for large and
complex systems. O’Brien [57] described, the recpverocess can be assisted by
different tools available in the market like Dafrchitecture representation consists of
structural and non-structural information about twafe architecture. Structural

information is the components and connectors dasgithe configuration of a system.

Non structural information is architectural propest for example, safety patterns,

communications patterns, behavioral patterns, stralcpatterns and creational patterns.

According to Garlan [25] Software Architecture Hagn important role in at least six
aspects of software development: understandingereconstruction, evolution, analysis
and management. These aspects make software Aitcih@ecrucial for software
development.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Stephane Kell [90] described, first problem is tlathitectures are not explicitly
represented in code as classes as the packagéharsecond problem is that software
applications continually evolve and grow and sosdit® architecture. Hence, conceptual
architecture does not match with concrete architect

Various works are proposed in literature in oraeextract architecture from an object-
oriented system. We present survey according tantgues used to extract architecture.
The inputs of the extraction approaches are varidest often it works from source
code representations, but it also considers otimelskof information. Most of them are

non-architectural.

2.2 Software Architecture Recovery Approaches basesh techniques used

The techniques used to extract architecture aiiewsand can be classified according to
their automation level like quasi manual approackemi-automatic and quasi-automatic

techniques.

2.2.1 Quasi manual techniques

Some methods are almost manual. These technigussrect the software architecture
by manually abstracting low level knowledge and suseteractive, expressive

visualization tools. Following is survey of the guemanual approaches.

S.K.Mishra, Dr.D.S.Kushwaha, and Prof.A.K.Misra, ” Creating Reusable Software
Component from Object-Oriented Legacy System tlirdRgverse Engineering’2009.

In this paper authors proposed the approach Compddeented Reverse Engineering
(CORE) for development of reusable components tfitaeverse engineering. By using
the reverse engineering techniques; they extraaretiitectural information and services
from legacy object oriented system and later orvedrd these services into components
using OOAD(Object Oriented Analysis and Design) eledike use case model, class

diagram and sequence diagram. Use cases from thecase model having similar

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

functionalities are grouped together. They alsaludasses from class diagram and their
relationship to identify system components. ThegduCRUD matrix i.e. Created, Read
,Updated and Deleted during some scenario, messdigenformation and class
clustering for component creation. The approachmanual and time consuming. It

requires some kind of automation.

Nenad Medvidovic and Vladimir Jakobac” Using Software Evolution to Focus
Architectural Recovery” 2006. In this paper authors proposed light weigiyproach
Focus for recovering and evolving architectures uotdocumented Object oriented
applications. Architecture recovery took place wo tcategories logical and physical
Architecture recovery. The architectures are regmvéncrementally: only those parts of
an application affected by a given change are rremtidind their architecturally relevant
characteristics extensively studied and documerfteshce the name “Focus”); the
recovery of additional subsystems’ architecturel @gcur only as new modifications
that pertain to those subsystems are required. B4th new modification, the task of
recovering the architecture of the relevant sulesysand enacting the change becomes
easier since a larger portion of the overall syseanchitecture is known and correctly
documented. The approach takes the help of reemgi@eering tool available in market
such as Rational Rose and generates class diagjleam.some rules for grouping classes
are defined by authors, using that classes arepgtbuogether manually to form
components. Once application architecture is remalkeevolution step of Focus is

applied to modify application that satisfies neuieements.

Suk Kyung Shin and Soo Dong Kim” A Method to transform Object oriented Design
into Component based Design using Object;Z22005. In this paper authors proposed
technique for transforming object oriented DesignComponent based Design using
Object —Z specifications. Object-Z is a formal laage to design object oriented system.
Using formal specifications of both OOD and CBDeythproposed set of rules to
transform OOD into CBD. In this approach initiathey specify key elements of OOD in

Research study by Shivani Budhkar 21



Extraction of connector classes from object oridrsgstem while recovering Software architecture

its own meta-model and then showed how OOD carpbeifsed in object-Z. The meta-
model they used of OOD is based on Object Modelieghniqgue (OMT).The meta-
model based on OMT consists of static, dynamic famdtional model. Authors then
defined key elements of CBD and represented comysna Component-Z which is
based on Object-Z. Since there is no standard coemaeference model provided by
OMG (Object Modeling Group), a meta- model of CBaswproposed from static,
functional and dynamic viewpoints such as meta-hotl©OD. Authors also specified
provided and required interfaces by using somestommation rules. Resulting CBD

from above approach can be implemented by utdinbject in EJB, .NET or CORBA.

Nenad Medvidovic , Alexander Egyed and Paul Gruenhzher, “Stemming
Architectural Erosion by Coupling Architectural Bsvery and Recovery’2003. Nenad
Medvidovic et al presented approach to combinenigcies for architectural discovery
from system requirements and architectural recoffreny system implementations. For
software Architecture recovery, they generate cldiagram from available tools like
Rational Rose and then Classes can be grouped lmsatifferent criteria and/or
architectural concerns as components. Remote puoeedall (RPC) identified as
connectors. In this approach the result of thevegostep is not a complete architecture
of the system. Several pieces of information i# stissing. This approach is not fully
automated. For recovering classes form object tategystem, help from existing tools is

needed.

Lei Ding and Nenad Medvidovic,“Focus: A Light-Weight, Incremental Approach to
Software Architecture Recovery and Evolutio@Q01. In this paper Lei and Nenad
proposed a guideline to a hybrid process whichowgas classes and maps the extracted
entities to a conceptual architecture obtained femmarchitectural style according to the
human expertise. Authors proposed an approachddatieus, to be applied to recovering
and evolving architectures of undocumented, modbrasized Object Oriented

applications. Each iteration of approach is comgosé¢ two interrelated steps:

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

architecture recovery and system evolution. LeigDiacovered architecture of object
oriented application by proposing idealized sofevarchitectural model and then
mapping it to actual component recovered. So, is #pproach entire knowledge of
application of which software architecture needbdaecovered should be there. Human

expertise is needed for this approach.

Wolfgang Eixelsberger, Michaela Ogris, Harald Gall, Berndt Bellay,” Software
Architecture Recovery of a Program Family1998. Wolfgang et. al presented a
framework for recovering the software architectwe a program family. In this
framework, architectural properties such as safetgystem control are recovered using
different reverse engineering methods and toolscambination with architectural
descriptions. The result of the architecture recpygocess is the system’s architectural
properties and their architectural descriptiongeepnting the architecture of a specific
system. The framework was developed and appliedetover the architectures of
embedded software systems. The architecture regdvamework described here is
based upon four parts: - the case study, archr@gbuoperties, architectural descriptions
and architecture recovery methods. These partaeinfle each other and limit and/or
guide the architecture recovery process. As a sasdy authors used Train Control
System (TCS) which is an embedded real time sysieccessfully in use in different
countries. The available information of case stweys source code of TCS, system
documentation domain knowledge engineer, applinatgpecific engineer. While
working on case study authors identified severehiggctural properties that were not
explicitly expressed in design and then enhancethttvith other related properties not
originally found in the case study. Each architesdtproperty then described using one or
more architectural description notations. Differarghitecture recovery methods are used
to recover each of the previously defined archibedt properties. The authors also
addressed the recovery of the architecture alsm fatructural point of view i.e.
component and connector based and typically destrilsing Architecture Description

Language(ADL).

Research study by Shivani Budhkar 23



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Wolfgang Eixelsberger, Lasse Warholm, Rene Kldsch Harald Gall and Berndt
Bellay,” A Framework for Software Architecture Recovery'997. In this paper authors
proposed software architecture recovery framewbhle input of the recovery process is
the source code, the design documentation, andiddmawledge. Information from the
source code can be extracted with the help of sevengineering tools and by manual
recovery. Reverse engineering tools perform statialysis on the code and extract
information like call graphs, cross reference taplend data flow diagrams. Human
interaction is not possible while the tools arelyriag the source code. Manual recovery
is performed on the source code by human expesigecelly domain experts, can
analyze the source code using their knowledge wtiilcar cannot be done by the reverse
engineering tools. Thus, the framework combinediegipon domain knowledge and the
capabilities of reverse engineering tools in ortterstrive for the requirements of an
architecture recovery tool.

2.2.2 Semi-automatic techniques

Semi-automatic methods automate repetitive aspafcthie recovery process but the
reverse engineer steers the iterative refinementlmstraction for identification of

architectural elements. Following is survey of seeni-automatic approaches.

Aline.P.V. Vasconcelos, and C.M.L. Werner,'Software Architecture Recovery based
on Dynamic Analysis"2004. In this paper authors proposed an approacoftware
architecture recovery from object-oriented legagsteams mainly based on the dynamic
analysis of systems. The process described heiligerngtive and incremental. The
architecture is recovered in cycles, starting by tise-case modeling activity. In each
cycle a more complete description of the systerhitacture is obtained. The process is
semi-automatic and guided by a developer who mase lsome knowledge about the
application. If developer does not have knowledigen it has to be obtained from system
experts, available system documentation and apigicaxecution. The process starts by

the static reverse engineering and use-case mgdelativities. The static reverse

Research study by Shivani Budhkar

24



Extraction of connector classes from object oridrsgstem while recovering Software architecture

engineering aims at the recovery of a static madehe system, which is represented
through UML Class Diagrams. This activity is exexlonly once. The static reverse
engineering was performed with Ares tool which apable of extracting a UML static
model from Java source code. Use case modelingstaah in parallel. For use case
modeling use cases are selected according to #regehand evolution requirements of
the application. Then dynamic reverse engineertagssby behavioral models such as
sequence diagram. The system is executed for #nefigal use case scenarios and these
executions are monitored, allowing the collectidrerecution traces. Execution traces
encompass the set of events and messages genduategl system execution with their
sender and receiver instances and their types. Uppost this dynamic reverse
engineering authors had developed a trace coll¢otly named tracer to monitor java

program executions. The approach requires domaiareknowledge.

George Yanbing Guo, Atlee, and Kazman“A software architecture reconstruction
method”, 1999. This paper presents semi-automatic method ARchitecture
Reconstruction method) is an approach to architakctteconstruction distinguishing
between the conceptual architecture and the aatahitecture derived from source code.
ARM applies design patterns and pattern recognittoscompare the two architectures.
ARM assumes the availability of system designersfdomulate the conceptual
architecture. The approach is divided into two pkal) identification and extraction of
source code artifacts, including the architectelaiments and 2) analysis of extracted
source artifacts to derive a view of the implemdraechitecture.ARM is an iterative and
interpretive process; a human is integral parthef bbop to evaluate the results and

determine what patterns to apply in subsequeratiters.

2.2.3 Quasi-automatic techniques

Pure automatic techniques for reconstructing thiéwsoe architecture tend towards

automatic process but still reverse engineer migstr shem. Concept, dominance and

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

cluster analysis are the techniques which are aftenbined for software architecture

recovery in quasi-automatic techniques.

Following is survey of quasi-automatic techniques.

- Software Architecture Recovery using Concepts

Gabriela and Tom [22] described, Concept Analy€i8)(is a branch of lattice theory
that allows us to identify meaningful groupingsetéments (referred to as objects in CA
literature) that have common properties (referrecas attributes in CA literature) 1.
These groupings are called concepts and capturéasiies among a set of elements
based on their common properties. Mathematicatincepts are maximal collections of
elements sharing common properties. They form apbeten partial order, called a

concept lattice, which represents the relationsbgig/een all the concepts.

Pollet et al [64] described formal concept analysia branch of lattice theory used to
identify design patterns, features or modules. &af24] described formal concept
analysis is a general mathematical method for ifyémg commonalities within systems.
It provides a way to discover sensible groupingslgécts that have common attributes
in a certain context (“objects” of concept analydiall not be confused with “objects” of
object-oriented programming). Informally, a concepa collection of all the objects that
share a set of attributes in a given context. Bt@scommon attributes of the concept is
called the concept’s intent, and the set of objeelsnging to the concept is called the
concept’s extent. Formally, a context is a triple QO, A, 1), where O and A are finite
sets of objects and attributes, respectively, asdalbinary relation (an instance relation)
between O and A expressing the attributes eachcblijas. The concept lattice
constructed from a context describes the input arious levels of abstraction. In
reengineering many approaches used formal concegysss to identify modules and
components in legacy systems. Thus concept analg&s not group items, but rather

builds up so-called concepts which are maximal sketeems sharing certain features. It

Research study by Shivani Budhkar

26



Extraction of connector classes from object oridrsgstem while recovering Software architecture

does not try to find a single optimal grouping lwhe®m numeric distances. Instead it
constructs all possible concepts, via a concisiedatepresentation.

Alae-Eddine El Hamdouni, A. Djamel Seriai, and Maranne Huchard, "Component-
based Architecture Recovery from Object Orientedte®ys via relational Concept
Analysis”, 2010.In this paper authors presented approaelxtedcting component based
architecture recovery from object oriented systaming relational concept
analysis(RCA).In RCA approach architectural compdgi@are identified from concepts
derived by using all existing dependency relatibasveen classes of the object oriented
system. This approach is based on ROMANTIC appratsteloped by S. Chardigny
[93]. RCA process is based on the identificatiors@iirce code entities and the relations
between them by source code analysis . Theseamtaire matched with ROMNTIC
refinement model. The four step RCA process isExiraction of a Dependency graph
(DG) of source code classes. ii) Create RCA modaigidependency graph data. iii)
Generate lattice of concepts representing clusfenbject classes. iv) Identify candidates
components from resulting lattice.

Naouel Moha, Amine Mohamed Rouane Hacene, Petko \tahev, andYann-Ga'el
Gu’eh’eneug¢’ Refactoring of Design Defects using RelationainCept Analysis”2008.

In this paper authors proposed automated approactsifggesting defect-correcting
refactoring using relational concept analysis (RCAhey defined a three-step RCA-
based correction process that follows a two-stépctieletection process. First, they build
a model of the program that is simpler to manimuldtan the raw source code and
therefore eases the subsequent activities of dateeind correction. The model is
instantiated from a meta-model to describe OO pnogr Next, they apply well-known
algorithms based on metrics and—or structural datthis model to single out suspicious
classes having potential design defects. For eashigous class, they automatically
extract a RCF that encodes relationships among ctesmbers from the model of the

program. Then, the obtained RCF is fed into a R@diree that drives the corresponding

Research study by Shivani Budhkar 27



Extraction of connector classes from object oridrsgstem while recovering Software architecture

concept lattices. Finally, the discovered concegts explored using some simple
algorithms, which apply a set of refactoring rullest allow the identification of cohesive

sets of fields and methods.

Gabriela Ar'evalo, St’ephane Ducasse and Oscar N&rasz” Lessons Learned in
Applying Formal Concept Analysis to Reverse Engingg 2005. In this paper authors
used formal concept analysis to build tool to idfgmecurring set of dependencies for
object oriented software reengineering. The @gr is divided into five steps:1) Model
Import: A model of the software is constructed frotme source code. Moose
reengineering platform, is used for these purposdich is reengineering vehicle for
object oriented software.2) FCA Mapping: A FCA GCait (Elements, Properties,
Incidence Table) is built, mapping from meta maeldities to FCA elements (referred as
objects in FCA literature) and properties (refereedattributes in FCA literature) This
step is used to map the model entities to elemants properties, and they need to
produce an incidence table that records which eisrelfill which property. 3) ConAn
Engine: The concepts and the lattice are genelgtékde ConAn tool. Once the elements
and properties are defined, they run the ConAnnenghe ConAn engine is a tool
implemented in VisualWorks 7 which runs the FCAcaithms to build the concepts and
the lattice.4) Post-Filtering: Concepts that are useful for the analysis are filtered out.
Once the concepts and the lattice are built, eadlept constitutes a potential candidate
for analysis. But not all the concepts are relevahts they have a post-filtering process,
which is the last step performed by the tool. Iis tvay they filter out meaningless
concepts. Analysis: The concepts are used to biidchigh level views. In this step, the
software engineer examines the candidate concegidting from the previous steps and
uses them to explore the different implicit depemes between the software entities and
how they determine or affect the behavior of thetey. Thus in this paper authors
presented a general approach for applying FCAversee engineering of object oriented
software. They also evaluate the advantages amwbdrks of using FCA as a meta tool

for our reverse engineering approaches.

Research study by Shivani Budhkar 28



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Gabriela Ar'evalo and Tom Mens” Analyzing Object Oriented Framework Reuse
using Concept Analysis’2002. In this paper authors used the concepysisakchnique
to analyze classes and their methods based onréhaiionships in terms of inheritance,
interfaces and message sending behavior. The fahee relationship indicates whether
a class is an ancestor or descendant of anotherTteeinterface relationship indicates
which methods are exported by the classes. Theapessending behavior indicates
which methods are called by other methods in asclasthors calculated the concept
lattice for a well-known inheritance hierarchy: tBmalltalk Magnitude hierarchy. Then,
they analyzed the results after classifying theegatied concepts into concept patterns.
Each concept pattern allowed us to discover a nurabénteresting non-documented
relationships (based on self sends and super seamehg classes in a hierarchy.
Especially for large inheritance hierarchies, thisrmation is crucial for understanding

the software and reengineering.

Arie Van Deursen, A., Kuipers, T,” ldentifying objects using cluster and concept
analysis”, 1999. In this paper authors proposed a methotlémtifying objects by semi-
automatically restricting legacy data structuresuuth®drs used both Formal Concept
Analysis and clustering algorithm to build Objectiédted classes from procedural
source code. Elements from source code are gatlarenrding to the features they
share. Then, the resulting concepts are candidasses and sub-concept relationships
represent relations between these classes. Autieresused agglomerative hierarchical
clustering algorithm. The dendrogram is prepareskfiaon actual clusters found by the
algorithm. The clustering algorithm used averag&dge to measure distance between

two clusters.

Houari A. Sahraoui, Hakim Lounis, Walcelio Melo, ard Hafedh Mili, “A concept
formation based approach to object identification grocedural code;” 1999. In this
paper authors described migration of procedurdivsoé systems to the object-oriented

(OO0) technology. Their approach is based on thenaatic formation of concepts, and

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

uses information extracted directly from code tenitfy objects. The approach tends,
thus, to minimize the need for domain applicati@pests. The approach is based on the
relationship between data and routines. It consisfve steps. First, they compute some
metrics to determine the profile of the applicatairhand. This profile allowed them to
choose the appropriate program abstraction that ¢he use to identify objects. Then,
they identify objects using different algorithmsifd, they identify the methods of these
objects. The fourth step consists of identifyin@ ttelationships between the objects
(generalization, aggregation, or more generallgpeigations). Finally, the source code is
transformed using the so-derived object model. dfpect identification step they used
two algorithms, a graph decomposition algorithnd #meir own algorithm, which uses

concept formation with Galois lattices.

Siff, M., Reps, T.W.,,” Identifying modules via concept analysis1999. In this paper,

author has presented a method for identifying mesluh legacy systems based on
concept analysis. The entire approach is divided ihree steps: - 1) Build a context,
where objects are functions defined in the inpogpem and attributes are properties of
those functions. The attributes could be any séyeoperties relating the function data
structure. 2) Construct a concept lattice from ¢batext — Concept lattice can be built
from a program in such a way that concept reprepetgntial modules. 3) Identify

concept partitions. Each partition corresponds tssible modularization of input

program. In this approach a formal context is bindim the system elements, and both
negative and positive attributes are used in aextend the context to be well formed.
Then, an algorithm of concept partition is usediszover possible partitions in the set of

the generated concepts. The chosen partition reptethe set of candidate classes.

- Software Architecture Recovery using Clustering
Clustering algorithms identify groups of objectsosh members are similar in some way.
They have been used to produce software views phicapions. Different kinds of

clustering algorithms are used in literature fdtwsare architecture recovery.

Research study by Shivani Budhkar

30



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Simon Allier, Salah Sadou, Houari Sahraoui and Rag Fleurquin, "From Object
Oriented Applications to Component Oriented Amilan via Component Oriented
Architecture”, 2011.In this paper authors proposed a methoditaraatically transform
an operational object oriented application in aaraponal component based application.
The method consists of two steps: i) identify comgnts ii ) identify provided and
required interfaces. For component identificatidepsauthors used traces which are
identified by executing scenarios correspondingapplications use cases . Heuristic
search is used to find a near —optimal solutiore $tatic call graphs are also generated
from source code. Thus using execution traces #ait <all graph components are
created. They manually refine the components aldealbis approach combines two
different heuristics, a genetic algorithm and sied annealing algorithm. For second
step i.e. identifying required and provided inteds, component’s services are identified
by using system’s call graph. These system cappltggaare produced by using Variable
Type Analysis (VTA) algorithm and execution trac€ke identified required services are

grouped together and respectively provided senacesrding to application domain.

Siraj Muhammad, Onaiza Magbool, Abdul Qudus Abbas “ Role of relationship
during clustering of object oriented software syste 2010. In this paper relationship
within object oriented system are divided into elifint categories evaluated them for
clustering process. Authors in this approach usedliferent relationships to find the
similar entities, which are commonly used in thejeob oriented system. These
relationships can be direct or indirect. The appioases an objective function which
counts the number of relationships that exists betw entities ( in this case
classes).Greater number of relationships betweem éwtities indicates the higher
similarity between them. Thus similarity matrix iproduced and hierarchical
agglomerative clustering algorithm is used to t@u®bject oriented software system.
The results produced by clustering algorithm is parad with the architecture produced

manually by human experts.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Qifeng Zhang, Dehong, Qiu, Qubo Tian, Lei Sun “Object Oriented Software
Architecture Recovery using New Hybrid Clusteririgofithm”, 2010. Object oriented
software architecture recovery using a new hybfigtering algorithm — A Authors
defined Weighted Directed Class Graph(WDCG)to regmé object oriented system and
then new hybrid clustering algorithm based on hadmaal clustering and partition
clustering is proposed for recovering high levehitecture from object oriented system.
WDCG is extracted from Java byte code to represtic structure of software. They
also used coupling between classes like inheritaocepling, method coupling,
composition coupling , data coupling, coupling betw classes , module coupling and
cohesion coupling as the weights of edges. Theithytustering algorithms takes input

WDCG , number of clusters and produced outputratioam of WDCG.

Yuxin Wang, Ping Liu, He Guo , han Li, Xin Chen,” Improved Hierarchical
Clustering algorithm for Software Architecture Reery”, 2010. In this paper authors
proposed improved hierarchical clustering algoritimalled LIMBO Based Fuzzy
Hierarchical clustering (LBFHC) to increase thets@afe architecture recovery accuracy
and enhance the effectivity. LIMBO (Scalable Infafidn Bottleneck) algorithm
proposed by Tzerpos [97] is the foundation of psmgb algorithm. The LBFHC
algorithm is composed of four steps: i) Identifioat of entities and features- For the
improvement of quality and enhance cohesion oftetss, more detailed information
extracted from legacy system is defined as meanirightures and associated with each
entity or cluster. Different kinds of meaningfulatares considered here are global
variables referred to by an entity , local variabteferred to by an entity , user defined
types used by an entity, entities called by antgrgiystem calls referred to by an entity ,
macro referred to by an entity. ii) Calculation similarity- Based on LIMBO,
information loss measure is used to calculate anityl instead of using traditional
distance measure. In this case greater the infayméobss is , the smaller degree of
similarity is . Therefore , the pair of entities @usters , which hold the minimum value
of information loss is combined into same clusteii)Process of clustering — The

Research study by Shivani Budhkar 32



Extraction of connector classes from object oridrsgstem while recovering Software architecture

LBFHC algorithm is presented in this step to folma tlusters. iv) Selection of measures
- To evaluate the clustering results for qualisyious measures are defined here. This
step describes two primary types of measures -Brral evaluation It is intrinsic
evaluation of clustering. It comprises the numbérclusters and the percentage of
arbitrary decisions, which are used to evaluate HBR2) External evaluation is done
with the help of expertise and experience fromcsists. Both internal and external

type of evaluations are compared for assessmewpsolt from clustering.

Simon Allier , Houari A. Sahraoui and Salah Sadolu Identifying Components in
Object-Oriented Programs using Dynamic Analysid &ustering”, 2009. In this paper
authors proposed an approach for component caedidantification as a first step
towards the extraction of component-based architestfrom object oriented programs.
The approach used dynamic call graphs as inputlt btom execution traces
corresponding to use cases. This approach is divide four steps:-1) data extraction 2)
possible class groups identification, 3) candidedenponent selection, 4) Candidate
component refinement. Data (method calls) are etddausing dynamic analysis. They
are obtained by executing typical use cases of glegram and by grouping the
corresponding execution traces into dynamic cadlpgr(DCG).Use cases are derived
from the application documentation. Using DCG cqudattice is built. The lattice’s
node defines group of interrelated classes. Usomgesheuristic selected groups are
optimized. Thus resulting set of candidate comptmand their connections would form
the component based architecture. For capturingugiom traces and generating DCG,
authors used existing tool, MuTT( Multithreaded ¢&g. Also for constructing lattice
from DCG framework Galicia is used. For selectionl aefinement of components they
wrote algorithms. This approach is limited up tanpmnent identification and connector
identification is not considered.

Brian S. Mitchell and Spiros Mancoridis, “On the evaluation of the bunch search-

based software modularization algorithm2008. The Bunch algorithm extracted high

Research study by Shivani Budhkar 33



Extraction of connector classes from object oridrsgstem while recovering Software architecture

level architecture by clustering modules (filesGnor class in C++ or Java) into sub-
systems based on module dependencies. The clgstsridone using heuristic-search
algorithms. This approach first uses source coadysis tool to first create a graph of
system structure, where the nodes are modules Javg classes/C++ files), and the
edges are binary relations that represent the radduél dependency (e.g. method calls,
inheritance).The search based clustering algoriambeen implemented in Bunch tool.
The tool generates a random solution from searelespnd then improves it by using

evolutionary computation algorithms.

Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah Dalila Tamzalit
“Extraction of Component-Based Architecture Fromj&i-Oriented Systems2008. In
this paper proposed an approach called ROMANTICclwHbcuses on extracting a
component-based architecture of an existing olgaetited system. It is a quasi-
automatic process of architecture recovery based semantic and structural
characteristics of software architecture concepgtware Architecture is extracted using

a variant of the simulated annealing algorithm.

Sylvain Chardigny, Abdelhak Seriai, Dalila Tamzalit, Mourad Oussalah” Quality-
Driven Extraction of a Component-based Architectiioen an Object-Oriented System”
2008. It is quasi-automatic process of architectteeovery based on the quality
characteristics of architecture by formulating & a search-based problem. These
characteristics guide the partitioning of the systdasses in order to define architectural

components.

The ROMANTIC tool uses metrics, but relies on detént approach than clustering.
The first step of the extraction consists of deftnia correspondence model between
object concepts and architectural ones. This cpomdence is elaborated by the
architect. Then the tool validates this correspacdeusing predefined guides based on
semantic and qualities of the architecture. Thegss selects among all the architectures

that can be abstracted from a system, the besaor@ding to the set of guides. The

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

guides are assumed to be measurable constraim®del the extraction process as a
balancing problem of these competing constrainke &xtraction problem is a search-
based one and uses the Low-Temperature Simulatadaling algorithm. The currently
available information do not provide performanceamges, the approach is costly, at
least from a theoretical point of view. However, REANTIC is not yet publicly

available to compare it with others.

Xinyu Wang,Xiaohu Yang,Jianling Sun and Zhengong Cg'A New Approach of
Component Identification Based on Weighted ConviectStrength Metrics"2008. In
this paper authors proposed component extractiorthade based on Weighted
Connectivity Strength (WCS) metrics. The methodppsed weighted connectivity
strength metrics to measure connectivity betweenpoments and then applied clustering
process to group classes based on WCS into comigor@n the basis of connectivity
strength and considering variations of user defibgoks this study proposed new
measure of component metrics WCS.WCS reflects ifferehces of user defined classes
in the system and assign high weight to cruciatsga, enlarge connectivity strength of
classes related with crucial classes to help closelated classes easily cluster into
component. The study also used hierarchical clugtealgorithm for improvement of
precision and efficiency. In this methodology ifdees between components are not
identified.

Istvan Gergely Czibula and Gabriela,Serban “Hierarchical Clustering for Software
Systems Restructuring”’2007. In this paper author's proposed new aggiative
hierarchical clustering algorithm for restructuriaobject oriented software systems in
order to improve the structure of software systd&or this purpose a heuristic that
determines the no of application classes was pespo$his approach would help
developers to identify appropriate refactoring. sThpproach consists of three steps: 1)
Data collection-The existing software system isly#etl in order to extract from it the

relevant entities like classes, methods, attrihudes the existing relationships between

Research study by Shivani Budhkar 35



Extraction of connector classes from object oridrsgstem while recovering Software architecture

them. 2) Grouping- The set of entities extractethenprevious step are regrouped into in
clusters using hierarchical agglomerative clusteafgorithm for improved structure of
existing software system.3) Refactoring extractiofhe newly obtained software
structure is compared with the original softwameicure in order to provide a list of
refactoring which transform the original structunéo an improved one. The approach

was evaluated on open source jHotDraw and reswts wbtained.

Onaiza Magbool and Haroon A. Babri ,” Hierarchical Clustering for Software
Architecture Recovery’; 2007.In this paper authors provided a revievhiefarchical
clustering techniques for architecture recovery amatlularization of software systems,
which is helpful for applying clustering succesbfufor the purpose of architecture
recovery and modularization. As in the last few rgealustering has emerged as a
promising technique for software architecture rergy According to author
understanding behavior of clustering measures guotitom is the first step towards
meaningfully employing clustering techniques fobsystem recovery. For this purpose:
1) they analyzed the behavior of various similesitiand distance measures in the
software context, thus identifying families of slamity/distance measures. 2) They
analyzed the clustering approach of the Weightedhi@ioed Algorithm (WCA) and
LIMBO and described similarities between their twtep approaches. The authors
showed that these algorithms substantially redubirary clustering decisions that are
common during the hierarchical clustering processoftware domain. 3) They analyzed
the clustering process of well-known hierarchickistering algorithms and evaluated
their strengths and weaknesses by using multiglesasnent criteria. They demonstrated
that the performance of an algorithm depends nlyt @mits own characteristics but also
on those of the software system to which it is i®gplThus the focus of this paper is on
the analysis of hierarchical clustering measureas$ agorithms in the software domain
and identification of their strengths and weakngssethis domain so that they may be

used effectively for architecture recovery.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Hironori Washizaki and Yoshiaki Fukazawa, “A technique for automatic component
extraction from object-oriented programs by refactg”, 2005. In this paper authors
concentrated on the extraction of components bwctefing Java programs. They
proposed a technique for extracting components fegisting object oriented programs
by their new refactoring ‘extract component’ methddhis extraction is based on the
class relation graphs. Class relation graphs afair@dl by static analysis of the
dependencies among java classes. Then clustegogithin was applied on graphs. In
this approach authors first defined a class @tagiraph (CRG) that represents the
relations among classes/interfaces in the target peogram. Next, using a CRG, they
propose a technique for extracting components f@@ programs, and changing the
parts surrounding the extracted components to all@se surrounding parts to use the
newly extracted components. These surrounding pademe the usage examples of the

extracted components. This approach is limiteéva peans components only.

Soo Ho Chang, Man Jib Han, and Soo Dong Kim,A Tool to Automate Component
Clustering and Identification” 2005. In this paper authors developed tool which
identifies components from the object oriented esystThe tool takes raw data input,
which needs to be derived from fundamental arsfatobject oriented modeling such as
use case model, object model and dynamic modelcéenis clear that if these artifacts
are not available, it is difficult to identify corapents from the object oriented system.
This means the method assumes that the fundamartitdcts of object oriented
modeling such as use case model; object model gnandc model are available. The
approach consists of four steps:-1) measure fumatidependency 2) clustering related
use cases 3) allocate classes to components 4jeRefmponents. This method considers
three types of relationships for identifying compots. In step 1 and 2 functional
dependency between use cases is used as the furtdhmeeans to cluster related
functions. The dependencies are measured withotlrecfiteria in step 1 and related use
cases are clustered in step 2. In step 3 funciigrtatdata relationship expressed in

dynamic model such as sequence diagram are takassign related classes to candidate

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

components. In step 4 dependency or coupling betwkesses is to verify and refine the
identified components. If there are two closelyatetl classes which are separated into
two components, it is identified and refined instBtep. Thus tool automates component

clustering and identification method.

Eunjoo Lee Byungjeong Lee Woochang Shin Chisu WUYA Reengineering Process
for Migrating from an Object-oriented Legacy Systam a Component-based
System;2003 In this paper authors presented reengine@rogess for migrating from
object oriented legacy system into component baystem. The process consists of
creating basic components using existing relatignahd then refines the components by
using metrics and clustering algorithm they haveppsed. Components are retrieved
from C++ source code. In this approach only depecgerelationship among
components is considered. The approach did not miweh detail about the interfaces
among the components. Lee et al defined criter@mhsomponent metrics, including
connectivity strength, component complexity, etcthe definition of connectivity, Lee
assigned equal weight to all user defined typesvéver, the complexity of user defined
types in a real system varies greatly, which isrefiected in Lee’s definition and results
in low precision of component classification. Thagated components based upon the
original class relationships that they determineelRgmining the program source code.
They described the system and process formallysagdested applicable metrics for the
process. These can be used to help create compometiit the desired level of

complexity that can operate as cohesive functiands in a distributed environment.

Woo-Jin Lee, Oh-Cheon Kwon, Min-Jung Kim, and Gyu-&ng Shin; A Method and
Tool for Identifying Domain Components Using Objelstage Information;” 2003. In
this paper authors presented a systematic methdditansupporting tool called a
component identifier that identifies software comeots by using object-oriented
domain information, namely, use case models, domoshject models, and sequence

diagrams. These object oriented domain models wktained from a domain analysis

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

process, in which common domain objects and commsercases were extracted through
commonality and variability analysis. Assuming tlsatnmon class diagrams, common
use cases, and sequence diagrams are given &fteorain analysis process, they focus
on the component identification process, in whibleyt clearly define dependencies
among objects and propose object clustering algost To precisely describe the
dependencies among objects , authors merge the tle@points —structural, functional,
behavioral into uniform model in which they extrdbe structural relationship among
objects from class diagram. To clarify ambiguoupeahelencies among objects, they
extracted object usage which represents usagéoredhip among objects such as create,
destroy, update and reference, from sequence dmsgeutomatically or additionally
specified the object usage according to use cdd$es authors weighted each object
usage according to the frequency or significanceagh use case. To uniformly describe
object usage and structural dependencies in aesmghtion they proposed an actor and
object usage graph (AO usage graph). To perforntltrstering algorithms they provide
new graph concept called object dependency netwamkobject dependency network
can be obtained from AO usage graph by calculatieighted value for the accumulated
object usage and by eliminating actor nodes.. @rb#sis of object dependency network,
authors provided two object clustering algorithnadlexl seed algorithm and cohesion
algorithm. In addition to this they provide suppgttool called object identifier.

Brian S. Mitchell, Spiros Mancoridis and Martin Traverso,” Search Based Reverse
Engineering”, 2002. In this paper authors have described a psoder reverse

engineering the software architecture of a systeectly from its source code, which
consists of clustering the modules from the sowmde into abstract structures called
subsystems and then reverse engineering the sabsistel relations using a formal
(and visual) architectural constraint language sTdpproach is especially helpful when
other forms of traditional design documentation argdated or not available. This
approach consists of two steps supported by a stiitdegrated tool. The first step uses

their clustering tool, namely Bunch, to generatbsystem hierarchy automatically .

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Using reverse engineered subsystem hierarchy as jrthen they used a second tool ,
called ARIS( Architecture Relation Inference Systdhat enabled software developers
to specify the rules and relations that govern nevdules and subsystems can relate to
each other. These formal descriptions are callégfdannection styles and are created

using visual architectural constraint languageechlSF.

Hemant Jain, Naresh Chalimeda, Navin lvaturi ,Balamma Reddy” Business
Component Identification- A Formal ApproacB001. In this paper authors developed
approach which helps in identifying components framalysis level object model
representing a business domain. It is assumeddttrafin modeling has been done at
analysis level which is input to the process .THomain model represents significant
object classes using UML notations, the structuedtionship between object classes,
use cases and sequence/interaction diagrams presdphamic relationship between the
classes. Author developed tool ‘CompMaker’ by innpdating clustering algorithm for
identifying initial set of components and then gssuper type, subtype relationship and
set of heuristic enhance and refine the solutic@inbd from clustering algorithm. The
approach uses Hierarchical Agglomerative clusteaiggrithm. For this approach, UML
analysis model consisting of use case diagrams afesgram and sequence diagram
needs to be prepared. User needs to have domammddge to assign weights to use

cases.

Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo hbiy Jang, Dong Han Ham,
“Component Identification method with coupling andhesion’; 2001. In this paper
authors proposed component identification methad tdonsiders class cohesion, class
coupling, the quality metrics to define the qualdly identified components. By using
domain knowledge and experience of developer actite design is performed.UML
diagrams like use case, class diagram sequenceatiage used in it. Then component
clustering algorithm is used to identify componeméng suggested component metrics.

In this clustering algorithm mathematical basisclastering binary relation, cluster

Research study by Shivani Budhkar 40



Extraction of connector classes from object oridrsgstem while recovering Software architecture

relation, class relation graph. For class relagoaph developer’'s domain knowledge is
required. Thus this approach consists of six stépPefining architecture 2) Design
models using UML diagrams like use case diagramadasks diagram. 3) Finding key
classes 4) considering component cohesion 5) cemsgl coupling among components
6) considering component interface. This approacbombined approach of clustering

and graph.

Kamran Sartipi and Kostas Kontogiannis,” Component Clustering Based on Maximal
Association”, 2001. Authors presented a supervised clustéramgework for recovering
the architecture of a software system. The apmpiinaif data mining techniques allows to
extract the maximum association among the groumntfies. The user incorporates the
knowledge about the system domain and documentstir@ clustering process. This
approach first provides a new similarity metricséa on maximal association property(
maximum number of shared properties) between tvoupgg of entities such as files.
After this Supervised clustering technique is usgdlecomposing a large system of files
into cohesive subsystems and finally used searabespeduction technique to manage
the search complexity. Authors implemented a pym®treverse engineering tool to
recover the architecture of software system asstebeomponents. Depending upon the
user expertise and knowledge about the systemydieinteraction can range from few
steps of guidance to the clustering algorithmtaugetermining a whole cluster. The tool
represents the result of clustering as a subsystedninterconnections representation
using both HTML pages to browse and analyze thdityud results and different graphs

to visualize and investigate.

S. Mancoridis, B. S. Mitchell , Y. Chen, E. R. Ganger ,"Bunch: A Clustering Tool for
the Recovery and Maintenance of Software Systamet@tes”, 1999. Mancoridis et. al
proposed Bunch tool which can cluster source lenetules and dependencies into
subsystem. The tool assumes that the modules ggahdencies of a system are mapped

to a Module De-pendency Graph (MDG).The MDG is edtically constructed using

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

readily available source code analysis tools. ThedB tool was extended to take into
account human knowledge. The approach uses chugtatgorithms to automatically
partition software products into cohesive clustéegt are loosely connected. Clustering
algorithms, based on hill climbing and genetic &dtlhpons are applied on module

dependency graphs and extracted from source code.

Spiros Mancoridis and Brian S. Mitchell,” Using automatic clustering to produce high-
level system organizations of source codes, 1998s Ppaper describes automatic
recovery of the modular structure of a softwargesysfrom its source code. First step in
this process is to extract module level dependsnftiem the source code and store

resultant information in a database. Authors us@é&Rs CIA tool and Acacia for C++

for this step. After all of the module-level dependies have been stored in the database,

they executed an AWK script to query the databfsey, the query result and produce as
output a textual representation of module dependgraph. The clustering tool Bunch is

applied to their clustering algorithms to the m@ddependency graph. Then they used
the AT&T'’s dotty visualization tool to read the put file from clustering tool and

produce visualization of results.

Chung-Horng Lung,” Software Architecture Recovery and Restructuringough

Clustering Techniques”1998. In this paper author proposed a quantéasipproach

based on clustering techniques for software archite restructuring, reengineering and
recovery. Use cases are used together with therediff clustering methods to reduce
complexity at different levels of abstraction alowgth the design patterns. A
visualization tool, SPV (Software Partition & Vidization) was developed on top of the
clustering methods to provide a user friendly emwinent. Using two examples authors
showed a result of decoupling effort of a legacgtem and an application of the
clustering technique to support the identificatimina design pattern. This study also
illustrates how the combination of use cases anst@ting techniques help them

restructure the system.

Research study by Shivani Budhkar

42



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Graph Based or using Dominance Software Architectue Recovery

Dominance analysis is a graph based technique dwtifg certain nodes in directed
graph. The dominance analysis can be applied dngcabhs derived from system to

identify candidates for reusable modules and coraptsnin object oriented system.

A dominance is a relation between nodes in diregteghs G=(N,E), where N is a finite
nonempty set of nodes and’ZENx N is a set of edges. A root node of a direcegph is
a node r= N with no incoming edges. A root directed graph=GN, E, r) is a directed
graph (N,E) with unique root node&rN.

Thus in this approach mathematical graphs are dpedl either by static analysis or
dynamic analysis whose nodes are classes and adgdsteraction between classes.

Using these graphs components are created.

Hassan Mathkour, Ameur Touir, Hind Hakami, Ghazy AssassdOn the
transformation of object oriented-based system€amponent based System&008.
The approach proposed a framework which createspeonent based software from
object oriented based software.This approach dsnsis following steps:-1) Taking
UML class diagrams as inputs; UML class diagrageiserated of inputted java code and
then exported to XMI. Open source tool ArgoUML &ed for this purpose. 2) Analyzing
the class diagrams to generate a graph; readingldse diagram’s design elements and
relations from XMl file which is output of the cksliagram phase. Weighted directed
graph is created for the XML file generated. Nodéshe graphs are elements such as
classes and interfaces, the edges are relatiom&tpeen those elements.3) Setting a
weight for each edge of the graph according totyipe of relation it represents. 4)
Taking the weighted graph and clustering it intghty connected clusters; a hierarchical
divisive clustering technique is used for clustegedph generation and based on graph

components are created.5) Generating the resulthab each cluster represents a

Research study by Shivani Budhkar 43



Extraction of connector classes from object oridrsgstem while recovering Software architecture

component.6) Producing fully deployable componesiag one of the available forward
engineering tools.

Spiros Xanthos, "Clustering Object-Oriented Software Systems us$Sipgctral Graph
Partitioning”, ACM Student Research Competition 2005.In this papghor proposed a
method for analyzing object oriented software systeying to identify highly coupled
communities of classes. Utilizing this he obtaitieel modules that form the system. Also
this method can identify clusters that are autongsrend might possibly imply reusable
components. Finally this method can estimate thgregeof modularity in the software
system by recognizing the individual modules thanhstitute the system. These are
accomplished by applying Algebraic Graph theoryhtégues in the object oriented
software domain. The innovation of this paper i® wd spectral graph partitioning
techniques in object oriented domain and the apfin of these techniques for
decomposing an object oriented system into smalledules, some of which might be
used as reusable components. In this method auties class diagram to create graph
representation and then algorithm is applied taitpar the graph into sub graphs. This is
iterative process and the algorithm stops whenreateedges are more than internal
edges. This methodology focuses on only comporgstitification and not about the

interface details among components created.

Spiros Xanthos” ldentification of Reusable Components within @iject- oriented
Software System using Algebraic Graph Thepi2004. The approach for identifying
reusable components from object oriented systembkas developed. The technique
used here is Spectral Graph partitioning. In tipigraach graph were created from class
diagram in which classes stands for the nodes heddiscrete messages exchanged
between the classes stand for the edges. The appi®dased on iterative method for
partitioning graph in order to identify possibleisable components within system. From

the graph eigenvectors of Laplacian matrix derieedl is used for partitioning i.e.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

algebraic graph theory is used for identifying ele components. Thus class diagram
needs to be generated and then spectral graphiqranty algorithm is applied.

Jonas Lundberg and Welf L'owe , “Architecture Recovery by Semi-Automatic
Component Identification”2003. In this paper authors proposed to use setomatic
program analysis to extract the information. Therall process consists of starting point
as input source code of the program about to besiigated. Then certain information as
series of abstractions is extracted from source cotis information is used to construct
a call graph, which is low level representation gsbgram. Using this low level
representation system architecture is recoverdee duthors used dominance analysis to
identify possible software components in an objedented system. The actual
dominance analysis is applied on a high level r@tion of the system i.e. the class
graph — a directed graph where nodes are the sgstelmsses and edges class
interactions. It can easily be obtained from thetesy call graph. Dominance analysis
was applied to class interaction graph, which wexrsvdd from object oriented system. In
class graph, nodes are system’s classes and edgedaas interactions. Dominance
analysis is good at identifying certain types ofnponents but cannot be used to recover
the complete architecture of the system at handchMumore human intervention is

required for component identification.

2.3 Other Approaches

Shaheda Akthar and Sk.MD.Rafi” Recovery of Software Architecture Using
Partitioning Approach by Fiedler Vector and Clustegy”, 2010. In this paper authors
proposed approach in which modules are identified procedures, files functions etc.
Based on this information graph constructed andntifled relations between modules.
The input to graph are adjacency matrix, Degreeixnand Laplacian matrix. The graphs
are decomposed into sub graphs using similaritysomes. Finally clustering methods
and the general notion of fielder vector are usedefaluating design patterns, which is

part of Software Architecture recovery.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Shaheda Akthar, Sk.Md.Rafi “Improving The Software Architecture Through Fuzzy
Clustering Technique”, 2010n this paper authors used a fuzzy clusteringrigpie to
make the Software Architecture recovery to be naffieient and accurate. The approach
uses one of the most popular clustering algoritlatted the fuzzy C-means to find the
related data items which share the common progeiTige steps in this approach are : i)
Identify the data sets present in the softwareChjculate the degree of relatedness of
these components iii) Apply the fuzzy C means atligor to reconstruct the components
obtained. This step involves with two phases- llc@ate the cluster centers 2) Assign
these points to the clusters. This process is tegamtil the cluster center is stabilized.

Thus the architecture is recovered using fuzzytelus.

Pascal Andr’e, Nicolas Anquetil, Gilles Ardourel, &an-Claude Royer” Component
types and communication channels recovery from 3auace code;’ 2009. In this paper
authors proposed tool which recognizes componeitdstype and communication
channels in existing java source code. The appreaplicitly identifies communication
paths between existing components. This projects ath establishing link between
component implementation that could be called tbecrete model - and component
specifications- that could be called the abstractieh The concrete model can be any
object oriented application like java applicatidrmnis research project tries to establish:
1) A common meta-model that addresses both thegobf handling several specific
components models E.g. SOFA, Kmella etc. in a gemeaty and the problem of linking
abstract models and concrete code. The meta-méstelpeovides the data structure to
store the traceability links between models andecadd set of rules to check abstract
models well-formed. 2) The structure abstractiasl &xtracts and infers architectural and
typing features from source code. It is designedragerative and rule based process. 3)
The behavioral abstraction tool extracts a speibn of the dynamic behavior of the
components identified during the structure absitvagbrocess. It also works from static
analysis of the source code. The input to proggava source code and output is the set

of components with several kinds of relations betwi#hem and set of data types.

Research study by Shivani Budhkar 46



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Abdelkrim Amirat and Mourad Oussalah , “Enhanced Connectors to Support
Hierarchical Dependencies in Software Architectyre™008. In this paper authors
proposed C3 (component, connector, configuratiorefa model. Authors also proposed
two complementary models to describe system’s tachire. They used representation
model to describe architectures based on C3 elsnasok reasoning model to understand
, analyze the representation model. The core elen@nthe C3 representation models
are components, connector and configurations, eathese elements have an interface
to interact with its environments. The reasoningdelois defined by four types of
hierarchies and each type represents a specifiwsvien C3 representation model
different from others. The four hierarchies arefhg structural hierarchy used to show
the different nested levels of system architectRyehe behavioral description hierarchy
to show different level of system behavior, gedgraépresented by protocols.3)The
conceptual hierarchy to describe the libraries lment types corresponding to
structural or behavioral elements at each leveladthitecture description. 4)The
metamodeling hierarchy to locate where our modehing from and what we can do
with it. Each hierarchy is associated with tworgsiof view first the external view i.e.
logical architecture. Second view is internal viéw. physical architecture.  The
approach described software architectures whiehnsnimal and complete Architecture

Description Language. They also introduced new ephof connectors.

Trevor Parsons, Adrian Mos, Mircea Trofin, Thomas Gschwind,” Extracting
Interactions in Component-Based Systen2808. This paper covers dynamic techniques
for collecting component interactions. It presenteoinber of different approaches for
capturing component level interactions. Authorespnted approaches here cover the
most widely used techniques for interaction exioacin enterprise Java systems. For
each approach they presented need and technicaireeegnt for implementation of
approach. They used different tools to extract acbrding interactions from java
system. They also presented performance and funattamnsideration and contrast them

against each other by outlining their relative adage and disadvantages.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

James Sasitorn and Robert Cartwright; Deriving Components from Genericity”
2007. In this paper authors described how to foateud general component system for a
nominally typed object-oriented language supporfirgj-class generic types simply by
adding appropriate annotations. The fundamental asém building blocks for
constructing, type checking and manipulating congpés are provided by the underlying
first class generic type system. To demonstrat@lgiity and utility of this approach to
support components authors have designed and ireptech an extension of Java called
Component NEXTGEN (CGEN). CGEN is based on Sun Ja@ajavac compiler

backward compatible with existing code and runsuwment Java Virtual Machines.

Stephen Kell,” Rethinking Software Connectors’2007. In this paper author precisely
characterized connectors, resolving many ambiguéiel inconsistencies in the literature
and contradicting the popular assumption that corapts and connectors are disjoint.
The paper contributes : 1) A more precise charaetison of connectors and relationship
with coordinators and adapters. 2) They describedelationship between coupling and
connectors and argued that connectors should bableamf adaption in order to

maximize component reuse. 3) They identified thesslconfiguration languages and
stated their relevance to connections, proposingli@x configuration and suitable

configuration language. Authors also described aldwat the connectors are and what

aren’t connectors.

Mircea Lungu and Michele Lanza, Tudor G’irba,” Package Patterns for Visual
Architecture Recovery”2006. In this article authors proposed a setamkpge patterns
which are used for augmenting the exploring procests information about the
worthiness of the various exploration paths. Théepas are defined based on the internal
package structure and on relationships betweerpdlskage and other packages in the
system. Authors also proposed classification okpges based on information regarding
the structural properties of the packages and enmy they interact with one another.

When only the source code is available, recovetiregarchitecture of a large software

Research study by Shivani Budhkar 48



Extraction of connector classes from object oridrsgstem while recovering Software architecture

system is a difficult task, authors presentedititeractive visual approach to architecture
recovery based on package information. This appraamsiders only dependencies

among packages and automatically decompose thensysised on package structure.

Ondrej Galik and Tomas Bures ,” Generating Connectors for Heterogeneous
Deployment; 2005. Authors presented approach to create aenskle connector
generator with features needed for heterogeneopydeent. They have designed an
open framework allowing to add plug-ins for suppagtdifferent connector features (in
the form of connector elements) and different congod systems and their associated

type-systems.

Authors have followed a connector model based amposing the overall connector
functionality from small components (connector edeis). They have designed an open
framework allowing to add plug-ins for supportingfetent connector features (in the
form of connector elements) and different composgatems and their associated type-
systems. We have implemented our approach in Jéeacurrent implementation allows
them to build connectors that comply with all thequirements brought in by the

heterogeneous deployment.

Zhongjie Wang, Xiaofei Xu, and Dechen Zhari, A Survey of Business Component
Identification Methods and Related Techniquea005. Authors in this paper presented
various component identification methods. Autholassified these methods into four
types i.e. domain analysis based methods, cohesiopling based clustering methods,
CRUD matrix based methods and other methods. Inadoengineering based methods,
component designers do domain analysis from a godupmilar requirements in one
business domain, find commonalities and variablesoss them, construct domain
specific software architecture to seek reusablénbas semantics, then construct reusable
business component specifications. As any softveatéacts require changing itself
along with time these methods are not reasonalaisicBdea of Cohesion coupling based

clustering methods are : calculate the strengtBenfiantics dependencies between two

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

business elements and transform business modethetdorm of weighted directional
graph, in which business elements are nodes andrges) dependency strength are the
weight of edges between nodes, then cluster thghguaing graph clustering or matrix
analysis technigues. CRUD matrix based methodadcitmlly a clustering method which
uses those behavioral business elements(e.g. $&e eaents, operations) and static
business elements(e.g. business entities) as sampta, uses four semantic
relationships(Create-C, Read-R, Update-U, Delete-widh priorities as C>D>U>R)
between behavioral and static elements to calcalsgeciation weight and merges those
use cases and entities with C or D relationships ane business components. Other
methods include Similarity based component ideggtfon method, Variation Oriented
Decomposition Method, Information loss Minimizatibased method, Business Model
stability based method etc. These methods lackatplete methodology for component

and connector identification. More over these methimave less automation degree.

Andrey A.Terekhov,” Dealing with Architectural Issues: a Case Study004. In this
paper author tried to recover and improve softveachitecture in a large-scale industrial
project. Author presented a case study in softwarehitecture recovery and
transformation.

Smeda, A., Oussalah, M., and Khammaci, Tiimproving Component-Based Software
Architecture by Separating Computations from Intéiens”, 2004. In this paper authors
presented approach in which authors justify whyneators should be separated from
components and treated as first-class entities,lewHescribing component based
Architecture, As most of the ADL (Architecture daption language) defines connectors
implicitly. The approach used by author is knowrC&3SA (Component based Software
Architecture) in which connectors are defined exif)li by separating their interfaces
from their implementations and configurations. CO&#nector is mainly represented
by an interface and a glue specification. The fater shows the necessary information

about connector, including number of roles, servigge that the connector

Research study by Shivani Budhkar

50



Extraction of connector classes from object oridrsgstem while recovering Software architecture

provides(communication, conversion, coordination, acilitation),connection

modes(synchronous, asynchronous),transfer modeTbhe&.glue specification describes
the functionality that is expected from connectorcould be simple protocol links the
roles or it could be a complex protocol. In sholiegof connector represents the
connection type of that connector. Therefore d#iférdeployment of components and

connectors can be obtained resulting in differeciigectures of the same system.

Vijayan Sugumaran, Veda C. Storey’ A Semantic-Based Approach to Component
Retrieval”, 2003. In this paper authors developed semanseeapproach to component
retrieval. A reuse repository was developed thataias the components relevant for the
creation of new applications, along with their ibtites and methods that uses Web and
JavaBeans technologies. Authors developed compoeeigval approach which consists
of creating: 1)a reuse repository of design objectsomponents; 2)a domain model that
contains meta level knowledge about the reusabiepooents presented in terms of
objectives, processes, actions, actors and obj&)e ontology that supports an
interpretation of the meaning and use of applicatiomain terms(for both the reusable
repository and the domain model); and 4)a natwmabliage interface for expressing
qgueries .Thus initial query generation, query rafirent, component retrieval and
feedback through above steps is performed. In dpjgroach user executes query for

component retrieval.

Bridget Spitznagel and David Garlan “A Compositional Approach for Constructing
Connectors”,2001. Bridget et.al introduced an approach to eotor construction based
on incremental transformation. Authors defined @mtars as a six tuple-[c,l,s,t,p,w},
where c is application level code that appearkivitomponent or compilation unit, | is
— communication libraries , generated stubs etiogvwbapplication level , s is low level
infrastructure services provided by operating syste is data/ tables . p- is a policy
documenting the proper use of these parts andfarmsal specification describing the

connector’s proper behavior. A connector transfdlonamodifies one or more parts of

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

an existing connectors and resulting into new cotore Using set of different

transformation new connectors can be constructdéor this authors have developed
prototype tool which transfers Java RMI based basic interactions into new type of
connectors. Basically this work is viewed as a dmmpards a more comprehensive
engineering basis for component integration. Thegdnto demonstrate for other kind of

interactions beyond RMI.

Hassan Gomaa, Daniel A. Menascé and Michael E. Shin“Reusable Component
Interconnection Patterns for Distributed Softwareciitectures”, 2001. Hassan Gomaa
et. al have described the design of reusable coemomterconnection patterns in
client/server systems. Pattern which define andagsdate the way client and server
components communicate with each other using UMleGthese patterns, the designer
of a new distributed application can select andseethe appropriate component
interaction patterns. So, this method is for selgctomponents and interfaces which are

already created.

Young Ran Yu, Soo Dong Kim ,Dong Kwan Kim"Connector Modeling Method for
Component Extraction1999 In this paper authors proposed a method ekiticts
domain specific components for a particular busirdzsmain using the connector model.
Requirement specification was used for Use caseemathss diagram and connector
extraction. This approach consists of three phasasnector modeling, component
modeling and implementation. Connector modelingspheonsists of use of requirement
specification for connector extraction and for usse & class diagram modeling and
proposed new diagram i.e. requirement diagram. dJsiass diagram ,use case and
connectors components are extracted. In componentleling phase connector
specification is modified to find interfaces of cpoments. And components extracted in
previous step are specified in more detail. Fjnatiftware Architecture is described in
particular format. Thus, connectors are used ds fooextracting components instead of

connector as interactions.

Research study by Shivani Budhkar

52



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Helgo M. Ohlenbusch and George T. HeinemarfComposition and interfaces within
software architecture”1998. In this paper authors explored the patt¢bmposition and
inheritance play in defining interfaces using poatsd roles. Author discusses these
concepts within the context of the JavaBeans compomodel and shows how to

capture the complexity inherent in the interfaciesamponents and connectors.

Ivan T. Bowman and Richard C. Holt” Software architecture recovery using
Conway's law; 1998. In this paper authors have introduced ttem iof ownership
architecture for a software system, and have shib@m such a structure is useful in
reverse engineering. It is a useful mechanism fedipting system structure. Authors
presented three case studies using Conway's lawedah of the systems as case study
authors presented following architectures:1) A emteal architecture based on available
system documentation. 2)An ownership architecturgtraeted from system
documentation or revision control log.3) A coneretrchitecture extracted from the

actual system implementation.

Robert Allen and David Garlan , “A Formal Basis for Architectural Connection

1997. Robert Allen and David Garlan presented an&brapproach to one aspect of
architectural design: the interactions among cormapts The key idea is to define
architectural connectors as explicit semantic iestitin this approach connectors are
treated as types that have separable semantiataefin(i.e. independent of component
interfaces), together with the notion of connedtmtantiation. Authors used theory of

algebras to show connector specifications.

Robert Allen and David Garlan,” Formalizing Architectural Connection”,1994.
Robert Allen et. al. presented a theory for therarctions between components, which
shows the most important aspect of architecturatrigtion . The key idea here is to
define architectural connectors as explicit sencaatitities. Authors provide a formal
basis for specifying the interactions between aechiral components by describing and

reasoning about architectural connection also Byragg certain component types and

Research study by Shivani Budhkar 53



Extraction of connector classes from object oridrsgstem while recovering Software architecture

connector types. The description of these connégpas is based on the idea of adapting
communications protocols to the description of conmgnt interactions in software
architecture. This approach provides notation andetlying theory for architectural
connection explicit semantic status.

Summarizing the above papers, it can be said thivare architecture recovery of

object oriented system is an active and importeed af software engineering research.

2.4 Observations from Literature Review

- Quasi - manual techniques are systematic and goddaéso able to extract
components but requires lot of time and human ffor

- Few of the good semi-automatic techniques are abdlailwhich requires help of
other tool and partially automated.

- Large numbers of quasi-automatic techniques argaél@in the literature. Many
algorithms are proposed and implemented in toolathiimatical concepts like
graph theory and data mining algorithms are usetl.réverse engineer has to
drive the process.

- Most of previous studies focused on quasi automatid applying clustering
algorithms.

- Most of quasi-automatic approaches requires mqretgnother than source code ,
which may not be available all the time for legaggtem and then it need to be
generated by any way first.

- Few of the approaches combines clustering and geggroach together for
software architecture recovery.

2.5 Limitations of Existing Methods
Software architecture recovery approaches discusede have following draw
backs.

Research study by Shivani Budhkar

54



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Quasi manual approaches by S.K.Mishra[74] and Syking [91] discussed
above identified components properly but most & task needs to manually,
which is time consuming. More over only componentsidentified, no guideline
for connector identifications.

- Nenad’s [55] approach identifies components andneotors but approach is
manual and time consuming.

- For some manual approaches like Suk Kyung's apprfi#d design specification
of object oriented system should be available fagration into component based
system which is not possible for every legacy syste

- Some quasi-automatic approaches like Soo Chang agppsoach [86] requires
fundamental artifacts of object oriented modelinghsas use case model, object
model and dynamic models available for componesmtification which may not
be available for object oriented legacy systems.sktch systems the approach is
not suitable. This method also does not consideutaithe interface details among
components.

- Quasi automatic graph based approach proposed gyaHaathkour [29] also
identifies components and no interface detailpaogided.

- Some of the approaches like Simon Allier's approf# are limited up to
component identification and connector identifioatis not considered.

- In some Quasi-automatic approach like Woo-Jin’s@ggh [102], common class
diagrams, common use cases, and sequence diagemtigmbe given after the
domain analysis process, they focus on the compadentification process.

- For some approach like Hemant Jain's approach [BRJIL analysis model
consisting of use case diagram, class diagram equiesce diagram needs to be
prepared. User needs to have domain knowledgestgnaweights to use cases.

- For the approach used by Jonas [44] Much more humarvention is required
for component identification . Moreover interacsoamong components is not

recovered.

Research study by Shivani Budhkar

55



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Some of the approaches requires architectural ,stdaceptual architecture,
architectural properties etc as input other thamre® code, which may not be
available and then need to be generated by any sri@ah then the recovery

process starts.

It is also evident from the review of literature @oftware architecture recovery
techniques that even though the domains and teabsigf recovering architecture have
varied with time, to the best of our knowledge, @@f these gives automatic component
retrieval only with the help of source code as inputhe tool . Since industry is
migrating from object oriented system to comporided system as components more
reusable and beneficial than objects. It is impdrta have a tool which help software
developer or software maintenance person to cosaiyonents and also interface among
these components. So this study aims at findindh smethod and tool to recover

components and interface details

2.6 The Present Study
The present study has an objective to propose gaakimatic methodology and develop

tool that will display components that can be adaind interface details automatically.

In the present study approach is to reduce timertsffof software developer or
maintenance person for migrating into componenetaystemThus, reusing existing

code and migrating to new environment saves clfstit® of redesign and redeveloping
the system which suits to new evolving environm@ihis is what the software industry

always prefers.

Thus the study proposes agglomerative clusteriggridhm for creating components
from object oriented system and implement it intopmsed tool. The study will also
focus on using and proposing Component Cohesionridd6CCM) for component

evaluation. The interface details will also be agted so that connector classes can be

Research study by Shivani Budhkar

56



Extraction of connector classes from object oridrsgstem while recovering Software architecture

created for the components. In the present we fadus on object oriented system

developed in java.

Proposed Model:

The Figure 2.1 shows the entire proposed approduh.approach uses java source code
as input to the model. It recovers software archite by using clustering algorithm. The
approach takes help of existing reverse enginedadaty to verify all the classes from
source code is covered or not. The approach resas@mponents and interfaces i.e.
connector as a part of software architecture regov€he approach also evaluates

components for quality using metrics. Thus softwaahitecture representation is ready.

Figure 2.1: Proposed Approach

Object Oriented System Code

Clustering
Alanrithm

Reverse
Engineering

PPN |

Connecter

identification

Interface
details

Software Architecture
Representation

Research study by Shivani Budhkar

57



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 3

Study of Existing Reverse Engineering Tools, Frameavk and

Selecting Clustering Process for Proposed Methodaly

3.1 Study of Existing Reverse Engineering Tools

Software Engineering research and industry recegthiz need for practical tools to
support reverse engineering activities. Most ofwhe-known CASE-tools now a day’s

support reverse engineering in some way or otherneRe engineering is first step
towards software Architecture recovery. The moshrmonly used standard today is
Unified Modeling Language to depict the architeetand design of an application. An
UML class diagram describes the architecture oéajriented programs. Class diagram

captures the essence of its design.

3.1.1 Extracting Classes from Given Object Oriente®ystem using Tool

As proposed approach focuses on software architectcovery when design document
of legacy object oriented system is not available need to extract class diagram of
legacy application to cross verify with our propddeol results whether all the objects
from the application system are considered in carapbcreation or not. Class diagram
shows classes and relation between them and @asssary for creating components, as
it will help in reconstructing the software arclotigre from existing implemented
software. The idea behind choosing these toolsasasssing different kinds of tools like

commercial, non-commercial, open source tools sbaport reverse engineering of java

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

code. For this we have assessed capabilities dfivaed reverse engineering tools to
generate class diagram from java source code. Bedpframework is designed and
implemented assuming that no design documents gafcie object oriented system is
available. Hence we need to retrieve static streatd the object oriented system. UML
class diagram provides this structure in the fofndifferent classes in the system and
relationship between the classes. Different reverggneering tools are available in the
market which take input as source code and givpubats class diagram. Four tools were
selected in this study as they support java revenggneering. These are IBM Rational

Rose, ArgoUML, Reverse, and Enterprise Architec({&s).

Rational rose- Rational Rose is a widely used commercial UMLdeling tool. Rational
Rose offers reverse engineering capabilities, beir tcapabilities are very limited.
Rational Rose supports reverse engineering of 3afavare systems. When reverse
engineering a Java program, Rose constructs aigeethat contains classes, interfaces,
and association found at the highest level. Methgdgables etc. are nested under the
owner classes. Rose also constructs (on demanidsa diagram representation of the
extracted information and generates a default layfow it. Additionally, Rose
automatically constructs a package hierarchy ase@ view. Rose is able to reverse
engineer the information from the source code &jéles), byte code (.class files), jar
files, or packed zip files. In Rose, the Java regeengineering module can be given

instructions on files, directories, packages, amcfies to be examined.

ArgoUML - ArgoUML is a widely used open source tool for UMnodeling tool.
ArgoUML provides a modular reverse engineering famork. Currently Java source
code is provided by default and there are modudesléva Jar and class file import.
Similar to Rose ArgoUML constructs a tree view tantains classes, interfaces and
association found at the highest level. Methodsatites etc. are nested under the owner
classes. Using Drag and drop facility user canterekass diagram. Reverse engineering

capability of the tool is very limited as it canrettract association and interface.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Reverse - Reverse is non-commercial tool to convert jawalec to class diagram
developed by Neil Johan. User needs to select naam file and tool automatically
displays class diagram. Tool has extracted limiteasses, but no interfaces. Hence,
realization relationships have not been extradtedas successful in identifying most of

the associations.

Enterprise Architecture (EA) - Enterprise Architecture (EA) is widely used coarmal
UML modeling tool. Tool generates tree view of ekas and methods. Variables are
nested under methods. EA’s current reverse engngeeapabilities can only reverse

engineer UML semantics such as class diagramssaatiations.

To assess the capability of these tools we exaral@ving model properties of the

tools-

3.1.2 Examine Model Properties of these Tools

Number of Classes (NOC)This is a general measure for the overall siza sbftware

module. Therefore, high NOC values may indicateoaendetailed representation.

Number of Associations (NOA)- NOA is a metric measure of interconnectedness in

module. In reverse engineering it is importantderstand how classes are connected.

Number of Generalization relationship (NGR) — It models “is a” and “is like”
relationships, enabling you to reuse existing @dete code easily. It is a generalization /
specialization relationship between classes, whips to measure how tightly coupled
classes are. From reverse engineering point of itiewl help for concluding component

structure.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Handling of Interfaces - An interface is a specifier for the externaligiile operations
of a class, component, or other classifier (inalgdsubsystems) without specification of
internal structure. In UML diagrams, interfaces drawn as classifier rectangles (with a
stereotype << Interface >>) or as circles. Therfates are attached by a dashed
generalization arrow to classifiers that suppgrkiown as realization relationship. This
indicates that the class provides (implementspfthe operations of the interface. The
circle notation is used when the operations ofitiberface are hidden .A class that uses
or requires the operations supplied by the interfaray be attached to the circle by a
dashed arrow pointing to the circle. From the regeengineering point of view,
generation of such dependencies is important faletstanding the usage of interfaces
and for concluding component structures and depenee (e.g., to abstract class
diagrams to a component diagram). Furthermoreerdifit ways of handling interfaces
have impact on the NOC metric and possibly on #elability of the respective class

diagram.

Role Names -The function of role names at association endsommparable to that of

attribute names in the sense of giving to an aatoni between classes a meaningful
descriptor, which depends on the end it’'s attadbed herefore in reverse engineering,
role names can hold relevant additional informatimout the system infrastructure. We

examine, whether role names are used and if, whdtd¢ information they represent.

These model properties are beneficial to creatgpoments and connectors in component
based architecture. Hence dependencies generabedjthour tool are verified with class
diagram generated through one of the above toal Einterprise Architecture). As, we
found that Enterprise Architecture tool was ablesxtract maximum information from
the object oriented source code like all the classeerfaces, basic relationship among

the classes like inheritance, composition etc.

Research study by Shivani Budhkar 61



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Thus, dependencies generated through the proposkdre verified with class diagram
generated through one of the above tool (i.e. [pris& Architecture). We found that
Enterprise Architecture tool was able to extrackimam information from the object
oriented source code like all the classes, intedfabasic relationship among the classes

like inheritance, composition etc.

Steps to Examine Tools to Generate Class Diagram:

- Keep input source code in one folder.

- Open tool and do reverse engineering.

- Classes along with attributes and method will beaeted.

- By dragging classes into framework of tool, clasgchm will be prepared.

- Count manually number of classes retrieved (NOCymber of association
relationship retrieved (NOA), Number of generaliaatrelationship retrieved, and
roll names retrieved.

- Do the comparison of tools based upon the counts.

- Decide which tool extracts all the information.

- Use class diagram generated from the tool, whidnae maximum information

above, to compare results from module one of oir to
3.1.3. Comparison of the Tools
For the comparison of reverse engineering toolshase following application as
Case study: We have chosen small java software. ‘Arithmetidc3dme’. This is a
software game application developed in Java by Huatang. It is a simulation of

popular traditional card game. It consists of Issks and 1 interface.

Following are results from different tools. Thetstalements found by the CASE tools

are classes, association relationship, generalizatelationship, interfaces and roll

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

names. Comparison of the elements found by theds i® shown in table 3.1 and Class
diagrams generated by the tools are shown in Figre-3.4.

ClassesIBM Rational Rose, ArgoUML, and Enterprise Arcliiere were able to find 19
classes, when applied to the “*.java” files ofAnibtic24.Tool Reverse was able to find
out only 17 classes as this tool accepts only rjaia file for reverse engineering. The
name compartment of the class reverse engineeradl the four tools contains the name
of the actual

class. Both the attributes and operations compaitsneontain the names, types and
visibility (public, private or protected) for RosEA, and Reverse. ArgoUML could not
identify visibility.

Associations- Total number of associations found by Rose aAdwas 12.ArgoUML
could not find any association. Reverse found 1$be@ations and showed mutually
dependent classes with red dashed line. Assocgation directed in all cases except for
ArgoUML. The roll is named by the variable itseRose and EA could produce roll
names. For tool 'Reverse’, associations are dweatibut do not specify any roles.

Generalization - All the four tools were able to recognize gelizaéion relationships.

All the tools found a total of 6 such relationships

Handling of Interfaces - Rose uses a circle to illustrate interfaceshian ¢lass diagram.
The (abstract) methods of the interfaces are writkelow the circle, separated with two
horizontal lines, which is not recommended in UMA.Hlustrates them using class
rectangles with a <<Interface>>stereotype showrvaloe interface name. This notation
is also available as an option in Rose. Both Raosk BA found one interface in the
Arithmetic24 core package. Both connect the int&$ato the classes that support them,
that is, the classes that implement the abstrathode defined in the interfaces. Rose

does that with a solid line (a realization relasbip). EA uses a dashed line with a

Research study by Shivani Budhkar

63



Extraction of connector classes from object oridrsgstem while recovering Software architecture

triangle at the end pointing to the interface (famio the inheritance notation).However,
neither Rose nor EA were able to generate any digpeies between interfaces and the
classes that use them (typically shown with a dastteow from a class pointing to the
interface). This is an obvious limitation to undargling the roles of the interfaces.
Further, interface dependencies are needed foragkisg a class diagram into a
component diagram, understanding the interactioongmdifferent components, etc.
Tools ‘Reverse’ and ‘ArgoUML’ could not able to exctt interface.

Research study by Shivani Budhkar

64



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 3.1 : Class Diagram of Arithmetic24 game fr;n Rose

CardDeck

Arthmeticzs
MBEGINER TIVE - int = 120

‘SynchronizedVector
& ector : Vector
Bavailable : boolean

BiciickDeckSound : Sting = “clickLau”

SynchronizedVector()|
ESget(
Sput)

BScurenSolution)
uiteQ

0p)
beginWaitSolution(
endwaitSolution)
Supaate
Bactionperform
CardSiot
litemStateChanged() el Draggingslot
EETLAD HEIGHT it = 00| B int
By int
Scardsiot) Wwicth : int
Etaumncnmmand Stfing| Type BgetType hye‘gh_t‘}‘ :nt
imeLimit : int
Btimeunit - int ICARD_SLOT ;int = 0
®timer : int IGCARD : int = 0 [WOPERATOR SLOT : int = 1
IGOPERATOR a\
ontaipe? DraggingSlot)
n S0raggingSiot)
art iSEmpty()
Ia":g?wgaawvso draggingslots[] _| IgetLocation)
Badasiots
ESstop()
Y Brocso
undemeath()
N %! ESiwith)
ESgetHoldenimage()
ickof)
otainer
Btmpwicin - int
ourceActionEvent() &tmpHeight : int
raggable : boolean
et
holdén
®ineight : int
E¥0raggingimage()
Bdawbragimages(

Obsenablelnteger

G

ESObsenableintegerg| =0
00 ROUND-OVER “int = 2

IillegalE xpressionException()|
Ll

scorg Operator

‘add",'minus"."multi" Y div","oparen

‘cparc..|

®OP NAMESI] : String
ar

OP_SYMBOLSI] : ch:

Expression
PUtEXpression : String

ScoreKeeper

soundllist
IME_OUT int = 1
BEGINNER - double = 1
SoundList [ BINTERMEDIATE : double = 1.5|

SgetType)

nt ={0,0,100,03,3,1,1)
STACK_PRECEDENCE : int = { 1,0,0,99,4,4,2,2}
urrentValue : double

DIEXPERT double = 2

FlastToken : int

Bpiayclip)
soundllist

pression)
BSexpression)

SisetLevelweight(

OperatorSiot

SoundLoader
MroaneurL : suing Sopera
geryp

rSiot)
0

or
el

E¥SoundLoader)
Srung

Solution

numbers : Vestor
BinasSolution : boolean
[BiheSolution : Vector = null
[BtheResult : double

[BITOTAL POSITION : int = 13
[BNUM POSITION]) < int = {1,4.8.11}

Inte
/OP_POSITION]] int = {2,6,10]
Combin[][] - int
BPAREN POSITIONI : int = {0.3,5,7.9.12}
DIPAREN_COMBIN[I]  int = {{0,0.0,0.0.01{1,0.2,0,0,0 %

E®solution

EoperatorCombination()
EsearchSolution(

Research study by Shivani Budhkar 65




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 3.2: Class Diagram of Arithmetic24 game fromArgoUML

Arthrgtic2d

Dragging mzge

roSalufion3Lten : Eutten
cone3ticn : ELton
fezdBackLadel : Lebel
cloz<: Cleck
ciTcultyLevel | Croice

image I mags
containe- : Cracgingares
slt CraggingSiot
trueS zeknawn : boclsar
tracker : WeciaTrac <ar

<coreScorzkeepe-

INITIEL_WICTH : int

Flag ngBaard : D-againga-ea
ZINMER_T ME :int
INTERMEZISTE_TIME : it

EXPERT_TIME nt
souniList : SourdLict
ecrrexSound : S1ing
wiong3oLnd : ting
EadExoScund : Stirg
timeougouad : SHng
filSIotSourd : String
clickDezkSoLnd : Eting

INITLEL_HEIZHT it
trapicith - int
tmpHeigt: nt
cragcable baolean
< int

Feight in:

Care

SUIT MAWES  Sirr
CLUE

DIAWMOND - it
HEART irt
SEAD= irt
sait:iat
valle nt

<=creae~- Caisult: inlvalue rtima3z . imageroitainer: D-aglingacear

<=creae== Cadicardld
<=creare=» Cadicarld
g=tGardvalued | irt
getvalleq : Inege-
g=yped it

i

=<rrects

cetlocztond  Fort

ity void

=starfLoadir gSancs () - woid
stanig o d

=topG o d
EegirwaiSolticns : woid
endwiattsaluiion] : void
Lpdate(oksematis
2ctonPericnmasi(e | Act ahEwz b void
iEmStateCrange (s : lemEvent - woid

Observable stalus | Ob ecti: waid

ceflacztonc:inty i1t svoidd
centaracente X intcetert  ntrwaid
cetSized : D mensior

=efSizenw dtn s intheight: inf) svcid
containsp niyp nbkcolesn
enableD-aai void

cizableZrag( - waid
isCrageablel : beclzar

=eti=(s ot: DagingSiof) void

Lnsetieq ;vaid
isJetlled] baolean
ceiSio : Dreguircsict

Clock

celPraferedSiz=C  Dimens on

action_dsterer  Acliolistener
actionZommard  Sting
clockTrreac Thread

tmeLimt: in:
tirne Uit - it
timer  int

offS:-eeqZimension : Direr sion
offS:-een mege < Image
offS:-eeaCrachics | Grapaics

cetvitirumsizsg | Dimens on
Fainttc Sraphizs):eoid

ragcinJirageimalz : Image,conltainer : D-agingAear
<<crestz>> Drageindlmagei: irty  intimrage : Imags,sonfziner : Draggirgarea)

. mzge :Irage.ccntaine:  Cracaingfres)
- intimage mace.conta ner : Draggingar2a)

“ealer> CardS ot nty Irt)

aeTyped

Cards ot

it

Cardeck

sclriarTrresd : Thrsae
stluiane : Syachronizedvear
deck :Vacior

card>ciater :irt

clic<able  koolean

corta ner : Drageingarea

Oparacor

DrzagingSict

QP_“AMES ; Etingll
QP SYMZOLS : charl

<<creater- Glock(imit: nt
<<create=> Glock(uit: i im t: in)
sefTimne g1t Tnf woid
aefTime_milg : int

aefTimes :int

WS creent < void
geiPrefarreds 2601 - Dimension
geilirimums zeQ - Dimension
starg tvoid

stoo :void

ro:void

pairtiy : Graphics) - veid

updatelg Sraphizs) tvoid
addsetionListenz-0 - ActicnListznen

cres

setact anCormandizammani : Sirng; s voic

soucedzfionEvert] tvoid

ADD Cint

MINUS Cint

ol it
opSymEal - chat

GEtDESymEDIg Thar

vad getvaluesd | Chzracter
rerovescticnListener]| - Aclian_ steren void

OEtTypaC Cirt

<-craate-- Operator(opld < intimzge : i age highestContziner : DraggirgArea)
==craate== Operatoi(oEld | ivtxc: iny inlimace  msce.corta ner Drageingaraa)
~=crzate== Operatoitsymbal : charimags : Imaze.h ghes'Cantairer : DraJgingares:

lle3alExp-ess anExceation

SragcimArsa

d-aaThresd Tread
adple: Aaple:
JTSeraenDirenzion : Dirrensicn
SfSerzenimags Imazz
JTSeraenGraphics
sardimages Imzgel
Jgeraterimagas : Imagel
-dDeckimags  Imazs
“racker : MedaTracker
rageGaurt:iv

sardDeck : Cerdlieck

Statue PlavingStatus
utentCares : Carcl
2%eraters Tperstar]
d-agginaSlole DragcinaSlot]
3-ag maces :vectar
“Feloving : Draggir gimaze
Frab=cin: =civ
dsfautoirscr: Crsar
AancCars0”: Cutsar
aadetalefl:irt

JodetsTor  nt

JadztaRisht: int
JadetzBctar irt
Seirrating  koolesn

eate=> D-agd naAean
EELOREE]

srengedperstasd veid
SeiSiats ) 1 void

sopi veid

“ung sveid

32tPefer-ed3ized : D rer sion
32tinimm3ized | D mersion
JsersreatedExprassiang Wector
<FullEcp-ession() < hoo ean
swrentSelitior @ : vecta:
3=ginanimationd :void
2dEnimaiong e d
sstSatusta ue s inf) s woid
a-esantSalulion] :void
slearsiatsi) < void
“erroveCardsg Hvaic
sHdCadsd void

cadAl Faces) vcid
ceserCipdvoid

asini(y : S-apaics) :void
Jodietata : Graphies) tveid
slipSepairtd  void

3-awDregs ots(y | G-aph £s) void

==craate== llecal=prassioExcert onl
==craate== llecal=prassio1Excertonimse  3tiny)

Soundlis

aoplet - Aaplet
baseURL URL

<=creare>> SoUCLISTARFIat: ALFI2L)
saLoadingXelative LR _: St ngl < vaic

3tE iatrelativsURL : Sting! Suciolp

pIC iagelip © AudicClip relative URL : Sirinc) < void
p ayGliplrelaive RL : Sirro) void

ceURL: URL)

o it it
heicht: it

t7ps it

C2PD ELOT:irt

O ERATOR SLOT irt
halcenimage : Draggin3lrsge
erpleCelar: Colcr

f1Calor: Sclo-

<<create=> Cracgingiotd

<<oreates- CraggingSIotix : inty  inkwidth :in-,weighs  nty
ISEmMpte0 - boolean

aellacation3 : Paint

seflacation irty int; voic
aefSized : Dirrens on

selSizeluidih irtheight: (13 :void
conizinsGzp : inl¥p - in : boolean
holcsgmrage : Dragairghmaze) : boolean
undamesthicrag Sragcingimager aocl2an
TIithIras : D-agIingimage) : void
getHolcenirage () Cizaginginaze

Kiz<CHiC eader Srageinglteagedvo d

e plyd - void

rerovgvoic

pairtia : Greghics) 1void

CperatorSiol

<<create=> Cperatorlol(c: inly  inty

gefTyped int
SondLoarsr
Sccrekeepar
pplet: Applet
cound_is1: SourdList szare s in:
kaseURL: URL reresse :int
ralativeURL ; Eting ewelife cht dousle
NO N0 in
==<crects== SoLndLoadenapalel - ApolelsoancList: Eound istbaseURL : URLrslaiveURL: Elind) |0 — "
rnG wod 45 Noim
=5 MRONG : nt
Bynzron 2edvesicr Soluion 465 SISHT i

wecicr:Veclcr
alable : koolezn

nuTbas  Vertar
hasSolitior a3olean
theSo Lton: vectar
theR=sull : dauble
TOTAL POSTIZM iv
MU FOSIT OM - irt]

reate- = S¥nehron@edvertord
33ty s Vector
atector Vector :void

Sprassion numCorbin: Inene [

OF POSITION :inf]
opZomkin it

PAREN POSITION  infl
PAEEN CIM3IN : intll

npuEspressior Sting
aperatorStsck  Stack
0=t xStack : Sack

TMZ OJT nt
SEG HANER: douale
MTZEMED A"E : douale
HPEST douhlz

<<creales - SroreKzeper]
esesoeq void

3315z 3red) : int

JadstaEccre(answe - intlr ePAsSPOROMcr  J0LbIZ)  void
=stleve Wisig tdevelnieigh: JaukI2) : vaid

geS0 Lton) : Verlcr
hasSolitior § : healear
nunbz-Combinaiont vod
oparacrCombinetond weid
searchSolwiong o c

<<rgales> SoluticninLmt FEAUMT  IRLAITZ 115,403 © I

¥INUS int
MAU™_SRECEDENZE :indl
STAC<_PRECZDERCE :irt]

sarrentvelse : doble
“heResull: doble
asfTcken :int

SrawDIzalmages o : Brashics] o d

=<crzate-= Expressicnd

cr2ate- Expressicnin3ting : Sirng:
==craate»= Expressicnnvector Vacton
selExp-essioniin=ting : Stingi vad
Jefvaued : douale

arnzzssTokend) :void
aprlOperatior op Jrerstor i - voie
JetPoststack 0aC dauklz
sOperstore : char) - boo ean

<<craate-- CariCeckes inty 7, mege

SEMTweacFroNy(p-ior tr: inD void
stopD :void

g void

er zhleClick) vl

disadleClicks voic

isSlickakled : baolean

dezl] - Sard]

currentDea Kmazrd : int
currentSaluticn - Vector

srumzg voic

Irage,containe. : DraggingAres)

Gbse~ableineger

waue int

setinevszl e int voic

==craale== Ooservadlelrtzgervalue

irts

FlarirgSistus

DEALI
WAITING  in
a EE_nt

eale>> Play nastatisn

eale>> Play ngStatus(stalLs ©inth

Research study by Shivani Budhkar

66




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 3.3: Class Diagram of Arithmetic24 game fronReverse

Obsemvablelnteger

7 Dragginglmage f

{ Operator

\ -
g \

[ T\‘w&x{f\ \‘\[ R
|

[ AN
\

]

llegalExpressionExzeption kf: —_ / \
f-7 -

SoundList [

g
!

Research study by Shivani Budhkar 67




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 3.4 Class Diagram of Arithmetic24 game from EnterpriseArchitecture

cmp Component Model /

~ timeLimit
-~ timer :int

~ offScreenDimension
offScreenGraphics :Gfaphics
offScreenimage

~ timeUnit :int

imension

Imajge
int

Clockint)

addActionListener(ActionListener) :void

Clockint, int)
createOfScreen() fvoid

getMinimumsize() :Dimension
getPrefermredSize(f :Dimension
getTime() cint
getTimeLimit)

paint(Graphics)
removeActionLigener(ActionListener) :void

satus :PlayingStatus

~ theMoving :Dragginglmage
tracker :MediaTracker

~ updateBotiom :int
updateLeft :int

-~ updateRight int
updateTop :int

addCards) void
addslots) wvoid
amangeOperators) :void
beginAnimation() :void
clearSlots) :void
clipRepaint() :void
currentSolution() :Vector
DraggingArea()
drawDragimages(Graphics) :void|

T

OperatorSlot

WIDTH :inf

HEIGHT int = 40 {readOnly} |
7 {readOnly} |

Card Runnable
Applet ar _— Cardslot DraggingSlot
AdtiontIEergy ~ CLUB :int= 0 readOnly}
tenListener| _ DIAMOND int = L feadOnly) = ~ HEIGHT :int = 99 {readOnly} ~ CARD_SLOT :int = 0 {readOnly}
Observer| BT LU = Ay ~ WIDTH :int = 75 {readOnly} ~ emptyColor -Color = Color.cyan {readOnly}
- HEART cint=2 (readoni = GILERE Bt - fillColor :Color = Color.red freadOniy}
Arthmetlc28 - SPADE int = 3 freadOnly} - container ‘DraggingArea T Cardsiom, in) =
5 ~ it int ~ deck :Vector '
~ badExpSound :Sting = "Hah.au' + getType( :int ~ holdenimage :DraggingImage = null
- BEGINpNEkiTIME i 120 freadnly} - SUIT_NAMES :Sting (})={ freadOniy} Slutionsksynchmuizei iRy gemored OPERATOR,SLOT ‘i~ 1 geadon
- clickDeckSound :String = "clickl au” = o Hi ~ wlutionThread :Thread . \Q+ type aint
~ clock :Clock ~ vidih cint
~ comectSound :String = "well_done.au" + Card(int, int, Image, DraggingArea) + CardDeck(nt, int, Image, DraggingArea) 7 = i
- difficultyLevel Choice B + Card(int, Image, DraggingArea) + cumentDealNumber() :int // . int
R e riy + Card(int, int, int, Image, DraggingArea) + currentSolution() :Vector MouseMotionAdanter y
~ EXPERT_TIME ‘int = 60 {readOnly} ¢ GBI 6 + deal() :Card] / + contains{nt, int) boolean
< + getType() :int + disableClick) void 7 o
~ feedBackLabel :Label + D
~ fillSlotSound :String = "cl g ¢ GEAVEILED Al + enableClick() :void ¢ Dragging; o + D int, int, int)
~ INTERMEDIATE_TIME :int = 90 {readOnly} i EEEEARY) Dt 7 ] + empty() void
~ noSolutionButton :Button W unQ wvoid , + mousePressed(MoussEXent) void '} gyvyiin draggingimage) void
~ playingBoard :DraggingArea ~currentCards \ stThreadPriority(int) :void 7 + mouseReleasegfouseEvent) wvoid | | D
~ score :ScoreKeeper V| + Wyftleq wvoid ’ + getLocaton( :Point
~ soundList :SoundList \[+ sop + getSize() :Dimension
~ timeOutSound :String = "bell.au" Panel + holds(Dragginglmage) -boolean
~ wrongSound :String = "missed.au" Runnable —cardpeck] + isEmpty) :boolean
DraggingArea + KckOff(Draggingimage) :void
+ actionPerformed(ActionEvent) :void — ' + void
beginWaitsolution() :void ~ animating :boolean + remove() :void
engwausulmmnoovmd ~ applet :Applet v/ available :boolean + seanca?\nn(ml.ml) void
it ~ cardDeck :CardDeck vector :Vector T sisivent,ing) oid
+ itemStateChanged(itemEvent) void ~ cardDeckmage :Image irteifaceR . boolean
+ st void ~ cardimages :Image ([}) Type get() :Vector
~ startLoadingSounds() :void ~ currentCards :Card () S CARDEInIEE +\put(vector) :void st
+ Sop0 wid ~ EAlEET G | + OPERATOR in + Synchronizedvector(
+ _update(Observable, Object) :void B D! )
Eraed (=) ~ dragimages :Vector + getTypefiint Znolden
—elock ~ dragThread :Thread oldenimage
~ grabPoint :Point container
Carlyas ~ handCursor :Cursor \ Draggingimage
Runnaple ~playingBoarg{ - imageCount int T o o
Clock ~ offScreenDimension :Dimension| G e
- offScreenGraphics :Graphics L height int
~ actionCommand :stin ~ offScreenimage :Image L foeep i
~ actionListener :Actionlfistener = null ~ operatorimages :Image ([) ~ INITIAL_HEIGHT :int = 1 feadOnly}
~ clockThread :Thread 3 null ~ operators :Operator ([

INITIAL_WIDTH :int =1 {readOnly}
ot :DraggingSlot

getType() sint
OperatorSlot(int, int)

~theMoving | ~

tmpHeight cint

tmpWidth int

wacker :MediaTracker
boolean

width cint

X int

y sint

centerAt(nt, int) void
contains(int, int) tboolean
disableDrag() void
Dragginglmage(image, DraggingArea)

Dragginglmage(int, int, Image, DraggingArea)

enableDrag() void
getLocation() :Point
getMinimumSize() :Dimension

searchSolution() void
Solution(int,int, int, int)

o
4
-
5
&
5
.
5
4
un) void # drawDragSlots(Graphics) :void getPreferredSize() :Dimension
setActionCommpind(String) void + endAnimation() :void getSize() :Dimension
setTimeLimit(rf) void + getMinimumsize() :Dimension oo getSlot) ‘DraggingSlot
sourceActionEvent() :void + getPreferredSize() :Dimension operey Operator {Draggable() :boolean
start() wvoid + isFullExpresson() :boolean isSettled() :boolean
stop() wvoid + loadAllimages) ‘void ~ ADD int = 0 freadOnly} paint(Graphics) wvoid
update(Graphfcs) void + paint(Graphics) :void ~ CPAREN it = 5 {readOnl stLocationnt,ing) vold
+ presentSolution() :void ~ DIV :int = 3 {readOnly} stSize(int, int) :void
+ removeCards() :void ~ MINUS :int=1 {readOnly} setile(DraggingSlot) void
+ resetClip() :void ~ MULTI :int= 2 freadOnly} unsettle() void
+ un) woid ~ OP_NAMES :Sting )= { .. readonly}
+ seiStatsiny void ~ OP_NUMBER :int = 6 {readOnly}
~soundList ' "
+ san() woid ~ OP SYMBOLS :char ([)={*+ readOnly}
Java.util Hashtable + stop() void ~ OPAREN int = 4 {readOn| Expression
~ opld :int
iy + update(Graphics) :void opl =
o + _userCreatedExpression() :Vector ~ opSymbol :char
S - ] CPAREN :int = 3 {readOnly}
= o T curentvalue :double
DIV :int = 5 {readOnly}
- + getopSymbol() ‘char
BeEtlfL UL ~status) . gmyppey() me EOL int = 0 {readOnly}
 getClip(Sting) AudioCiip - . getvalueq :Character -« |NPU‘;PRECEDESNICE int () = {0, 0, 100, 0,... {readOnly}
+ playClip(String) :void + Operator(int, Image, DraggingArea) ;“"‘; :'e’*“" ifiE)
+  putClip(AudioClip, String) void ~ DEALED :int= 1 {readon +  Operator(int,int, int, Image, DraggingArea) e M eadon!
+ SoundLisi(Applet, URL) ~ ROUND_OVER :int= 2 freadOnly}. +_Operator(char, Image, DraggingArea) o '"[:4 ('EZO"I”
+ sl void -~ WAITING :int= 0 {readOnly} U= R
OPAREN :int = 2 {readOnly}
—soundList PR Bxepiog operatorStack :Stack
PIEV‘“DSKEK“SOl llegalExpressionException PLUS int = 6 {readOnly}
yingSatl i) postFixStack :Stack
o + lllegalExpressionException() STACK_PRECEDENCE :int (J) ={-1, 0, 0, 99.... {readOnly}
+ lllegalExpressionException(Sting) theResult :double
Label VALUE ‘int=1 {readOnly}
ScoreKeeper
- applyoperation(int) :void
~ BEGINNER :double =1 {readOnly} Obsenable + Expresson()
~ EXPERT :double = 2 {readOnly} Observablelnteger Solution + Expresdon(Sting)
Trvead|| - HAS_NO int="-1 freadOniy} +
SoundLol HAS_RIGHT :int = 2 {readOnly} # value int ~ hasSolution :boolean - getPostStackTop() :double
el ~ HAS_WRONG :int = -2 {readOnly} ~ NUM_POSITION int ()={1, 4.8, 11} {readOnly} + getvalue() :double
~ applet Applet - increase cint + R aimbersEVecion isOperator(char) boolean
- baseURL ‘URL ~ INTERMEDIATE :double = 1.5 {readOnl; + set(int) void ~ numCombin_:Integer (][]) processToken() :void
- relativeURL :Sting ~ levelWeight double ~ OP_POSITION int (1) = {2, 6. 10} freadOnly} ]
~ soundList :SoundList ~ NO_HAS :int = -2 {readOnly} | cpCombin int ()
~ NO_NO iint=1 {readOnly} ~ PAREN_COMBIN :int ([} = { {0, ... {readOnly}’
& o et - o G ~ PAREN POSITION :int (1)={0,3.5,7.9... {eadOnly]
TIME OUT :int = -1 {readOnly} ji theResuitidoble
+ SoundLoader(Applet, SoundList, URL, String) L iheSolution :Vector= null
+ getScore( dnt ~ TOTAL_POSITION :int = 13 {readOnly}
+ resetScore() ‘void
+ ScoreKeeper) + getSolution() :Vector
+ sellevelWeight(double) :void + hasSolution( :boolean
+ ouble) :void - numberCombination() ‘void
operatorCombination() :void

Research study by Shivani Budhkar

68




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Tools No. of No. of No. of No. of No. of No. of realizations
Classes| Associations| Roll Interfaces| Generalizations
Name
Rose 19 12 14 1 6 4
ArgoUML 19 0 0 0 6 0
Reverse 17 18 0 0 6 0
EA 19 12 15 1 6 4
Table 3.1: Elements found by CASE Tools
Figure 3.5: CASE Tools Analysis Chart
CASE Tools Analysis
20
18 -
16 -
14 -
12 -
Count 10 - M No. of Classes
8 -
6 - M No. of Associations
4 i No. of Generalizations
2 -
0 _
Rose  ArgoUML Reverse EA
Reverse Engineering CASE Tools
Analysis:

In the present study we have assessed capabditisir reverse engineering software

tools that generate class diagram from java sotwde. We have found that, most of the

classes are identified with simpler relationshipghe present study, four tools have been

compared with regards to their reverse engineecaygpbilities. We have carried out

Research study by Shivani Budhkar

69



Extraction of connector classes from object oridrsgstem while recovering Software architecture

manual comparisons. The manual comparison is netededderstand the interpretations

and mappings used to generate a class diagram.

We observed that most of the classes are extrdnyedll the four tools but all the
relationships have not been extracted properly. Silmpler inheritance, associations and
realization relationships were extracted. Few ef ¢ctasses remained unrelated to any of
the classes in the diagram; even if source code/shioe classes are related. ArgoUML

and Reverse were unable to extract interfacesealtation relationships.

All the above tools, except ‘Reverse’ need to drad drop the classes to complete class
diagram, once reverse engineering is complete. iRexautomatically generates the class
diagram but all classes are not extracted. We adecthat Rational rose and Enterprise
Architecture extracts maximum required static infation. So any one available tool can

be used to generate class diagram.

3.2 Study of Existing OSGi Framework for Implementng Components Created

Once the object oriented application is restructunto a component-based application,
we need to reorganize it according to a concretepoment model to make it operational.
To illustrate this, we choose to use the OSGi carepomodel.

3.2.1 OSGi Model:

Andre L. C [6] presented introduction of OSGi, tBpen Services Gateway Initiative
(OSGi) is a framework that supports the impleméotabf component-based, service-
oriented applications in Java. The framework masdpe life-cycle of modules (called
bundles in OSGi) and provides means to publishsaadch for services. It supports the
dynamic install and uninstall of bundles. Nowada®§Gi is used in many application
domains, including mobile phones, embedded devares application servers. Basically,

bundles are regular Java JAR files containing diéess, other resources (images, icons,

Research study by Shivani Budhkar

70



Extraction of connector classes from object oridrsgstem while recovering Software architecture

required APIs etc), and also a manifest, whichsisduto declare static information about
the bundle, such as the packages the bundle impdréxport. Furthermore, bundles may
provide services to other bundles. In the OSGiitcture, a service is a standard Java
object that is registered using one or more interfigpes and properties (that are used to
locate the service). Another key component of tIs&0Orun-time is the Service Registry,
which keeps track of the services registered withie framework. Following section

provides guideline for bundle creation.

3.2.2 Creating Bundle using OSGI Frameworkiln the OSGi framework, a component
(called bundle) is a set of classes organized packages, which are by default not
visible to outside the bundle. With the help of mhest it is possible to export packages.
Classes and interfaces in these exported packa&gesne visible to outside bundle. Thus
they act as provided interface. Similarly it is gib%e to indicate packages that the
component requires to operate. Consequently, daaseé interfaces of these packages

play the role of required and provided interfaces.

In order to export the provided interfaces of oamponents, through the manifest, we
place them in specific packages. Similarly the negli interfaces are specified in
manifest by importing the packages containing thereed, then these are necessarily

exported by other components.

Research study by Shivani Budhkar

71



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 3.6: Example of OSGi Bundle

interface_comp_2
Interface C B interface_comp_1
A
BgetNewB () << interface>>
®opname2() A
A << facade>>
I E
<< facade>> 3
Adapt C << interface>>
> E
Component 1Activator

Component 1
Sstart()
Sstop()

Class C
manifest:
Bundle-Activator:Component1Activator
Class F Import- Package: interface_comp_1
Export-package: interface_comp_2

For example, suppose in figure3.5, interface_coms_bundlel, which is package
interface_comp_2 contains provided interfaceterface C and bundle 2 i.e.
interface_comp_1 contains required interfadesgerface A& interface E.All this is
specified in the manifest as follows:

Import package: interface_comp_1

Export package: interface_comp_2
3.2.3 Activators Management in OSGi Framework
Once the object oriented application is restructuaecruing to the concrete component
model, its launch must conform to the frameworklo§ model. The OSGi framework

allows the specification of actions to be perforrdedng the different phases of bundle’s

lifecycle using the clasBundleActivator Thus, using this mechanism to launch

Research study by Shivani Budhkar 72



Extraction of connector classes from object oridrsgstem while recovering Software architecture

restructured application, for each class contaigngentry point (i.e. main () method in
Java), we create in its corresponding bundle alasbof the clasBundleActivatothat
redefines the methostart (BundleContext)These subclasses are potential activators of
the bundle. The redefined method is only used idlea original entry point (i.e. main ()
method in Java) of the application. Its param@endleContextyontains, among others,
the parameter of the main () method. Among allpgbeential activators of the bundle, the
designer should designate the actual one. It igtiited in the manifest as follows:

BundleActivator:

Activator.ComponentlActivator

Finally, to build an OSGi bundle, the classes,rfates of a component, its activators (if
any) and its manifest are archived in a jar filear Fexample Figure 4.7 shows
componentdtructured as a bundle (bundle 1). This bundleistmef Classes C and F, its
unique provided and its interfackterface C, its adapt }C and its facade classes (A and
E). Suppose, this component has entry point (mpimdgthod of C), then the class
ComponentlActivatovas created and added to the bundle.

3.2.4 Guidelines for Implementing Components in OSG-ramework

The Open Services Gateway Initiative (OSGi) is amework that supports the

implementation of component-based, service-orieafgaications in Java. Following are

some steps for implementation.

Steps:

- Let C be component based system consisting of coens c1, c2,.....cn.

- For each component ci in C create separate bundleeiform of package consisting
of classes of component ci.

- Add of interfaces of the component ci in the bundleese interfaces plays role of
required interfaces for component cj in C providgdrface for ci.

- Add component activator class for component ci BaradleActivator

Research study by Shivani Budhkar

73



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Finally the classes of component ci, interfaces @fomponent ci, its activators (if
any) and its manifest are archived in a jar file.

Example: Suppose for ‘Arithmetic 24’ game application delsed in section 3.6.3 four

components are created namely Component0, Comggne@bmponent2 and

component3. These components can be packed inwidsualong with their interfaces

and manifest for implementing it into OSGi frametoFollowing figure 3.6 shows

representation of bundles for ‘Arithmetic24’ ganppkcation.

Research study by Shivani Budhkar

74



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 3.7: Representation of bundles for ‘Arithmetc24’ game application.

<< interface>>
Interface_Comp_0

[

Comp_0

Component Oi

Arithmetic24 |/

',PlayingStatus

ComponetOActivator
— Wstart(
DraggingArea| | ScoreKeeper Ssiop)
Draggingmage | | SynchronizedVector
manifest:
Obsenvableinteger || YPE | |BundleActivator: ComponentOActivator
Importpackage:interface_comp_1

ExportPackage:interface_comp_0

Comp_2

<< interface>>
interface_Comp_2

4 Component 2i

SoundList

Component2Activator
Sistart()
Sistop()

manifest:

BundleActivator:Component2Activator
Import package:interface_comp_0
Export Package:interface_comp_2

m
\J;/
" | Interface_Comp_1 Comp_1
|
4 Componentl = |- component1Activator
CardSlot |- Sstar)
/ Sistop()
DraggingSlot
gong manifest: N
BundleActivator: Component1Activator
Importpackage:interface_comp_0
SoundLoader

ExportPackage:interface_comp_1

Interface_Comp_3

{

Comp_3

Component3 i

cad - Component3Activator
| Opefator |/
{ == Sstart()
CardDeck | X Sistop()
=~ | OperatarSlot
Clock | F——
) St manifest;
Expression | - olution BundleActivator: Component3Activator
Importpackage:interface_comp_0
- - interface_comp_1
llegalExpressionException

ExportPackage:interface_comp_3

In this way created components through the propdsetl can be implemented

Research study by Shivani Budhkar

75



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Component based framework.
3.3 Selection of Clustering Process for the Methodology

The clustering techniques can be used effectivelyatilitate software Architecture

recovery. The clustering concepts required forpitoposed methodology are presented in
appendix II-(b). In this section we present setectiof clustering process for the

methodology.

With the objective of taking advantage of the feasuof the hierarchical clustering, in
this study, Hierarchal clustering based approachsisd to economically determining

reusability of software components in existing ebgriented systems.
3.3.1. Identification of Features and Entities intie System

The present study works on object oriented systeemce object or classes are the

entities for our approach, as object are basisuartobject oriented system.
3.3.2. Selection of Similarity Measure

The similarity measures and linkage method are mhmest important factors in

agglomerative hierarchical clustering algorithm.eThkhoice of a proper similarity

measure and linkage method has even more influencéhe clustering results. The
guantitative computations of the similarities betweclasses can differ according to the
measure. We will adapt the generic cohesion meaatneduced by Frank [19] that is

connected with theory of similarity and dissimitsri A generic cohesion concept is
applicable to different abstraction levels of sa@fter It can be applicable to object
oriented systems also. “Cohesion refers to the ede¢go which module components
belong together’[19]. The distance measure suppibies measurement of cohesion.
Hence, cohesion measure is appropriate for ouroagpr The distance function d can be

calculated for similarity measure. Most commonledisdistances in object oriented

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

system are distance measured through method cguptinusage relationship, distance
measured through composition coupling and distameasured through inheritance

coupling. We have proposed integrated couplingheké three couplings and used as
distance measure, for agglomerative clusteringrihgo.

3.3.3 Selection of Clustering Algorithm

The common process of clustering starts by pansiagource code of legacy system and
then organizing the source code into cohesive gstems that are loosely connected by
particular algorithm. In the proposed approachsipgrsource code of java applications
for software architecture recovery takes placejnagerms of object oriented system

terms, a component consists of a set of membesesaand interfaces which specify their

services.

The algorithm chosen here is agglomerative hiereatttlustering algorithm (AHCA)

for component identification because it has follogvare advantages.

A multi-level architectural view produced by agglemative hierarchical clustering

algorithms facilitates architectural understandis(j.

- They are non-supervised. They do not need extanrdtion such as the number of
expected clusters and candidate regions of sepededor locating cluster.

- AHCA provides a view for software clustering; tharleer iterations presents the
detailed view of the software architecture and ldter ones presents a high-level
view.

- For AHCA it requires entities to be clustered. We asing source code of java
application as input; it is easy to treat classesrdities to be clustered.

- AHCA can produce a hierarchical decomposition foftvgare system without

defining the number of components in advance.

Research study by Shivani Budhkar 77



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Selection of Linkage Method

Jain A.M. [40] suggested that during clustering $imailarity between the newly formed
and existing components should be iteratively dated. There are various linkage
methods like single linkage, complete linkage, awkrage linkage. Most popular
hierarchical clustering algorithms are variantssofgle linkage or complete linkage.
These two algorithms differ in the way they chagdze the similarity between a pair of
clusters. In the single-link method, the distaneaMeen two clusters is the minimum of
the distances between all pairs of patterns drawam the two clusters (one pattern from
the first cluster, the other from the second).la domplete-link algorithm, the distance
between two clusters is the maximum of all pairendéstances between patterns in the
two clusters. In either case, two clusters are sy form a larger cluster based on
minimum distance criteria. The complete-link algjom produces tightly bound or
compact clusters. The single-link algorithm, by tcast, suffers from a chaining effect. It
has a tendency to produce clusters that are syragglongated. The clusters obtained by
the complete link algorithm are more compact thaosé obtained by the single-link
algorithm. The single-link algorithm is more vergathan the complete-link algorithm,
otherwise. For example, the single-link algoritham @xtract the concentric clusters but
the complete-link algorithm cannot [40]. So we hdeeided to use single linkage in our

approach.

3.3.4 Selection of Evaluation Criteria for Assessnm of Components

In present study, we will focus on internal asses#nand use evaluation metrics for
components based on size of component and coufletgreen components. The
approach will propose metric for cohesion withimgmnent. Using these metrics quality

of components created through proposed methodwidvaluated.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 4

Proposed Component Based Software Architecture Recery

4.1  The Proposed Component Based Software Architeoe Recovery Approach

Components are regarded as being more course-dreamepared to traditional reusable
artifacts such as objects and provide high ley@lagentation of the domain. Components
can be used more effectively and are better stiteceuse than using objects. Creating
reusable components from object oriented systenmagor task in migrating to

component based system and it is one of the mostipent maintenance objectives to
migrate systems to distributed computing environessing components. The objective
of this research is to develop automatic approduiclwrequires less human intervention
to recover components and interfaces from objeented system. To prove that existing
legacy object oriented code can be reusable wiaarsiry migrates into new technology
like component based. This obviously reduces tls¢ ttocompany who wants to migrate

to new technology.

The proposed work is aimed ata legacy object oriented system where the design
documents are not available. We also aim to dermatestow the proposed approach will
help in identifying components and connectors ftegacy object oriented system. This
work proposes agglomerative clustering algorithnd arses size and coupling of
component quality metrics to evaluate the qualftidentified components and proposes
component cohesion metric. The work also provideeriace details using which

interface packages or connectors can be prepalesiwbrk does not proposecreation

Research study by Shivani Budhkar 79



Extraction of connector classes from object oridrsgstem while recovering Software architecture

of reusable library for component and connectorag®, as identified components and
connectors can be stored in the library accordintpé component based framework the
company uses. Instead, we provide guidelines foplementing components and
interfaces in OSGi component based framework. Teer should be familiar with

component based Architecture. It is assumed that kreows java technology and wants

to migrate from java classes to java components.

The user here is assumed as software maintaineoftware engineers, who want to
develop component based application using exisilrjgct oriented system. The goal is
to achieve migration to component based softwaren fexisting object oriented system
with minimum cost by reuse existing applicationeTuser knows how to import existing
java code into tool and use the results from tloéttmcreate components and connectors.
The user also must know dependency files of legatyce code and where to load that
in the tool. For example if object oriented appiima contains serviet pages the
servlet.jar file must be loaded while executingha tool.
Present study shows the components and interfat&lsdeetrieval by doing the
following:
- Component Based Architecture Recovery from Objedered System from
Existing Dependencies among Classes-
The proposed process is based on the identificafisource code entities and the
relationship between them. The list of possibleatrehships between object
oriented systems includes inheritance, compositiumcation relationship etc.
- Component Identification from Existing Object Otiedd System using
Hierarchical Clustering-
A component is group of classes collaborating tovige a function of
application. We need to group the classes basedimilarity to generate
component based system from existing object oriegaystem. Each of the group
becomes component. A clustering algorithm allowsugmg of classes of the

application.

Research study by Shivani Budhkar 80



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Component Evaluation and Component Interface Iteation from Object
Oriented System
Identified group of classes working together watrh components. We also need
to identify required and provided interfaces toaldg® how they bind together.
4.2 Rationale for Component Based Software Architéare Recovery
Software Architecture modeling and representatisnvery important in software
development process. Software Architecture providiggh level view which is very
useful in all phases of software life cycle likedow, maintenance, testing, etc.
Component based software architecture is benefagait is useful for reusing system
parts represented as components. Most of the mxistbject oriented systems do not
have reliable software architecture and some legaystems are designed without
software architecture design phase. So by devejofmol we can retrieve component
based software architecture. The software architecdf the system is described as a
collection of components along with the interactanong these components, where as
the main system functional block are componentsngty dependent on connectors —
which is abstraction capturing nature of theserauions. Therefore, the proposed work
will focus on extracting component and interfacéde in component based architecture
from existing object oriented system. As objecented development had not provided
extensive reuse and computing infrastructures\askvieg from mainframe to distributed
environments, where objects technology has not teedmassive development of
distributed systems. However, component-based tdoby is considered to be more
suited for distributed system development duestgiitinularity and reusability.
Using Component based software architecture isfimal because-
- Exchange between software architects & programeesgy.
- Useful for reusing system parts represented as coents.
- Clear separation between components & connectors.
- Localizing software defects & reducing risk of m&png new functionalities

during maintenance & evolution phases.

Research study by Shivani Budhkar

81



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Software architecture has put forward connectorsfilgt-class entities to express
complex relationships between system componentbodgh components have always
been considered fundamental building blocks of vearfé systems, the way the
components of the system interact may also be exrdetant on the system properties.
Component interactions were also recognized toilsé ¢lass entities & architectural
connectors have emerged as a powerful tool for atipg the description of these
interactions. Components address only one aspeletrgé-scale development. Another

important aspect is interaction among components.

Component contains only the business logic and aamizates with one another only via
well-defined interfaces the communication paths @gnthe components are in modern
component systems realized by software connecmdrigh allows explicit modeling of

communication and also its implementations at maeti

Major works have been proposed in the literature régover component based
Architecture, most of them are manual or semiautmmnanhich requires other guidelines
like design documents, human domain experts etcst b the approaches focus on

component retrieval only and not about interfadaitiei.e. connector classes.

To deal with this problem we have proposed appradatomponent based architecture
recovery which aims to extract component basediteatbre from existing object

oriented system using existing dependencies amolagses and agglomerative
hierarchical clustering algorithm. This approachuseful when no documentation of an

application is available, and it requires very lesman intervention.

4.3  The Proposed Framework and Tool
The framework is divided into three modules. Wedlep a tool consisting of these three
modules for component identification and interfdegails generation. Following sections

gives details of overall process and proposed tool.

Research study by Shivani Budhkar

82



Extraction of connector classes from object oridrsgstem while recovering Software architecture

We have identified three steps to produce a compdresed architectural view from an
object-oriented application in proposed approach

- Identify Dependencies in Existing Object Orientgdt®m

- ldentify Components

- Component Evaluation and Interface Identification.

Figure 4.1 shows proposed approach for producingpoment based architecture.

Research study by Shivani Budhkar

83



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 4.1: Proposed Framework and Tool

Existing Java Source
Code

TOOoL

Component Based System

4.3.1 Identify Dependencies in Existing Object Oriented $stem

We examine existing object oriented system to iflelkependency among the classes
using method coupling, inheritance coupling and position coupling. We have
evaluated the feasibility on Java software. Comptbased software architecture is a
high level abstraction of a system using the aechitral elements: components which
describe functional computing, connectors whichcdbe interactions and configuration

which represents the topology of connections betveeenponents.

Research study by Shivani Budhkar 84



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Frank Simon et al [19] described, while recoversggtware Architecture from object
oriented system different abstraction levels cacdesidered e.g. method level, variable
level, object level and system level. Extensiverdture research has justified these
abstraction levels for software measures. Alae-i®léi al [3] described the definition of
metrics on Object Oriented system elements areir@ataby identification of different
types of relationship between different classes @rputation of their strengths. Class
coupling is one of the Object Oriented metric. dowyp is an indication of the
connections between elements of the object orieDesign and indicates dependencies
among classes. It is important to identify couplfog creating components. We need to
determine precisely the dependency among classesi@m to measure their strengths.
The possible dependencies among Object Orientadmysntities include inheritance,
composition, aggregation and method invocations.idémtifying these dependencies

become the first step to recover software Architext

Jong kook Lee et al [45] described, well definethponents designs are driven by a
variety of factors e.g. the principles of cohes&rd coupling are important factors for
well-defined component design. Therefore in thislgtwe are focusing on class coupling

to identify well defined components.

Coupling is qualitative measure of the degree tackvitlasses are connected to one
another. Coupling is an indication of the connedidetween elements of the object
oriented Design. It has been defined as a meadutbeodegree of interdependence
between modules and the degree of interaction leetweodules. C. Rajaraman et al
presented definition as "Coupling is a measurdefassociation, whether by inheritance
or otherwise, between classes in a soft-ware ptbdibough coupling is a notion from

structured design; it is still applicable to objeciented design at the levels of modules,
classes and objects. We are concerned only wittpliocgu between classes. Thus,
coupling indicates dependencies among classes.pbBsible dependencies between

classes of object oriented system include inhezéacomposition, method invocations

Research study by Shivani Budhkar

85



Extraction of connector classes from object oridrsgstem while recovering Software architecture

etc. Here, we are considering following importaougling dependencies as they are

basis for identifying components from object orezhsystem.

Inheritance Coupling- Inheritance coupling is coupling between geneedi class

(Super class) and its specialized classes (Subedps

Composition CouplingWhen instance of one class is referred in anatleess, then we

have composition coupling.

Method Coupling - When methods of one class use methods of anot&es hierarchy,

then we have method coupling between the classes.

Integrated Coupling- It is a class’s all three couplings inheritanoe@ing, composition

coupling, and method coupling.

The proposed approach of extracting component basddtecture from object oriented
system is based on the identification of sourceecentities and the relation between
them. The entities and relations have to be exddaby source code analysis and identify

dependencies between the classes.

Figure -4.2 summarizes the process for identifygind displaying dependencies.

Research study by Shivani Budhkar

86



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 4.2: Process for Identifying Dependencies

—

Integration coupling identified in this step is @ivas inputs to the next step i.e.

identify components, which uses agglomerative hatviaal clustering algorithm to

create components.

4.3.2 Identify Components
In this step we are generating input requiredgooposed algorithm; from integration
coupling (step (i) above) i.e. similarity measurel alistance function, d(Si, Sj) for
proposed agglomerative clustering algorithm. Thegl@gerative hierarchical
clustering algorithm identifies components from embj oriented application.
Cohesion measure distance function d(Si, Sj)givetace between two classes Si
and Sj of object oriented system S.

The process for identifying components is showigare 4.3 below.

Research study by Shivani Budhkar

87



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Fig. 4.3: Process for Identifying Components

Stepl

Step 2

Following sub sections show how this distance fianctd (Si, Sj) is generated and

the proposed algorithm.

Similarity Measure and Distance Function:
The most important factor in clustering processsimmilarity measure. Similarity
measures determine how similar a pair of classeSimilarity of classes can be

calculated by variety of ways and choosing sintyameasure is influence the result

Research study by Shivani Budhkar 88



Extraction of connector classes from object oridrsgstem while recovering Software architecture

than the algorithm. Theory of distance measures talt the similarity between two
things is the collection of their shared propertle€Si and Sj are two entities, then the
distance measure holds the following statements.

1. d(Si, Sj)>=0

2. d(Si,Si)=0

3. d(Si, Sj) = d(Sj, Si)

We will adapt the generic cohesion measure intredury Frank Simon [19] that is
connected with theory of similarity and dissimitgri Hence cohesion measure is
appropriate for proposed approach. We considemamntst d(Si, Sj) between two
classes Si and Sj from S is expressed in the foligvexpression (1) where S=
{s1,s2,........ ,Sn} be the set of objects to be clesterObjective here is to group
similar classes from S in order to obtain high sive groups (clusters).

i, 51 = 18Im0 o (1

Where,

| bisid 1 b= |
sim(si,g)) =
| bisi) U b |

With b (Si):= {Pi€B| Si possess Pi},Pi — set of relevant propertfeSi 0So, distance
measure focuses on the similarity measure of tviiesiwith respect to a property
subset B shown above. The distance function d{pis 8ormalized between 0 and 1.
The distance between two entities is larger the $asilar they are, or vice versa. The
two distinct entities can have a distance of 0.\@eehchosen distance between two
classes as expressed in equation (1) because ihasmps idea of cohesion.
“Cohesion refers to the degree to which module cwmepts belong together”
described Frank Simon [19]. So the equation (1hlabts concepts of cohesion. d is

a semi-metric function so hierarchical clusterifgpathm can be applied.

Research study by Shivani Budhkar 89



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Distances in Object Oriented System:

With respect to measurement theory and distancesunement distances can be
calculated for pair of entities [19].In object orted system several entity families can
be detected based on abstraction levels. The abetrdevels can be variable level
i.e. attributes of system, method level i.e. meghoflsystem, object level i.e. classes
of system and system level i.e. whole system. V@dausing on class level, because
basic unit for object oriented system is class awedwork on source code of object
oriented system. We calculate here distance betvieenclasses based on the
relationship between classes Most commonly useddrdiss in object oriented system
are distance measured through method couplingusage relationship, distance
measured through composition coupling and distaneasured through inheritance
coupling. We have proposed integrated couplindnes¢ three couplings and used as
distance measure, for Agglomerative clustering raig.

Distance through Method Coupling:
Method coupling - When methods of one class usehwodst of another class
hierarchy, then we have method coupling betweerltsses.

Consider following example to illustrate calculatiof the distance between source

and destination class using method coupling.

Research study by Shivani Budhkar 90



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 4.4: Class Diagram with Method Coupling

Class A Class B

#M2() ——— T |

M) —__| mgg
=YY

Class C

M7()
+M10() #M8()

In the above figure 4.4, private methodM1 () anot@ected method M2 () of class A,
accesses public method M6 () of class B. PrivatthatkM7 () and protected method
M8 () of class C, accesses public method M3 (Qlads A.

Thus, distance between two classes using methoglicgucan be calculated in

following table.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Class | Properties | Dist (A, $) =| Dist (B, $) =| Dist (C, $) =|Dist (D, $) =
(Methods | 1-(Intersection| 1-(Intersection| 1-(Intersection| 1-(Intersection
in the class of properties of properties| of propertieg of properties
& accessed of Alof B & $) /|of C|of D
method by &$)/(union of | (union of | &$)/(union of | &$)/(union of
class) properties of Al properties of Bl properties of G properties of D

& $) & $) & $) & $)

A |M1, M2, |1-4/4=0 1-1/6=0.833 1-1/6=0.833 1-0/6=1
M3, M6

B | M4, M5, | 1-1/6=0.833 1-3/3=0 1-0/6=1 1-0/5=1
M6

C | M3, M7,|1-1/6=0.833 1-0/6=1 1-3/3=0 1-0/5=1
M8

D | M9, M10 1-0/6=1 1-0/5=1 1-0/5=1 1-2/2=0

Table 4.1 Distance Calculation using Method Couplig

Thus, we have prepared distance matrix using metiooghling of classes in object

oriented system.

Distance through Inheritance Relationship:

Coad Yourdan [15] defined inheritance coupling whis coupling between generalized
class (Super class) and its specialized classésl@ases) .The subclass has at least the
same behavior as the super class. When lookimg@éementation level, the functionality
of one class might be distributed over severalseagrom which it inherits. This is valid
for all three kinds of inheritance. The entities ioferest in this case are classes.
Additionally for every class we are interestedtsisub-classes and its super classes.
Consider following class diagram to illustrate cddtion of the distance between source

and destination class using inheritance coupling.

Research study by Shivani Budhkar 92



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 4.5: Class Diagram with Inheritance Coupling

Clans A Class F
yay AN
Class B Class © Clﬂ;‘ﬁ oy
t‘ e
" Class D Cinso B

In the given example this would be (extract):
{ (class A, class B, {class A»class A, class B-class B, class B-class A},
(class A, class D, {class A~class A, class D-class D, class D-class C, class D
—class B,
class D—class A},
(class D, class E, {class Bclass D, class B»class C, class B»class B, class B-A,
class E—class E, class Esclass C, class E->class A},
(class A, class F, {class Asclass A, class F-class F}
.}
Thus, distance between two classes using inhedtaotpling can be calculated in

following table.

Research study by Shivani Budhkar 93



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Class | Properti | Dist Dist Dist Dist Dist Dist | Dist
es(Class| (A, $) | (B,%) (C,%) (D,%) (E, 9% |(F,9% |(GS
& its
parent
class)
A A 1-1/2=0] 1- 1- 1- 1- 1- 1-
1/2=0.5| 1/2=0.5| 1/4=0.7 | 1/3=0. | 0/2=1 | 0/3=
5 66 1
B B, A 1- 1-2/2=0| 1- 1- 1- 1- 1-
1/2=0.5 1/3=0.6 | 2/4=0.5 | 1/4=0. | 0/3=1 | 0/4=
6 75 1
C C A 1- 1- 1-2/2=0| 1- 1- 1- 1-
1/2=0.5| 1/3=0.6 2/4=0.5| 2/3=0. | 0/3=1 | 0/4=
6 33 1
D D,B,C,|1- 1- 1- 1-4/4=0] 1- 1- 1-
A 1/4=0.7 | 2/4=0.5| 2/4=0.5 2/5=0. | 0/5=1 | 0/6=
5 6 1
E E,C,A| 1- 1- 1- 1- 1- 1- 1-
1/3=0.6 | 1/4=0.7 | 2/3=0.3 | 2/5=0.6 | 3/3=0 | 0/4=1 | 0/5=
6 5 3 1
F F 1-0/2=1| 1-0/3=1| 1-0/3=1| 1-0/5=1| 1- 1- 1-
0/4=1 | 1/1=0 | 1/2=
0.5
G G, F 1-0/3=1 1-0/4=1| 1-0/4=1| 1-0/6=1]| 1- 1- 1-
0/5=1 | 1/2=0 | 2/2=
.5 0
Table 4.2 Distance Calculation using Inheritance Qapling.

Research study by Shivani Budhkar

94



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Where,

Dist (A, $) = 1-(Intersection of properties of A®)/(union of properties of A & $)
Dist (B, $) = 1-(Intersection of properties of B&/(union of properties of B & $)
Dist (C, $) = 1-(Intersection of properties of C&/(union of properties of C & $)
Dist (D, $) = 1-(Intersection of properties of D&/(union of properties of D & $)
Dist (E, $) = 1-(Intersection of properties of E&/(union of properties of E & $)

Dist (F, $) = 1-(Intersection of properties of F&¥/(union of properties of F & $)

Dist (G, $) = 1-(Intersection of properties of G&¥/(union of properties of G & $)

Thus, we have prepared distance matrix using itdree coupling of classes in

object oriented system.

In the same way we can prepare distance matrixxdamposition coupling where

properties would be the class (part class) and afass (whole class) whose attribute
is used by the class. When instance of one clasfasred in another class, then we
have composition coupling, i.e. properties congddrere for distance calculation are

part class and whole class.

Similarly for integration coupling, we consider all the coupling with the class and
prepare distance matrix using above technique. TEuusation (1) defined above
evaluates all pair-wise distances between clustehgch is the most important
cohesion metric (d (Si, Sj)), that will be usedonoposed agglomerative hierarchical
clustering algorithm. Thus, Construct distance mwatising distance value (using

entity eC S, p(e)- a set of relevant properties of e)

Propose Agglomerative Hierarchical Clustering Algoithm (AHCA):

Software system is composed of set of classes epdndencies among the classes.

The semi metric function d(Si, Sj) is calculatesing existing dependencies in object

Research study by Shivani Budhkar

95



Extraction of connector classes from object oridrsgstem while recovering Software architecture

oriented system, which is one of the important tnfouthe clustering process. The
clustering algorithm is written in chapter 5.

Finally using cluster levels components are creathith can be used for creating
interfaces of the components. Final cluster levisl-dsed for creating components.

In this step Cluster levels created are used iaticrg components, are used as input
to next step i.e. identify interfaces.

4.3.3 Component Evaluation and Interface ldentification.
In this step, we will demonstrate how to extradeifaces among components and
component evaluation while recovering componentetbaarchitecture. Using the
components generated in previous step, interfatailsleare identified. ldentified
components are evaluated using component cohesmmponent coupling, and
component size metrics for quality of componentsisTtep is further divided into

two sub steps as Identify interfaces and compoaesiuation.

- ldentify Interfaces:
Component based system consists of components mieidfaces. Component
interfaces are the means by which components comiiceach other. A component
interface specifies the service that the compopentides and requires. Among all of
the methods in the component, only public methodedufrom outside provide
services to other components or classes. Thereferereate a provide interface that
includes the public methods that exists in anyhef component’s classes and which
are used by the outside of that component. Redpiiegface is the union set of every
method in other components that is called by thepmment. To reduce cyclic
dependency among components, we group these rdsrées packages. The process

of identifying interfaces and component evaluat®shown in below figure. 4.6.

Research study by Shivani Budhkar



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Fig. 4.6: Process for Identification of Interfacesand Component Evaluation

| stepl

Step 2

Step 3

- Component Evaluation:

The component evaluation step above accepts thés@soduced through clustering
i.e. components created, interfaces details crest@adput and evaluates the quality of
identified components. There is several evaluatidterions proposed to qualify
clustering results. The basic quality metrics taleate software system are coupling
and cohesion, which can cause serious impact ontemance, evolution, and reuse.
Criteria for components used by us are size, cogg@nd cohesion. There should also

be appropriate number of implementation classegiirorganized components.

Research study by Shivani Budhkar

97



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Size:

Jian Feng Cui [42] proposed size as evaluatiorer@itto show well organized
components with appropriate number of implementattasses. So using size we
evaluate clustering results. According to them somratios of single class
component, classes in largest component and atkenmediate components should
be 100%.
- Ratio of Single class component=Number of Singks€lcomponent/Total
number of classes
- Ratio of classes in largest component=Number ofsésa in the largest
component/Total number of classes
- Ratio of other intermediate components = Numbeclasses in intermediate
components /Total number of classes

Coupling:

In component based system coupling shows how yigité component is interacting
with other components in the system. Coupled CorapbRatio (CCR) is one of the
metric for evaluating component coupling proposgdian Feng Cui [42]. According
to them two components are said to be coupledeifetlis connection between them
and CCR is defined as Number of components couplath particular
component/(Total no. of components in system —Thg CCR value of component
lies between 0 and 1.Smaller the CCR value betiercomponent is.CCR value 1
indicates that component is coupled with all ot@nponents in system.CCR value O

indicates that component is entirely independent.
Cohesion:

Cohesion in component based system is how tigh#gses are coupled within the

component. Cohesion metric is used to measuretgudlcomponents for reusability

Research study by Shivani Budhkar

98



Extraction of connector classes from object oridrsgstem while recovering Software architecture

and maintainability. We propose Component CoheMetric (CCM) as Number of
component’s self-couplings/Total number of coupdingf that component. Where
total number of couplings of component = self-caupl+ coupling with other
components within system. The value of CCM liesMeein 0 and 1. A higher CCM
value indicates more similar behavior is groupegktber i.e. more tightly coupled

classes are grouped together.CCM value 1 inditag¢gscohesion within component.

Thus the tool identifies different kinds of dependes among the classes then uses
clustering algorithm to identify components. Intmd details of the extracted
components are identified by tool using which iftee packages can be defined and
components are evaluated based on component quaétyics size, component
coupling and component cohesion.

We will evaluate the tool on java application asaae study to verify the results.

4.4 Summary

This chapter elaborates on the proposed framewbrsomponent based software
architecture recovery. It describes in detail thségps of entire tool development
process consisting of three modules. Module 1deniifying dependencies in object
oriented system. Module 2 for identifying comporgeand finally Module 3 for
component assessment for quality and interfacdifdtion. The chapter talks about
calculation of similarity measure for clusters agidtance calculation. It describes
various types of distances in object oriented sysliée distance through usage
relationship, distance through inheritance relaop, distance through composition
relationship. These distances are used to calcslatgarity measure for proposed
Agglomerative Hierarchical Clustering Algorithm. &halgorithm is used for
component creation. It also describes about varijuadity metrics that will be used
for component evaluation. Detail implementatiorthad proposed tool is presented in
chapter5.

Research study by Shivani Budhkar

99



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 5

Implementation of Proposed Component Based Softwar&rchitecture

Recovery Framework

Introduction

Architecture recovery is a part of reverse engimgerconcerned with identifying

architectural components such as subsystems, nsdolgiects as well as their
interrelationships called connectors. Componenedaschitecture recovery consists of

identifying components and connector i.e. interfsmmong the components.

Architecture recovery consists of detection of comgnts and detection of connectors.

Thus, the elements of Software Architecture arepgmmments and connectors.

Since industry is migrating from object orientedteyn to component based system as
components more reusable and beneficial than @hjettis important to recover
component based software architecture from objeenht@d system. It will help software
developer or software maintenance person to creatgonents and interface among

these components, as a part of component basesrsyst

In this chapter we will implement the proposed feavork with an objective to help

software developers to migrate the software in m@rking environments.

5.1 Implementation of the Proposed Framework and ta Tool.

We are implementing proposed framework by develppitiool. We have developed this
tool using Java platform under eclipse Galileo wersvith windows as operating system.
The tool takes input as java source files with ajaxtension. The tool is developed in

three modules.

Research study by Shivani Budhkar 100



Extraction of connector classes from object oridrsgstem while recovering Software architecture

5.1.1 Module 1:Identify Dependencies in Existing Object @ented System

The first module identifies dependencies in exgstiject oriented system and displays
result as Method coupling table, composition cauypliable , inheritance coupling table,
and integrated coupling table. These tables arbimptbut the existing dependencies
among the classes of object oriented source codm @s input to tool. Let us assume
that S is a object oriented system, consisting different classes s1,s2,s3,....sn. In this
case S is legacy source code of java applicatidrgse component based architecture
needs to be identified.

Algorithm: 5.2.1 lists the pseudo algorithm for identifying dependeim existing object
oriented system.

Algorithm: 5.2.1 Identifying dependency

Input: The object oriented software system S= {s1, s2, &3 .where s1, s2,...sn are
classes of object oriented System and n is nuofbeasses
Output: Tables showing source class and its coupling ctdsste
Method:

1. For each class sl to Sn from S Do

2. Find method coupling with remaining S-s1 st If found return true

otherwise
false.

3. Find composition relationship i.e. whole-part relaship, with remaining S-s1
classes. If found return true, otherwise false.

4. Find inheritance relationship i.e. parent-childthasiemaining S-s1 classes. If
Found return true, otherwise false.

5. Find integration coupling. If found return truehetwise false.
End for
Save these different couplings.

7. Display it in tabular format.

Research study by Shivani Budhkar 101



Extraction of connector classes from object oridrsgstem while recovering Software architecture

5.1.2 Module 2: Identify components

The second module is developed to identify comptenasing these coupling tables. In
this module, we are implementing agglomerativedrirical clustering algorithm. The
module calculates the distance function using déogpiables generated in module one.

The distance calculation is required for agglomeedtierarchical clustering algorithm.

Using the integrated coupling table generated imute 1, we calculated semi- metric
function d(si,sj) for software system S. The fuotd is normalized between 0 and 1. So
the threshold chosen is 0.7 for similarity. Usitigede inputs to proposed clustering
algorithm cluster levels are generated. Clusteell®efore final cluster level is used to

create components.

The distance function equation (1) below, calcalate algorithm using integrated
coupling is shown in Algorithm 5.2.2.
disi, g7 = 1-8IMELS0 e (1

Where,

| bisid 1 b= |
sim(si,g)) =
| bisi) U b |

sim (si, sj) = (Intersection of properties of ssf}/(union of properties of si & sj)

Here, si and sj are classes from object orientsteay S.

Properties in this case are:

- Methods in the class si& accessed method of sjdgs si

- Class si & its parent class

- Class si (part class) and other class sj (whlalgs)

- Class si's method & methods of other classexcgssed by si + Class si & its parent

class + Class si (part class) and other cg@ghole class)

Research study by Shivani Budhkar 102



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Algorithm: 5.2.2 Distance calculation

Input: Integration coupling from object oriented system S
Output: distance matrix (distance d(si,sj) = 1-sim(si,syypich displays source class,
destination class, intersection count, union cafimélevant properties and distance.
Method:

1. For each source class si and destination clagsSpio

2. Find union count using set of relevant properiesi

3. Find intersection count set of relevant properniesi

If union count =0 or intersection count =0 then
distance d(si,sj) =1.

Else

distance d(si,sj)= 1-(intersection count)/(unioniay

end for

4. Display distance matrix in tabular format.

Algorithm: 5.2.3 lists the pseudo algorithm for agglomerative hieharal clustering
algorithm, which takes input classes from objedemied system S consisting of n
number of classes, semi metric function d(si,sjicidated in Algorithm 5.2.2 and
threshold value for clustering which is chosen &5 8s distance function is normalized
between 0 and 1.Let us assume that P is numbéusiécs. Initially number of clusters is
equal to number of classes n in the object oriestgstem S. Each cluster contains
corresponding class. i.e. each cluster contairgdesitlass initially. Thus c1,c2,c3...cp be
clusters in the system C. We evaluate all pair wigtances between clusters and
construct distance matrix using relevant properffef each class si in system S
mentioned above. Then look for the pair of clusteith shortest distance and remove the
pair from the matrix and merge them. We evaludtéiatances from this new cluster to
all other clusters and update the distance matvig.continue with this process until we

get the distance matrix reduced to a single element

Research study by Shivani Budhkar 103



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Algorithm: 5.2.3 Agglomerative hierarchical clusteing algorithm (AHCA)

Inputs: - The object oriented software system S= {s1s82,.sn} where s1, s2,...sn are
classes of object oriented System and n is numibaasses, the threshold chosen is|0.7
and the semi- metric function d between entities.
Output:-clusters at different level
Algorithm:
P=n; /linitial number of clusters
Fori=1ton
Ci = {si}
End for
C ={cl, c2...cp} /l clusters in the system
Repeat
- d(ci,cj)=1-sim(ci,cj) /I Evaluate all pair wise stihtnces between
clusters
- Construct distance matrix using distance valuenfusntity e€ S,
p(e)- a set of relevant properties of e)
- Look for the pair of clusters with shortest distanc
- Remove the pair from the matrix and merge them.
- Evaluate all distances from this new cluster toadler clusters angd
update the matrix.
Until the distance matrix is reduced to a singleneld.

Thus, cluster levels are created using agglomeratiwstering algorithm and using one
level before final level of clusters components @eated.

5.1.3 Module 3: Component Evaluation and Interface Identfication.

The third module is developed for Component evanadnd interface identification.
Components created by module two are evaluatedjdiality. We are implementing
proposed quality metrics in the tool. The tool tigs coupling among components and
cohesion within the component. Here C is the compbibased system consisting of n
components. Let us say C={cl,c2,c3,....... ,cn}. Aftelgdrithm 5.2.3 we get these
components, cl,c2,...etc. The quality metric sizes shgt sum of all the ratios should be

1 to show that all the components are well creatgld appropriate number of classes.

Research study by Shivani Budhkar 104



Extraction of connector classes from object oridrsgstem while recovering Software architecture

All these component ratios contain ratio of Singlass component, ratio of classes in

largest component and ratio of other intermediataponents.

Algorithm: 5.2.4 lists the pseudo algorithm for evaluating size meif component.

Algorithm:5.2.4 Component evaluation using size met

Input: component based system C={c1,c2....cn},migrated folect oriented system
Output: Ratio of Single class component, Ratio of clagsdargest component, Ratio
other intermediate components
Method:

1.

o > 0D

10. Display ratio of all components.

For each component ci from C

Find Total number of classes in ci

end for

Find Number of Single class component from C
Find Number of classes in the largest component
Find Number of classes in intermediate components
Calculate Ratio of Single class component=Number ®ingle class
component/Total number of classes
Calculate Ratio of classes in largest component=armf classes in the large
component/Total number of classes

Calculate Ratio of other intermediate componentdNwmber of classes i
intermediate components /Total number of classes

Calculate Ratio of all components = (Ratio of Senglass component + Ratio
classes in largest component + Ratio of othermmegliate components)

If Ratio of all component = 1 then

components are well organized with appropriate remolbimplementation
classes.

Else

Components are not well organized.

U)

st

of

The second metric we used here is component caupigtric. We evaluate component

Research study by Shivani Budhkar

105



Extraction of connector classes from object oridrsgstem while recovering Software architecture

coupling values for each component in the compoased system C. We calculate
Coupled Component Ratio (CCR), which shows howtlyghomponent ci from C is
coupled with other components cj in the system @al&r the CCR value lower
coupling and higher the CCR value tight couplxigorithm:5.2.5 lists the pseudo

algorithm for evaluating component coupling metric.

Algorithm:5.2.5 Component evaluation using Couplingmetric

Input: component based system C={c1,c2....cn} ,migratethfabject oriented system S

Output: coupling value of all components

Method:
1. For each component ci from C check if ciis coneedo cj
2. If true, then

Find Number of components coupled with component ci
Find Total no. of components in system C.

3. Calculate Coupled Component Ratio (CCR)  CCUR value lies between 0 and|1
CCR = Number of components coupled with component/(Eotal no. of
components in C system — 1)

4. If CCR value is smaller then lower coupling
Else
Higher coupling between components.

5. Using CCR display coupling among the componensyatem C.

Before implementing our third evaluation metric esion, we need to identify interface
details among the components, because these datailssed for evaluating cohesion
metric of componentAlgorithm: 5.2.6 lists the pseudo algorithm for identifying
interface details among the components createdy #dgorithm 5.2.2 and Algorithm
5.2.3. Here we identify method coupling of each componentvith remaining C-ci

components and coupling with ci itself, compositicupling of component ci , with

Research study by Shivani Budhkar 106



Extraction of connector classes from object oridrsgstem while recovering Software architecture

remaining C-ci components and coupling with celitsalso inheritance coupling of
component ci with remaining C-ci components andthwfself. Coupling with itself

means how classes in each component interact aith ether. Coupling with other
classes means how classes from component ci ihtertc classes from component c;.
These couplings are nothing but interfaces amohghal components from cl to cn,
which are used to evaluate cohesion within eachpoont ci of C, as well as it will

work as required and provided interfaces of eacmpmments in system C. These

required and provided interfaces are nothing beitctnnectors of components.

Algorithm:5.2.6 interface details identification

Input: component based system C={c1, c2....cn} ,migratethfobject oriented system|S
Output: Displays components along with their interactionmling and coupling type
Method:
1. For each componentciin C
2. Find method coupling of component ci with remain@wgi components and with
ci itself.
3. If found return true, otherwise false. end if
4. Find composition coupling of component ci , witmaning Cei components ang
With ci itself.
If found return true, otherwise false. end if
Find inheritance coupling of component ci with rémrag C-ci components and
with itself.
7. If found return true, otherwise false. endif
8. End for
9. Save these interface details of all componentsinvgiistem C

10. Display interface details in tabular format.

The third evaluation metric we have proposed imptrad is Component cohesion metric
(CCM) for evaluation of component. We take couplidgtails of component from

Algorithm 5.2.6 and components from C created Algorithm 5.2.2 and Algorithm

Research study by Shivani Budhkar

107



Extraction of connector classes from object oridrsgstem while recovering Software architecture

5.2.3as input toAlgorithm 5.2.7.The value of CCM lies between 0 and 1.If CCM value
is larger higher is cohesion. i.e. more tightly gled classes are grouped together and if
CCM value is lesser, lower cohesion within the comgnt. The component is said to be
better component if it has maximum cohesion ansl desipling with other components in

the system.

Algorithm:5.2.7 Component evaluation using cohesiometric

U)

Input: component based system C={c1,c2....cn} ,migrated folmject oriented system |
Interface detail table generated, which shows carapbci connected with cj by which
coupling type in system C.

Output: Cohesion within component.

Method:

1. Find each component ci’s self-coupling count inasysC

2. Find count of component ci’'s coupling with cj, ...cn.

3. Calculate total number of couplings of component self-coupling of ci + coupling
with other components within system C.

4. Calculate Component Cohesion Metric (CCM) // CClue lies between 0 and 1
CCM = Number of component ci’s self-couplings/Tatalmber of couplings of that
component ci.

5. If CCM is higher then
Higher cohesion within component
Else
Lower cohesion within component

6. Using CCM display cohesion within component

Research study by Shivani Budhkar 108



Extraction of connector classes from object oridrsgstem while recovering Software architecture

5.2 Summary

The main objective of conducting the research statyhis juncture was to present
various algorithms such as identifying dependentpragy classes, distance calculation
for similarity among classes, agglomerative hidrara clustering algorithm, component
evaluation using size metric algorithm, using coupimetric algorithm, interface details
identification algorithm and component evaluatiosing cohesion metric algorithm.
These algorithms are implemented successfully @sdlts obtained are presented in
chapter 6. In this way proposed framework of thmeedules are implemented

successfully.

Research study by Shivani Budhkar

109



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 6

Results and Analysis

The research study “Extraction of connector clas®m®s object oriented system while
recovering software architecture” comprises of éhmeodules. Before starting the first
module, we need to identify static structure ofegbjoriented system. This can be done
by retrieving class diagram of the object oriensgdtem. For retrieving class diagram,
we have examined four existing reverse engineetows - IBM Rational Rose,
Enterprise Architecture, Reverse and ArgoUML. Pibé$ we have compared results
from them and selected a tool which retrieves maxinstatic information. Chapter 3
elaborates more details on these reverse engige&nls. Since we are recovering
software architecture of a system whose designrdeatation is not available, this static
information retrieved from reverse engineering tisolised to compare the results from

module-1 of proposed approach.

Module-1 constitutes identifying existing dependeacin the object oriented system.
Existing relationships in the object oriented cdudps to group the related classes
together in the form of components hence this mredutesigned and implemented. Here
we have considered important relationships in amyea oriented systems i.e.

inheritance relationship, composition relationshipd method calls from one class to
other classes in the system.

Module-2 constitutes of identifying components frofject oriented system. We have
implemented similarity distance calculation aldamit and agglomerative clustering

algorithm to group similar classes into one compbn&Ve have used 6 small and

Research study by Shivani Budhkar 110



Extraction of connector classes from object oridrsgstem while recovering Software architecture

medium size object oriented applications to tdsiw proposed tool creates components
based on the existing relationships in the objeented application.

Module-3 constitutes identifying interface details component identified on module-
2.These interface details are used to create ctomesf components i.e. required and
provided interface of components. These required provided interfaces help to
components to communicate with each other. Thdtresud analysis chapter talks about
all the three modules of proposed and implemenpgatoach. It also talks about the
static information retrieved from existing reveesegineering tool. This research work
has been published in various International Joar@ad Conferences. The proposed
approach focuses more on the small and mediumagipécations. The next section

elaborates on the results derived during the varphases of the research.

Case study: We have chosen small java software. ‘Arithmetidc3dme’. This is a
software game application developed in Java by Hu3tang. It is a simulation of
popular traditional card game. It consists of Isses and 1 interface.

Following sections presents the results using déimeescase study.

6.1 Module 1: Identify Dependencies in Existing Olgct Oriented System

Objective:

To find inheritance coupling, composition coupliagd method coupling and integrated
coupling of these three couplings. We considerghegportant coupling dependencies as
they are basis for identifying components from obriented system. Components are

required to create meaningful connectors.

Strateqy :

The proposed approach of extracting component basditecture from object oriented
system is based on the identification of sourceecentities and the relation between

them. The classes and relations have to be extragtsource code analysis and identify

Research study by Shivani Budhkar 111



Extraction of connector classes from object oridrsgstem while recovering Software architecture

dependencies between the classes. Input all .jlesadf Arithmetic 24’ game to the

proper directory in the tool and execute main paogof the tool.

Algorithms implementedAlgorithm: 5.2.1 Identifying dependency describadchapter

5 was implemented. Also some supporting programsaitten and executed to identify

different dependencies among classes.

Results from Module 1

When ‘Arithmetic 24’ game’s source code is givenirgsut to the first module, output
shows that all the classes are extracted by modoflgdroposed approach along with

different coupling tableResults from module lare shown in figure 6.1 and figure 6.2.

Figure 6.1: Method, Composition, Inheritance Depedency identified from Proposed

Approach & Tool of ‘Arithmetic24’ Game software

[ EAShivani\Eclipse_WorkSpace\Copuling\reportitablehtml - Winda
@u v \g E\Shivani\Eclipse WorkSpaceiCopuling\reportitable htm! - | &,| X || Bing

File  Edit View Favorites Tools Help

57 Favorites | & E\Shivani\Eclipse WorkSpace\Copuling\reportit..

Method Coupling Table

Class Name Coupling Class Name List
1 com.test.OraggingArea com.test DraggingSlot
2 com.test.DraggingSlot .com.test.Dragginglmage
3 comtest.CardDeck  .comtest Solution

m,

Composition Coupling Table

Class Name Coupling Class Name List

1 com.test.DraggingArea .com.test. Arthmetic24.com test. CardDeck com.test.Draggingimage
2 com.test. ScoreKeeper .com.test. Arthmetic24
3 comtest.Card .com.test. CardDeck com.test. CardSlot.com.test DraggingArea

4 com.test. SynchronizedVector .com test.CardDeck

5 com.test.PlayingStatus .com.test.DraggingArea

6 com.test.Operator .com.test.DraggingArea,com.test. OperatorSlat
7 com.test Dragginglmage .com test DraggingArea,com.test. DraggingSiot
@ com.test.DraggingSlot .com.test.DraggingArea,com.test. Draggingimage
9 com.test.CardDeck .com.test.DraggingArea

10 com.test.SoundList .com test Arithmetic24.com test SoundLoader
11 com.test Clock .com test Arithmetic24

Inheritance Coupling Table

Class Name Coupling Class Name List

1 com.test.Obsenvablelnteger .com test PlayingStatus

Done /M Computer | Protected Mode: Off v ®w0% v

245PM |
177052012

~mELO

Research study by Shivani Budhkar 112



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.2: Integrated Coupling identified from Proposed Approach & Tool of Arithmetic24

Game software

;}ES?! i W y Copuli '.u‘.'; e il - sk
(B EShivanilpe uﬁn@\@pﬂ% el g
@O' ‘El E:\Shivani Eclipse. WorkSpace| Copuling\reportitable bl 5

Fle Edt View Favortes Tool Hely

Minimize @ *
——

“f“ A H _' Bing

7 Favortes |@E:\ShivanAEdEpse_WurkSpate\CupulIng\\report\tu ‘_ ‘

2 comtest Draggingmage  com.test Card, com test CardDeck com test Operator
3 com st DraggingSlot com fest CardSlat comtest OperatorSlot

Integrated Coupling Table

(lass Name Coupling Class Name List
1 com fest Draggingdres com test DraggngSlt com test Anthmetic24 com test CardDeck com test Dragginglmage
2 com.test ScoreKeeper com test Arthmetic24
1 com.test Obsenablelnteger com.test PlayingStatus

4 com test Arthmetic24

5 comfest SynchronzedVector  com test CardDeck

& comtest PlayingStatus com.test DraggingAvea
T com.test Dragginglmage com.test Card, com test CardDeck com test Oparator com.test DraggingAvea,com test DraggingSlot
§ com.test DraggingSlot com.test Draggingimage,com test CardSlot,com test OperatorSlat com test Draggingérea 1

& comtest CardSlot
10 com test SoundLoadsr
11 com fest Type

12 com test CardDeck com.test Solution com test Draggingrea

13 com test SoundList com test Arithmetic24,com test SoundLoader

14 comtest Clock com test Arthmetic2d z
15 com fest OperatorSlot

16 com.test.Card com.test CardDack com test CardSlot com st Dragginghrea

17 com fest Operator com test DraggingArea com test OperatorSlot

18 com test Solution

19 com fest Exprassion

20 com.test llegalExpressionException

Done 1N Computer| Protected Mod: v Ri0% -

& ‘ll.

Research study by Shivani Budhkar 113



Extraction of connector classes from object oridrsgstem while recovering Software architecture

6.2 Module 2: Identify Components

Objective:

To group the similar classes together to form thamonents using existing dependencies

among classes.

Strateqy :

Using the existing dependencies among the classe®utput generated in Module-1
shown in figure 6.1 - 6.2 and apply similarity diste algorithmAlgorithm 5.2.2 and
Agglomerative clustering algorithmAlgorithm 5.2.3and create cluster levels. Using

final cluster level — 1,create components.

Algorithms implementedAlgorithm: 5.2.2 Distance calculation and Algbnt: 5.2.3

Agglomerative hierarchical clustering algorithm (BHW)described in chapter 5 were
implemented. We have also written and executed sampporting programs to identify
components.

Results from module 2:

Using the integrated coupling table shown in fig@®we calculated semi- metric

function d(si,sj) for software system S. The fuotd is normalized between 0 and 1. So
the threshold chosen is 0.7 for similarity. Usitgede inputs to proposed clustering
algorithm, we got cluster levels from 0 to 4 white figures 6.8, figure 6.9 and figure

6.10 shows components created from the module t2imtie tables created using

integrated coupling is shown in figure 6.7 below.

Research study by Shivani Budhkar 114



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6. 3: Distance table created using integratecoupling

For cluster level 1

file Edft View Hisory Bookmaris Tooks Help

-

c Q L fel}fCsers/myDesktoplo hat 1 tml "} .: :i.'r Gugle ,01
2 Most Visted | | Getting Started 3 Latest Headines
| el oot Lol e
DISTANCE TABLE i
Source Class Name Destination Class Name Union Count Intersection Count Distance =1- (IntersectionUnion)
* oamiest ScoreKeeper com st DraggingArea 4 10 0.7
2 comtest ScoreKeeper comiest Obsenablelnteger 1 0l 10
3 com.test ScoreKeeper com test SynchronizedVector 1 ) 11
4 comest ScoreKeeper camfest Anthmetic2d 1 il 10
5 comiast ScoreKesper comest PlayingStatus 1 0 10
i com.test ScoreKeeper com st Dragginglmage 5 00 10
T comfest ScoreKeeper comiest Type 1 i 11
§ com.test ScoreKeeper comtest. SoundLoader 1 0 10
§ comiest ScoreKesper camfest CardSlot 1 0 10
0 com test Scorekeeper com st DraggingSlot 4 00 10
11 comtast Scorekeeper camfest SounList 2 11 05
12 com.test Scorekeeper com fest CardDack i ) 10
13 com.test Scorekeeper comiest Clock 1 11 00
14 comtest Scorekeeper com fest OperatorSlt 1 0l 10
15 com test Scorekesper com st Card ] 00 11
10 com.est Scorekeeper camfest Operator 2 i 11
7 com test Scorekeeper com et Salution 1 00 10
1§ com.test Scorekeeper comest Expression 1 0l 10
19 com test Scorekesper com st llegalExpressionException 1 ) 11
20 comfest Draggingrea comiest Obsenvablelnteger 4 il 10
21 comfest Draggingrea comfest SynchronizedVactor 4 11 0.75 :

WM
150

ARl

Research study by Shivani Budhkar 115




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Fle Edit View H[story Bookmerks Touks Help

o —

c Q file 11C:Asers/myDesktap/o_chet L html ij “"- Google il

) MostVisted | | Getfing Sterted 5 Latest Headlines

| | filefH1CUsers/m...ktoplo chat l.htmll

S Ty =
21" com est Dragginghvea cam test SynchrorizedVactor 4 1 075 1
22 com et Dragginghrea cam test Arthretic2d 4 il 11
23 com1est DraggingArea comfest PlayingStatus 4 00 10
24 com test DragingAres cam test Draggngmage 5 20 06
25 com est Dragginghvea camtest Type 4 00 10 -
26 com et Draggnghrea cam fest Soundoader 4 0l 10
27 com fest DraggingArea com fest CardSlat 4 00 10
25 com est Dragginghvea cam test DraggingSlat 4 10 075
25 com test DraggingAres cam test SoundList 4 1 075
30 com et Dragginghrea caom test CardDeck 4 il 11
31 com test Dragginghrea cam test Clack 4 1 075
32 com est Dragginghvea cam test OperatorSlo 4 00 10
13 com st Dragginghvea cam fest Card 4 1 075
3 com et Draggnghrea cam fest Operatar 4 0l 10
35 com test Dragginghrea cam test Solution 4 00 11
30 com test Dragginghvea cam fest Expression 4 00 10
37 com est Dragginghvea cam test IlegalExpressionException 4 00 10
36 com est Obsenablehteger cam test SynchronizedVactor 1 il 11
39 com test Obsenablehteger com test Arthmetic2d 1 00 11
40 com test Obsenvablelnteger cam test PlayingStatus 1 00 10
41 com test Obsevablelnteger cam test Draggingimage 5 00 10
47 com test Obsenvablelnteger com test Type 1 0l 10
43 com test Obsenvablelnteger cam test SoundLoader 1 00 11
44 com test Obsenvablelnteger cam fest CardSlat 1 00 10
45 com test Obsevablelnteger cam test DraggingSiat 4 00 10 .

.
38
leyan

o B Rl

Research study by Shivani Budhkar 116




Extraction of connector classes from object oridrsgstem while recovering Software architecture

file Edit View History Bookmarks Tools Help

o —

rC X a0

fileC:/Users/my/Desktap/o_chat L.l

'

2 Most Visted | Getting Stated 3 Latest Headlines

| el ClUsem. ol it bt

d

44 com fest Cbsenablelntager
45 com.test Obsenvablelnteger
46 comtest bsenablelntager
A7 comtest Cbsenablelntager
48 comtest Cbsenablelntager
49 comtest Cbsenablelntager
50 com st Obsenzblelntager
51 com test Obsenablelnteger
52 com test Obsenablelnteger
53 com test Obsenablelnteger

54 com test Obsenablelnteger

55 com test SynchronizedVector

i
i
f
]

60 com test SynchronizedVector
61 com test SynchronizedVector
62 com test SynchronizedVector
63 com test SynchronizedVector
64 com test. SynchronizedVector
63 com test SynchronizedVector
5 com test SynchronizedVector
67 com test SynchronizedVector

68 com test SynchronizedVector

Ll nmen band Coimeheanizndllontar

54 com test SynchronizedVector
com.test SynchronizedVector
58 com test SynchronizedVector

59 com test SynchronizedVector

cam fest CardSlot
com et Dragginglot
cam fest SoundList
cam fest CardDeck
camfest Clock

cam fest OperatorSiat
comfest.Card
camfest Operator
camtest Saltian

cam test Expression
cam fest NlegalExpressionExcaption
com et Arthmefic24
cam tast PlayingStatus
cam fest Dragginglmage
camtest Type
camfest SoundLoader
camtest CardSlot

cam fast DraggingSlot
camtest SoundList
cam fest CardDack
camigst.Clack

cam fest OperatorSt
camtest Card
camfest Operator

comfast Solution

anm bnat Cirnranainn

5606566

T et e | e et | | | et | et it | = | = = = | == == = | = | =

o 8l

H |
3
1602/

Research study by Shivani Budhkar

117



Extraction of connector classes from object oridrsgstem while recovering Software architecture

o —

file Edit View History Bookmarks Tools Help

c Q fileC:/Users/my/Desktap/o_chat L.l

fj ' "" Google P

2 Most Visted | Getting Stated 3 Latest Headlines

0 fe s Kopl et ol

68 com test SynchronizedVector
69 com test SynchronizedVector
0 comtest. 3ynchronzadVectar
T1 com test Arthmetic2d

72 com test Arthmetic2d

T3 com test Arthmetic2d

T4 com test Arthmetic2d

75 com test Arthmetic2d

75 com test Arthmetic2d
T7 com test Arthmetic2d
T8 com test Arthmetic2d
79 com test Arthmetic24
80 com test Arthmetic24
§1 com test Arthmetic24
82 com test Anthmetic2d
83 com test Arthmetic24
84 com test Arthmetic24
85 com test Arthmetic24
80 com test PlayingStatus
87 com test PlayingStatus
89 com test PlayingStatus
89 com fest PlayingStatus
50 com test PlayingStatus
51 com test PlayingStatus

camtest Salutian

cam test Expression
com test llegelExpressiontxception
cam fest PlayingStatus
cam fest Dragginglmage
camfest Type

cam fest SoundLoader
camfest CardSlot

cam fest DraggingSlot
camfest SoundList
cam fest CardDeck
camtest Clock
camfest OpsratorSat
camtest Card

cam fest Operator
camtest Saltion
comfest Expression
cam tast NlegalExpressionExcepion
cam fest Draggingimage
camtast Type

com fest SoundLoader
cam fest CardSlot

cam fast DraggingSlot
camtest SoundList
cam fest CardDeck

T e S e T — T R S A R T

52 com test PlayingStatus

H |
M
1602/

s REDG

Research study by Shivani Budhkar

118



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Fle Edit View Hitory Bookmarks Tooks Help

o —

c Q file11Cf Users/my/Desktopo_chat 1 html e '.l' Google /0‘

P Most Visited | | Geting Sarted 5y Latest Headlines

| Bl gt Lin

41 com test Playingstatus com fest SoundList Z 00 10 A
92 com fast PlayingStatus cam test CardDeck ? 10 05

93 com fast PlayingStatus cam test Clack 1 0l 11

94 com fast PlayingStatus cam fest OperatarSlot 1 00 10

95 com fast PlayingStatus cam fest Card ] 10 (6666666

95 com fast PlayingStatus cam fest Operatar ? 10 05

97 com fast PlayingStatus cam fest Salution 1 0l 11

95 com et PlayingStatus cam fest Expression 1 00 10

99 com fast PlayingStatus cam test IlegalExpressionExcaption 1 0l 11

100 com.test Draggngimage cam test Type 5 00 10

101 com test Draggngimage cam fest SoundLoader 5 0l 11

102 com test Draggngimage cam fest CardSlat 5 00 10

13 com test Draggingimage cam test DraggingSat 5 10 08

114 com.test Draggingimage cam test SoundList 5 00 11 £
05 com test Draggngimage cam test CardDeck 5 1 03

106 com test Draggngimage com test Clack h 00 11

07 com test Draggingimage cam test OperatorSlo 5 00 10

15 com.test Draggingimage cam fest Card 5 20 06

05 com test Draggngimage cam fest Operatar 5 1 08

110 com-test Draggingimage com test Solution h 00 11

11" com fest Draggingimage com test Expression i 00 10

112 com.test Draggingimage cam test IlegalExpressionException 5 00 11

13 com test Type cam fest SoundLoader ( Ol 10

114 com test Type com fest CardSlat ( 00 11

115 com test Type cam test DraggingSat 4 00 10

45 romfact Tung s et Sl et ) i 10 Y

-
J40PM
Ll

o B Rl

Research study by Shivani Budhkar 119



Extraction of connector classes from object oridrsgstem while recovering Software architecture

File Edm History Bookmarks Tools Help

{ —' c Q || flefH/C Users/my/Desktop/o_chet L html v "l' Google A

2 Most Visted || Getting Started - Latest Headlines

| . kogo o Ll |
115 com fest Type com fest DraggingSlat 4 00 11
116 com fest Type com fest SoundList 2 00 10
117 com test Type com test CarDack 2 00 1
116 comfest Type com test Clock 1 00 10
119 com fest Type com fest OperatorSiot 0 00 11
120 com fest Type comfest Card ] 00 10
121 com fest Type com test Operator 2 00 11
122 com fest Type com fest Solution 0 00 10
173 comfest Type com fest Expression 0 00 11
124 com fest Type com fest llegalExpressionException 0 00 10
125 comtest SoundLoader com test CardSlot 0 00 1
126 com test SoundLoadsr comfest DraggingSlat 4 ) 10
127 comtest SoundLoader com test SoundList 2 00 1
128 com test SoundLoader com test CardDack 2 00 10
125 com test SoundLoader com st Clock 1 00 10
130 com test SoundLoadsr comfest OperatorSiot 0 00 10
131 comtest SoundLoader com test Card ] 00 1
132 com test SoundLoader com fest Operator 2 00 10
173 com test SoundLoader com test. Soluton 0 00 10
13 com test SoundLoadsr com fest Expression 0 il 10
135 com fest SoundLoader com test NlegalExpressionException 0 00 11
126 com test CardSlet com fest DraggingSlat 4 00 10
137 com test CardSlt com test SoundList 2 00 10
136 com test CandSlot com-test CarcDack 2 00 1
139 com test CardSlt com st Clock 1 00 1

W |
o

ST

Research study by Shivani Budhkar 120



Extraction of connector classes from object oridrsgstem while recovering Software architecture

File Edm History Bookmarks Tools Help

{ —' c Q || flefH/C Users/my/Desktop/o_chet L html v "l' Google A

2 Most Visted || Getting Started - Latest Headlines

|0 e sl et L |
13 COMTEsT Lot COMTBST LaTaLEeK z 0 0
139 com test CardSlot com st Clock 1 00 1
140 com test CardSlot com fast Operatordiot 0 00 10
11 com test CardSlot com test Card i 00 1
142 com fest CardSlot com test Operator 2 00 10
143 com test CardSlot com test Soluton 0 00 1
144 com fest CardSlot com fest Expression 0 00 10
145 com fest CardSlot com fest egalExpressionException 0 00 11
146 comtest DraggingSlot comfest SoundList 4 00 10
14T camfest DraggingSlot com test CaraDeck 4 11 075
145 com.test Draggingslot cam fast Clock 4 00 10
149 comtest DraggingSlot comfast Operatordlot 4 00 10
150 com test DraggingSlt comfest Card 4 20 05
159 comtest DraggingSlot com fest Operator 4 20 05
152 com test DraggingSiot com fast Solution 4 00 10
153 com test DraggingSlt com fest Expression 4 00 10
154 com test DraggingSlt com test NegalExpressionException 4 00 11
155 com test SoundList comfast CardDack 2 i 10
156 comtest SoundList com st Clock 2 1 05
157 com fest SoundList com fest Operatordiot 2 00 10
158 com test SoundList com et Card ] 00 11
159 com fest SoundList com fest Operator 2 00 10
160 comtest SoundList com st Soluton 2 00 1
161 com test. SoundList cam et Expression 2 00 11
162 comfest SoundList com test NegalExpressionException 2 00 10
163 com test Camleck eam test Clock ? (i 10

W |
o

SR

Research study by Shivani Budhkar 121



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued

3) Mol Firefox

Fle Edit View Hitory Bookmarks Tools Help

i —

c Q filey{/C:/Users/my Desktap/o_chat L html

W-

!"." Google

2 MostVisted || Getfing Started 1 Latest Headlines

| | el il it Lin |+

1
1
1
1
1
1
1

62 com-test SoundList
b
b
b
b
i
b
1
T
T
T
T
T
T
T

comfast CardDeck
com et CardDeck
com fest CardDeck
com et CardDeck

comtest CardDeck

com et CardDeck
1
1
1
1
i
"
1

AT comtest OperatorSht

!

{

i

h

b

7

§ comiest CardDeck
:

0 comiest Clack

1 comtest Clock

2 com.tast Clock

3 comiast Clack

4 comfast Clock
com test Clock

:
& comiast Opertardlot
T

178 comtest OperatorSht
179 com st OperatorSht
180 comtest Operatordlot
181 comest Card
1
18
1
{
i

185 com test Operatar

comizst Card

i

]

[

1

7 comtest.Card
3

4 comest Card
h
b

186 com.tast Operator

cam fest llegalExpressionException
com fest Clock

comfest Operetardlot

cam test Card

comfest Operator

camfest Solution

cam fest Expression

comfest llegalExpressionExcaption
camfest OperetarSlot

cam test Card

camfest Operator

camtest Salution

comfest Expression

camfest llegalExpressionExcaption
camfest Card

com fest Operator

camfest Solution

camfest Expression

comfest legalExpressionExcaption
camfest Operator

cam fest Soltion

comfest Expression

camfest legalExpressionExcaption
com test Soluton

comfest Expression

[ e I I T T e S e e )

| o e | R et | erdma | ok e | pa s S e e | = = | = | = |2 == = = | =

B665565

666656

<l

I

)]
1o

Research study by Shiva

ni Budhkar

122




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued.......

3) MoilaFrefox
Fle Edit View Hitory Bookmarks Tools Help
F e V
r c ﬁ | TG sers/my/Desktop/o_chat Lt - !'." Google P‘

2 Most Visted | Gefting Started 1 Latest Headlines

| fellsesmn.kogo e i+

176 com test OperatarSlot cam fest Card ] 00 10 i
1T com test OperatarSlot cam fest Operator ! 00 10
178 com test OperatarSlot cam fest Salution 0 00 10
179 com test OperatarSlot cam fest Expression 0 00 10
180 com test OperatarSlot cam fest llegalExpressionException 0 00 10
181 comtest Card cam fest Operator ] 10 (. 6666666
182 comest Card com test Soluton ] 0 1
183 com test Card cam fest Expression ] 00 10
164 com test Card cam fest llegalExpressionException ] 00 10
185 com test Operatar cam fest Saltion ! 00 10
186 com test Operatar cam fest Expression ! 00 10
187 com test Operatar cam test llegalExpressionException ! 00 1
168 com test Salutian cam fest Expression 0 00 gl
185 comfest Solution cam test llegalEupressionException 0 0l 10
190 com fest Expression cam fest llegalExpressionException 0 00 1"
CLUSTER LEVEL1
CLUSTER
| | | [ \ \
com test PlayingStatus com test rangingimage | comtestCard | comlestDiagginghves | comtest Soundlist|  comtest SynchronizedVector £m—
| | | | | | | | —
Cluster cluster tluster : luster Cluster Clustar ) Cluster
'1::com.test.CardDeckl 1:com st Card 1::cum.test.0peraturl Lol 3:comest Operator | 4:comtest raggingimage | | -comtst Clck SR ?::com.test.Cau‘:
0 B | P

Done

1 -y 33 |
w0y
@ RERY )

Research study by Shivani Budhkar 123



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued.......

) Mozila Firefor
Fle Edit View Hitory Bookmars Tools Help
Frs —
c Q file 1y Users/my/Desktopo_chat 2 tml W "" Google P‘
2 Most Viited | Getting Started 3 Latest Headlines
| el ol ot 2t ]
14 [com test Card, com fest Draggingimage] [com test Card, com fest Operator, com test DraggingSla] 3 10 0 6666660 s
‘ [com fest SoundList, com test Clock,
15 [com test Card, com fest Draggingimage] AR —— ] 00 10
16 [comtest Operator, com test Card] com test Dragoinglmage, com tast DraggingArea] 2 00 10
AT [com test Operator, comtest Card] [com test Clack, com test SoundLis] 2 00 10
15 [comtest Operator, com.test Card] [com fest Card, com fest SynchronizedVector 2 10 05
19 [com test Operator, comtest Card] [com test Card, com fest Operator, com test CardDeck] 3 20 0333333
20 [com test Operator, com test Card] [com test Card, com fest Operator, com test OraggingSlot] 3 20 03333333
21 [com test Operator, com fest Card] comtestSourdist,an s Chck ] 00 10
com fest ScoreKeps]
27 [com test Draggingmage, com.test DraggingAres] [com test Clack, com test SoundList] 2 00 10 0
23 [com test Draggingmage, com test DraggingAres] [com test Card, com test SynchranizedVactar] 2 00 10
24 [com test Draggingimage, cam test DraggingAveg] [com test Card, com fest Operator, com test CardDeck] 3 0f 10
25 [com test Draggingimage, com fest DraggingAveg] [com test Card, com fest Operator, com test OraggingSlt] 3 00 10

26 [com test Draggingimage, cam test Dragging/vea] CCUU;] teessttgct;ﬁgf(gsg;]um.testClock, ] 0l 10

27 Jcom st Clock, com test SoundList] [com fest Card, com fest SynchronizedVector 2 00 10
28 [com test Clock, com test SoundList] [com test Card, com fest Operator, com test CardDeck] 3 0f 10
29 Tcom st Clock, com test SoundLisf] [comfest Card, camfest Operstor, com test DraggingSlet] 3 00 10

[com test SoundList, com test Clock, &

30 [com test Clock, com test SoundList] oo Seooae] ] 20 0333333
31 [comtest Card, com fest SynchronizedVector] [com test Card, com fest Operator, com test CardDeck] 3 1 { 6666566
37 [comtest Card, com fest SynchronizedVector] [com test Card, com fest Operator, com test DraggingSlaf] 3 1 06666660

32 [comfest Card, com fest SynchronizedVector] Eﬂiﬂgﬁ:ﬂg;g;]ommuMk‘ 1 00 10

34 [comtest Card, comfest Cperator, com fest CaraDeck] [com test Card, com fest Operator, com test DraggingSla] 3 20 0333333
[

T TN ;S L com.test SoundList, com test Clack, ; i i
{ 1 | }

"
5
1602201

KDk

Research study by Shivani Budhkar 124




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Fle Edit View History Bookmarks Took Help

o —

) Most Visted | |

'CX Al

fle 1/C:/\sers/my/Deskdopfo_chat 2 ftml

W

!’" Google

(etting Started 3 Latest Headlines

J el Kopo t b

28 [com fest Clock, com fest SoundList] [com test Card, com test Operater, com fest Cardleck] 3 il 10
29 com fest Clock, com fest SoundList] [com test Card, com test Operator, cam test DraggngSlet] 3 Ol 11
3 famtes ok contes Sl MBI B ) : 2 L
com test ScoreKeape]
31" [com test Card, comtest. SynchronizedVactor] (com test Card, com test Operater, com fest Cardleck] 3 11 (. 6666666
32 [com test Card, comtest. Synchronizedactor] [com test Card, com test Operator, cam test DraggngSlet] 3 10 (. 6666666
33 [com test Card, comtest. SynchronizedVactor] romestSomdls com st Cloc 1 Ol 11
com test ScoreKeape]
34 [com test Card, comtest Operator, com test CardDeck] [com test Card, com test Operator, cam test DraggngSlet] 3 20 0333333
39 [com test Card, comtest Operator, com test CardDeck] romestSomdls com st Cloc 1 Ol 11
com test ScoreKeape]
. [com test SoundList, com fest Clack,
30" [com test Card, comtest Operator, cam test DraggingSlof] comtet S 1 Ol 10
CLUSTER LEVEL?
CLUSTER
| \ I
comtest Operatar, R et com et Card,
comtest Card] Gy s com test SynchronizedVect]
e com et Cardleck] -
e .
[ | | [ | [ |
clster Clstar Clster cluster Cluster o il
closter 1:fcomtest Card, | f:fcomtest Card, | fcomtestCard, | 2:fcomiestCard, | 3:{comiest Card 3: [com test Card, oot ptt | oot Drggngne
com.test SynchronizedVector | comifest Operalor, | comtest Operator, | comitest Operator, | comiest Operstor, comtest Operator, | com.test.Cird] ! "cum t.est Dra g?ng%reaf'
com st CaraDeck] | com fest DraggingSiat] | comtast DraggingSlat] | - com fest CaraDeck] comest reggingsio] S i

o Rl

—
J46PM
160272012

Research study by Shivani Budhkar

125




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued.......

Cluster level 3

e

file Edit View Hitory Bookmarks Tooks Help

v c Q | fileeff/Cyf Users/my Desktop/o_chat 3 html
2 MostVisted | Getting Sterted - Latest Headlines

| el kopo ot 3|

DISTANCE TABLE

Source Class Name

([com fast Card, com.test SynchronizedVector], [com test Card,

1 comfast Operator, com.test CardDeck] [com.test Card, com test Operator

com st DraggingSlot], com test Operator, comtest Card]]

([corfest Card, com test SynchronizedVector], [oom fest Card,

7 com test Operator, com test CardDeck], [comtast. Card, com test Operatar,

com fest.DraggingSlot], com est Operator, com test Card]]

([con test Card, com.test SynchronizedVector], [com fest.Card,

3 com test Operator, comtest CardDack], [com test Card, com test Operatar,

com{ast DraggingSlot], com test Operator, com test Card]]

([com.test Card, com test SynchranizedVector], [com fest Card,

4 comtest Operator, comtest CardDeck], [com.test Card, com test Operator,

com {est DraggingSlot], com.test Operator, com.test Card]]
([com test Card, com test SynchronizedVector], [com fest.Card,

5 com.test Operatar, comtest CardDeck], [com test.Card, com fest Operatar,

comtest Dragging3lot], cam fest Operator, com test Card]]

0 ([comtest Card, com test Operatar, com test DraggingSlof], comtest Card,
com{est Operator, com test CardDeck]]

- (lcomest Card, com.test Operaor, com fest DraggingSio], com.test Card,
 com st Operator, com.test CardDeck]]

([camfest Card, com test Operatar, cam test DraggingSlof], comtest. Card,
eom st Oneratnr_ram test CardNackl]

Destination Class Name

([cam fest. Card, com test Operatar, com test DraggingSlof], com test Card,
com.test Operator, comfast CardDeck]]

([com test. Card, com test Operetor, com test CardDack], [oomtest Card,
com fest Operator, com test DraggingSiat], com test Card,
com fest SynchranizedVactor]

([com test. Operator, comtest Card], [cam {est Dragginglmage,

com fest DraggingAves], [com fest Card, com test SynchronizedVectar],
[comtest. Card, com fest. Operator, com test CarDeck], [com.test Card,
com{est Operator, com.test DraggingSlat], com test Card,

comlest Draggngimage]]

([com test SoundList, com test Clock, com test Scorekeeper], com.test Clock,
com st SoundList]

([com test Operator, com.test Car, [com fest Card, com test Operatar,
comlest CardDeck], [com.test Card, com fest Operator, comtest DraggingSiat]
com fest CardDeck, com test Card, com test Operator, comtest PlayingStatus])

([con test. Card, com test Operator, com test CardDeck], [oom test Card,
comfest Operator, com.test DraggingSlt], com test Card,
com{est SynchronizedVector]

([com test. Operator, com.test Card], [cam fest Dragginglmage,

com fest DraggingArea), com test Card, com test SynchronizedVector],
[com.test Card, com test Opzrator, com test CardDeck], [com test Card,
comlest Operator, com.test DraggingSlt], com test Card,

comlest Draggngimage]]

[[com fest. SoundList, com.test Clock, com test ScareKeeper], comtest Clack,
enm test Saund ist1l

Union
Count

4

f

4

4

b

l

4

] ]

[ntersection Distance=1-
Count (Intersection/Union)

1 s j
A 05

30 05

00 10

20 04

10 06666606

10 0833333

00 10 o

Dane

o AR

W |

102012

Research study by Shivani Budhkar

126




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Fle Edt View Higtory Bookmarks Tools Help

o —

o (X AL el UseslmyDeskoplo cht Mhtml

) Most Viited | | Geting Stated 3 Latest Headlnes

| el il it 3nl ¢

([com.test Card, comfest Operator, com tast DraggingSlot], com test Card
com test Operator, com test CaraDack]

([com.test Card, com fest Operator, com tast Dragging3lot], com test Card
com test Oparator, com test CaraDeck]

([com.test.Card, com fest Operator, com fest CardDeck], [comtest Card,
‘0 comtest Operatar, com.test DraggingSiat], com fest Card,
com test SynchronizedVector]

([com.test Card, comfest Operator, com fast CardDack], [comtest Card,
1 com test Oparator, comtest DraggingSlat], com test Card,
com test SynchranizedVector]

([com.tast.Card, comfest Operator, com tast CardDeck], [com test Card,
2 comtest Oparator, com.test DraggingSlat], com fest Card,
com fest SynchronizedVector]

([com.tast Operatar, com test Card], [com test Dragginglmage,

com test DragoingArea], [com fest Cand, com.test SynchronizedVectr),
3 [com test Card, comtast Operetar, com test CardDeck], [com test Card,

com test. Operatar, com.test DraggingSlat], com fest Card,

com test Dragging mage]]

([com.test. Operatar, com.test Card], [com st Dragginglmage,

com test DraggingArea], [com test Cand, com.test SynchranizedVector),
U [com test Card, comtest Operetar, com.test CardDeck], [comtest Card,

com test Operator, com test DraggingSlot], com test Card,

com test Dragging mage]]

([com.test SoundList, com.test Clack, com.test Scoreraaper], com et Clock.

com test SoundList]

CLUSTER LEVEL3

bt i 1

([com.test SoundList, com.test Clack, comtest Scorekezper], com fest Clock,
com test SoundList]

([com.test Operatar, com test Card], [com fest Card, com test Operator,
comtest CardDeck], [com test Card, comtest Oprator, com fest DiaggingSlot],
comtest CardDeck, com.test Card, cam fast Operator, com fest PlayingStatus])

([com.test Operatar, com test Card], [com test Dragginglmage,

com test Draggingérez], [com test.Cand, com.test SynchranizedVectr),
[comfest Card, com-test Operatar, com test CardDeck], [com test Card,
comtest Operator, com test DraggingSlot], com test Card,

com test DraggingImage]]

([com.test SoundList, comtest Clack, comtest Scorekezper], com fest Clock,
com test SoundList]

([com.test Operatar, com test Card], [com test Card, com test Operator,
com test CardDck], [com test.Card, com.test Operator, com test DraggingSla],
com test CardDeck, com test.Card, com test Operator, com fest PlayingStatus]

([com.test SoundList, com.test Clock, comtest ScorsKeaper], comfest Clock,
com test SoundList]

([comtast Operatar, com test Card], [com fest Card, com test Operator,
com test CardDeck], [com test Card, com.test Operator, com test DraggingSl],
com test CardDeck, com et Card, com test Operator, com fest PlayingStatus]

([com.test Operatar, com test Card], [com fest Card, com test Operator
com test CardDeck], [com test Card, com.test Operator, com test DraggingSlt],
com test CardDeck, com fest Card, com test Operator, com fest PlayingStatus]

4

§

[y

=5

0. §e66660

A

At

=
T4EPM
16022012

Research study by Shivani Budhkar

127




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued.......

) orila Firefor
Fle Edit View History Bookmarks Tooks Help

o —

s XA L el sesmyDeskoplo et

!"" Gaogle

W

P Most Visied | | Getting Started 5 Latest Headlines

| Gl ot 3t |

com-test Operstor, com fest DraggingSlat], com fest Card,
com test Draggingmage||

([com fest SaunList, cam test.Clock, com fast Scorekeaper], comas Clock,

cam test CardDeck, com test Card, com test Operatar, comtest PlayingStatus]]

([com fest Operator, com test Card), [com test Card, com.test Operstor,

comlestSomdls] com st CardDeck], com test Card, com test Operator, com test DraggingSlet], 4 00 ll
- cam test CardDeck, com test Card, cam test Operatar, comtest PlayingStatus]]
CLUSTER
\
com st Card,
com test Operatar, comlestCa
com test DraggingSlet], - tést O erat’or com test Card, com fest Operatar,
com test Card, AL el com-test SynchronizedVector] comtest Card]
com test CardDeck]
com test Operatar,
com fest CardDeck]]
o o
\ | | |
cluster 2:][com st Operatar, e luster 3:[com fast Oparator, i .
comiest Card), " comest Card), ! i} r
: 2 com fest Operator, , 3:{[com test Operatar, | 4:[[com fest Operator,
[com test Draggingimage, [com test Draggingimage,
] ) comest Card], v ‘ com test Card], com et Card],
cluster 1-][com fest Card, com test Dragginghreal, cluster 3:{[com test Card, com test DraggngAre],
[cam test Card [com test Card [com test Card
com test Operatar, [com test Card, o cam test Operatar, [com test Card, P o
; com test Operator, ‘ cam test Operatar, com test Operatar,
com fest CardDeck], cam test SynchronizedVector], com test CardDeck], com.test SynchronizedVector,
com test CardDeck], comtest CardDeck], | com.test CardDeck],
[com.test Card, [com.test Card, [com test Card, [com test Card,
[cam test Card, [com test Card, [comtest.Cad, ||,
com test Operatar, com test Operato, cam test Operatar, cam test Operalar, E
; com test Operator, ‘ cam test Operatar, com test Operatar,
com test DraggingSlet], com test Cardleck], ‘ com test Dragginglot], com test CardDeck], ‘ ‘
com test Draggng3lot], comtest Draggng3lot], | com test DraggingSlot],
com st Card, [com test Card, com st Card, [com test Card,
‘ com.test CardDeck, : com.test CardDeck, oom st CardDeck,
cam test.SynchanizedVactor com et Operator, st Ca comtest SynchronizedVector] com test. Operatar, comlestCat comlestCa
com test Draggng3lot], e com test DraggingSlot], e P
com test Operator, cam test Operatar, com fest Operatar,
e com-test PlayingStatus] il com fest PlayingStatus]] | - com test PlayingStatus]
com test Dragoingmage] TG com test Draggngimage] g g -

=
348 M

NG
g ey

Research study by Shivani Budhkar

128




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued.......

Cluster level 4

File Edt View History Bookmarks Took: Help

o —

o G el ey Desktopio_chat 4t T

"l' Google }3‘

P MostVisited | Getting Started - Latest Headlines

i el ol it Al |

DISTANCE TABLE

Union  Intersection Distance =1 -

Source Class Name Destination Class Name Comt | Cont | (iseconlinon)

m

([fcom.test Operator, com.test Card], [com test Dragging mage,

com{est DraggingAvea), [cam test Card, com test SynchronizedVector),
([[com.test.Card, com.test Operatar, com test CardDeck], [com test Card, [com.test.Card, com test Operatar, com test CardDeck], [com test Card,
oom et Operator, com test DraggingSlot], com test Card, oom et Operator, com test DraggingSlot], com test Card, 0 T
com st SynchronizedVectar]], com test Card, com test Operator, com st DraggingImage]], [com test Cperator, com test Card], [com test Card, '
comtast DraggingSlot], com.test Card, com.test Operator, com test CardDeck]]]  com.test Operator, com.test CaraDack], [com test Card, comtest Operator,
fost.
fest

com{est DraggingSlot], com fest CardDeck, com test Card, com test Operator,
com{est PlayingStatus]], com st Card, com.test Operatar, com test CandDeck])

([[com.test. Card, com test Operatar, com test CardDack], [com test Card,

com fest Operatar, com test DraggingSlot], com test Card,

com {est SynchronizedVectar]), [jcom.test Operator, com test Card),

[com.test Draggingimage, com.test Draggingrea), [com fest.Card,

com {est SynchronizedVector] [com test Card, com test Cperator,

com fest CardDeck] [com test Card, comtest Operator, com test DraggingSlot], 4 10 075
com fest Card, com test Dragginglmage]] [[com test Operator, com test Card]
[com.test Card, com test Operator, com fest CardDeck], [com test Card,

com test Operatar, com test DraggingSlot], com test CardDeck, com.test Card,
com {est Operatar, com test PlayingStatus], com fest Card,

com fest SynchranizedVector]

([lcom.test. Card, com test Operator, com test CardDeck], [com test Card,

com {est Operator, com test DraggingSlot], com test Card,

com fest SynchronizedVector], com test Card, cam test Cperatar,

com fest DraggingSlat], com.test Card, comfest Operator, comtest CardDeck]]

([[comtest Card, com.test Operatar, com test CardDack], [com test Card, ([lcom.test. Operator, com.test Card], [com test.Card, com test Operator,
com fest Operator, com test DraggingSlot], com test Card, com {ast CardDeck], [com test Card, com test Operator, com.tast DraggingSlot], 0 T
com test SynchronizedVector], com test Card, cam test Operatar, com test CardDeck, com.test Card, com {esf. Operator, com fest PlayingStatus]] '

com test DiaggingSlat], com.test Card, com test Operator, com test CardDeck]]|  com.test Operator, com test Card]

(licom.test. Card, com test Operatar, com.test CardDeck], [com test Card,

com.test Operatar, com test DraggingSlot], com test Card,

com{ast SynchronizedVectar]], [jcom.test Operater, com test Card],

[com.test Draggingmage, com.test DraggingArea), [com test.Card,

com test SynchronizedVector], [com test Card, com test Operatar, v

([[com.test Operater, comtest Car], [com test Draggingimage,
com.test DraggingAreal, [com test Cand, com test SynchronizedVectar]
[com.test Card, com test Operator, com {est CaraDeck], [com test Card,
—rm et narater ram tect DeanminaSlnt] om tact Card
Done

W |

L
RAD% o

Research study by Shivani Budhkar 129



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.3 continued.......

e ot View History Bookmerks Tools Help

F —

o (0O el ey Desoplocit b

W

£ MostVisted | Gelting Started ) Latest Headines

|0 Bl Cen g gt Al

com, ES[.Dfﬂgg\ﬂ@qu, cam fest Card, COm.[ES[.S‘{HC IDH\ZEWEC[DFJ,

[comfest Card, com fest Operatar, camSest CardDeck], [com st Card,
comtest Operatr, comtest DraggingSit], cam et Card

comtest Oraggingimage], lcom test Operstor, com test Card], com test Car,
comtest Operatr, comtest CarDeck], comtest Card, cam st Cperater,
comtest OraggingSat], cam est CardDeck, com test Card, comtest Operatar
comtest Plyingatatus], com test Card, com est Cperater, cam st CardDeck]

(lcom.test Qnerator, com.test Car],[com test Draggingimage,
comest OraggingAvea], comfest Card, com st SynchronizedVectar],
[comtest Card, com fest Operatr, comSest CardDeck], [com st Card,

. comiest Qparetor, camest raggngSle], com test Card
comtest Oragginglmage], lcom test Operator, com test Cand], com test Car,
comtest Operatr, comtest CadDeck], comtest Card, com st Operater,
comtest OraggingShat], cam fest CardDeck, com test Card, comfest Operetr,
com st PlayingStatus] com test Cand,comfest Operator, comfest CardDeck]

(lcom test Card, comtest Operatar,comtest CardDeck], com test Card,
com test Oparetor, com.test DraggingSict, com test Card,

com.test SynchronizedVecta], [com test Operator, com fest Card],
[com test Draggingimage, comtest Diaggingbees], [cam et Card,

com test SynchronizedVecta] comtest Card, cam fest Operator,

6 com.test CardDeck],[com test Card, comtest Operatar,com fest DraggingSlf]
com.test Card, com test Oraggingimage]] fcom st Oparator, com et Card),
[comtest Card, comfest Operatr, camest CardDeck], [com est Card,
comtest Operelor, com test DraggingSlot], com fest CardDeck, com test Card
com st Operetor, com.test PayimgStatus], com fest Card
com st SynchronizedVector]

CLUSTER LEVEL

[com fest Dragginglmage, comtest raggingdves],[com test Card

com test SynchronizedVector [com est Card, com test Operator,

com test CareDeck], Jcomfest Card, comest Operator com st DraggingSlet], 4 pAl
com test Card, comtest Draggingmage], [comtest Operatr, com fest Card]

(com test Card. com est Qperator com st CardDeck], [com st Card

com test Operator,com test DraguingSlat], com st CardDeck, comtest Card

comtest Operator,com Sest PlayingStatus])], comtest Card,

com test SynchronizedVector

([com.test Operator, comatest Car], [com test Card, comfest Operatr,

com test CareDeck], Jcomfest Card, com st Operator, com test DraggingSict],
comtest CarcDack, com est Card, comtest Oneraor, comtest PlyingStetus]
comfest Operetr,com fest Card]

(com test Operator, comtest Care], com test Card, comfest Operatr,

com test Careleck], comtest Card, com fest Qpwratr, com fest DraggingSle],
com test Careleck, comtest Cane, com st Operator, com st PlayingStats],
com test Operator, com test Card]

CLUSTER

!'.l' (Google

U
h.

g BN
Rt §

A
2/

Research study by Shivani Budhkar 130



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.4 : Cluster levels created for ‘Arithmeti24’ game

CLUSTER LEVEL 0

HHMI L-ult.l-ll |l-1|iml n-'llml n-ut-:ll uum!'mubml ﬂuml mﬂm}muwm

| om vt gl vt g | st vt | o il | o 4 Coanatas | om e Pt | o e e | 1 2 it | (3 0 Sk | o e S s

CLUSTER LEVEL 1

an o P

auvste I

tom ot Drgpgen | commmComt | oo Dgpegons | e vow St | gom et Sysssemnadimns |

1.-u'-:-n.J u-“:mJ qm':-u_J "‘""""'"""i }n-.:m-J ﬂnizy 1u::hﬂ e | s Cod I Pemate
s |

o Cragyiens | con o S| com s Syrcremanivue | uuhﬁ:! u--h-np-l un-hﬂ-l-}

r-pq-qll n_“:ml e §: ad O | r-mum] rud:m-] :-::mf Im‘:-ﬂulil m.f.'."".....] oo ot

CLUSTER LEVEL2

|

Oy o e Lot f.
T-Tcm ::E“l‘-l u--::;w
e i ol Ve b - Aale
ot | ot Gl | 0 vt St || 0 o el Ctl T Yo sl Ll 3 fuw o Gt Tpemmulon |, [P T —
L e e e T T v et (e w el Dyt il D E:H o val
o it e 1] | s il Comppegiad! | et et D) | oo il i) o tmel (gl
ol
e vl Caiimih.
o it et o et e bl Ll
Sl T el ek, L bt S
i el Pyl
py S | AR .. 5 awe cpommncon, | 4 pmmater | 4immmnco | o i et Vel 5 oot | ¢ pommatos
pyieey i g 1 el g e ::ﬂ- ::h-— _;:—:u san ot Lol ::h-- ::q—

Research study by Shivani Budhkar

131




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.5: Remaining cluster levels created for ‘Athmetic24’ game

CLUSTER LEVEL}
;
o faid Sl
ot Cpwritin
By Dmeyi Fomrmny Lo B e i
ettt - e
taem buy Lt ] —
o -
2 s ot Opew ) st Coounn | 4 4|
i o bt Cod ﬁ:n-m il Cond P ::w o it e
el Cypman [ m”m rer o b Canl m"m B
e | melie| | DI || CE | metien| S (2
el i
L | e = - R
poremere, 5. ";_.-:_ a--;m _-Iﬂ . ’_‘-“" _H"D#H o
i el G vendi st H-I--:- "-mhmﬁ-ﬂ S| v el _.,,_.'_-h "'“-“mm : -
mw i e o, i el e o
e Cragegrap] by pon e Oggegoaps) | " wl Ao
CLUSTER LEVEL 4

L il s
ot Sl
et | [hivw bewl (il
L el T
o tuet Canlmin,
jroee il Lo
i el (g
1 e
o byl
e Ty bt e
[ v vl gt
v sl L
et I et
o o ! g e Dowww
Jen tanl Cart i el ]
e ) oo vt it
o vewt Lot (g
b [ o el Cimim]
£ el i) Wi it e
h“h?:- m“h#ﬂ
Ll bl G et
r-uhun-wn o el Gl
s o bt Ll
8 el oo e
] e et Dayemginian]
n o o], [ bt L a8 eed Trme
L bl g v ]
et Cielimih],
o onl Lo
v 1 Cipidiie
e

Research study by Shivani Budhkar 132



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.6: Components created for ‘Arithmetic24’ game

COMOTET Compgrent | [RTgndnk] [y
J
b il AdThreDE M
-;':r.r Eie Craggnigrias i I:::l_ll-rﬁ“-'m.
T Drggingimage . : TR )
oo 641 Rt arvisbbean e bl et erm i Expraingn
':::_;“"I I-'.1-|':.-I-"-.1‘.n 0o tisd [rapnes, ot Soondgly) oM eyl Bl e o
e ai L] ot 23] L 1! iy
i rf'-.-.-."':q:f'!"ﬂ:‘!' Y
ot i S ety et Bkt
<om bl Tyga o |

6.3 Module 3: Component evaluation and interface intification.
Objective:
To identify interface details among the componemtd to evaluate components quality

using metrics like size, coupling and cohesion.

Strategy:Using components created in module — 2, componepertency is identified
to show components are interacting with each otfiese interfaces will work as
provided and required interface for the componehich are nothing but the connectors.

These interface details are used to access th#ygolatomponents using quality metrics.

Algorithms implementedWe have implemented the following algorithms —

Algorithm: 5.2.4 Component evaluation using sizdrioe

Algorithm: 5.2.5 Component evaluation using Cougplmetric

Algorithm: 5.2.6 interface details identification

Algorithm: 5.2.7 Component evaluation using cohesieetric are implemented

to get the results from module-3.

Research study by Shivani Budhkar 133



Extraction of connector classes from object oridrsgstem while recovering Software architecture

We have also written and executed some supportimgy@ms to identify interface details

and component evaluation.

Results from module 3

The figure.6.7 shows interface details createdhdese components. Using these details,
interfaces among components can be created. “Tableshow candidate components
created along with respective classes for used stasly “Arithmetic24 Game”. Using
interface details component diagram with depend@snds shown in “fig.6.8 a”.
Components are evaluated for quality using mesize, coupling among components
and cohesion within component and the results amvis in figure 6.7. The first
evaluation metric chosen is the size evaluatiomeraa to show well organized
components with appropriate number of implementatobasses. So using size we
evaluate clustering results. For this metric, sunratios of single class component,
classes in largest component and other intermedagonents should be 100%.i.e. sum
of these should be 1.

Research study by Shivani Budhkar 134



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.7: Components created and interface detalamong components
) e S e WoASpace Copunglporcon
Fle Edt Mavigste Seach Project Run Window Help
02§07 Qe BHG BB A Erfrb b 2 $o0 0
m BilutationCoupling ava i@lR&suftBataStructurejava Mﬂ Conrllrjava ) EAShvanlpse WorkSpace Copulingrepot component h 9h
0§ el i MokSpace oot companentd b B
camponentl companant! component? componentl
[com tast Anthmetic2d, com.test DraggingAvea, com test Draggingimage, [cam test CaraSlat, [com-test Card, com test CardDack, com et Clock,
com{est Obsenallelntager, cam fest PlayingStatus, com {est DraggingSlat, [com test SounList] com test Expression, com test legalExpressionException,

comtest Scoreezper, com test SynchranizedVector, com test Type] camtest SoundLoadsr] com test Operatar, com test OperatarSlot, com st Soluton]
lComponentN ame (]) EComponenﬂ\"ame m ‘Conpl'mg Type ‘ Coupling Details

!componentﬂ lcompoﬂentﬂ ‘composiﬁon ‘comieleraggiﬂgAIeaisapmiofclasscomlest.hﬁhmeﬁd4

lcomponeni{} icomponenﬂ ‘cvmposi&on ‘com.!esi.DraggingAmaisapaﬁof class comtest CardDeck

‘c«.’mponentﬂ 1wmponent0 ‘composi&on ‘com.tesi.DraggmgAreaisapmofdasscom.test.[}raggnglmage

Componz %compoﬂent Icomposiﬁon com.st Draggingmage s a part of class com.test DraggingArea Il
omort)  conpone] D of s com et D

!componenﬂ} }compoueml ‘cvmposiﬁon ‘com.tesi.Dragginghnage'Lsapaﬁof class con.test DragghgSlot

lcoﬂmonent[} }componentﬂ lcomposiﬁon ‘com.ies!.?layi&gﬁtamsisameofclasscom.iest.DTaggﬁlgAfea

!componeni[} }wmponeﬁt{] ‘composiﬁon ‘com.tesi.ScoreKeeperisapm’(of class comfest Aithmetic 24

compongn component compostion  comfest ynchromzedVector s & part of class com test Lar

I i 1 ] i SynchronizedVector is 2 part of cas CardDeck

!componentﬂ lcompoﬂentﬂ Mﬂme ‘comiest.ﬂbservablelﬁtegerisabase of class com test PlayingStatus

componen componen prfance  comfest Ubservablelnteger is & base of class com st Playngtats

comortt)  conponeal e Cbservabltegr's  base of s con et Pl

‘c«.’mponentﬂ 1wmponentl ‘meﬂ}od ‘com.tesi.Draggﬁghnage tses method « publc void com est Drasginglmage centerAt(int i) > of class comtest DhragpmgSlot

lcompoueu!l icompoﬂent() Icomposiﬁon ‘comtes!.DraggingSlotisapaﬂ of class conntest DragghgArea

!componenil }componentﬂ ‘cvmposiﬁon ‘com.tesi.DraggingSlotisapm of class com test Dragginglmage

lcomponenil }componentl ‘iﬂheritance ‘com.iesi.DraggiﬂgSlotisabase of class com test CardSlot v
‘EO Done E&@@ﬁ@a

10ePM |

T
NEQU

Research study by Shivani Budhkar 135



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.7 continued........

v ey ShivaniEciose WorkSpace/Copul

Fle Edt Naigte Sech Project Run Window Help

oA S RS L ¥ASE T-0 4T RURLT AL 5 0 e

m EvalutetionCougling ava |@ ResutDatetructurejave ‘ﬂ_] Contrallerjava ‘L%\ﬁmm 2 =5
0§ e/t Moty Copting et componethiml Y |

compotent) compotenty mnentae  Comtest Ubservatleiteger s  base of lass comtest Faymganis 1

}component{} immnent{} ‘ﬁlheritame ‘comtes!.[)bsewablelulegerisab&seof class com.test PlayingStatus

‘wmponentﬂ ic«:rmpouenil ‘meﬁ}od ‘com.!esi.]}ragginghnage uses method < public void com.test Dragainglmane centerAiintnf) > of class com test DragoingSlot

}wmponen!l icompouen!(} ‘composition ‘cmtes!DraggingS]otisapaﬂ of class comtest DraggipArea

‘componenil }componenﬁ) ‘composih'on ‘mm.tesi.DraggingS}olisapar!of class com test Drageinglmage

‘cm)onenil }compwentl ‘iﬂheritame ‘com.iesi.DTaggﬁlgS]otisabaseof class comtest CardSlot

component componett eitance  comfest Dragangdlot 5 a base of class comtest Lardbiof

onpner] conporet] e DragaeSos  bseof s comtest CadSlo

}coum]eﬂil }componeﬂi[} ‘method ‘com.iesiDraggingS}ot uses method < publc void com test DeasoingSlot AW i com test Dagginotvage) » of clsss com test DrapginaArea

‘m}pmﬂ lcompmen!() ‘composiﬁon ‘comies!.SomdLisl is & part of chass com test Aritmetic 24

}compomﬂ ic«:mmnen!l ‘wmposiﬁon ‘comtes!.Somdlis!isapaﬂof class comntest SoundL oader E

‘c«:rmponenﬂ ic«:rmpouenﬁ ‘composiﬁon ‘com.!est.Cardis ayprt of class com st CardDeck

compoteetd conpore] compostion  contest Card s a part of cass comtest CardSlot

comp compon oo pat

‘componenﬁ }componenﬁ) ‘composih'on ‘com.tesi.CaIdisapm of class com test DhagetgArea

‘cm)onenﬂ }compwenﬁ) ‘composiﬁou ‘com.iest.CaIdDeckisapmf class com test DraggingArea

lccmmnenﬁ }meoneﬁi{} ‘composition ‘com.tesi.Clockisapm of class comfest Arithmetic]4 )

}camponenﬂ }componeﬂi[} ‘composition ‘com.iesi.Operanr isa partof cass comfest Draggingrea

‘m}pmﬂ lconm}en!} ‘composiﬁon ‘comiest.[]peralorisapmofclass com st OperatorSlot

}compomﬁ immnent{} ‘ﬁlheritame ‘comtesi.[)ragginglmageisabaseof class comtest Card

‘c«:rmponenﬂ icvmpouenr[} ‘ﬁ]heritame ‘com.!esi.]}ragginghnage fs & base of class comtest CardDeck

}wmponem} icompouen!(} ‘ﬁ)heritame ‘mmtes!.[}ragginglmage i base of class comtest Cperator

‘componenﬁ }componenil ‘iﬂheritaﬂce ‘mm.tesi.DtaggingS}olisabaseof class com test OperatorSlt m

‘cm)onenﬂ }compwenﬁ) ‘iﬂheritame ‘com.iesiDTagginglmage i base of class com et Card

lmnmonenﬁ }componeﬁt{} ‘ﬁﬂleritmce ‘com.test.]}raggmg]mageisabaseof class comfest CarcDeck s

T e sfeREA

s |
oL

~KEDY

Research study by Shivani Budhkar 136




Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.7 continued........
8) izl e Rl WorSpaceCopding epot componen
Fle Bt Nevigate Seach Project Run Window Help
rj}v ﬁ;va%v @ﬁ@v BE{;' '}v‘lr;v" @v‘v ﬁ?{g[}ebug
m EvalutationCouplingjava |E| ResultDataStructurejava ‘ﬂ] Controllerjava i%\ﬁmm o bl 52 =F
B el i Mo g ot cmpont > B
compogeety componn) mbenance {comtest Unservabeloteger 5 2 Dase of clss com est Paymgbtans R
Icompoﬂenlﬂ iccm)onent{) ‘inheﬁtame ‘comles!.[lbsewablelulegerisabaseof class com.test PleyingStatus
‘wmponentf] iwmpouenil ‘meﬂ}od ‘com.testDragginghnage uses siethod < public void com test Dragpingluage centerAtfint nf) > of lass com test DraggingSlot
Icwmponentl %compoﬂemﬂ ‘composition ‘cvmtest.DraggingSlotisapm’mf class com st DraggzArea
|componentl }compouenrﬁ ‘composiﬁon ‘com.test.Draggﬁmngtisapmiof class comtest Dragetnzlmags
‘componmtl }componentl ‘inhezitance ‘com.tesl.DraggﬁlgS]otisabaseof class com test CardSlot
|cmq)onentl }wmponeﬂil inheritance  comtest DraggingSlotis @ base of class comtest CardSlot
|
Icomonentl }componeniﬂ ‘meﬂmd ‘com.teleraggingSlot uses method < public void com test DrangingSlot AIWitcomm st Drasginglivage) > of class com fest Draggingheea
‘compmmﬂ lconmonemﬂ ‘composiﬁon ‘comtes!.SomdLislisapm of class com test Arihmetic24
!compoﬂmﬂ iccm)onm!l ‘mmposiiion ‘mmlesl.SomdLis!isapaﬂ of class com fest Soundl.oader
‘cmlponenﬂ iwmpouenﬁ ‘mmposﬁon ‘com.tesl.Caxdisapaﬂof Class comtest CardDeck
|cwmp0ﬂent3 %compoﬂeml composttion {com.test Card i a part of class com test CardSlot
| !
‘componenﬁ }compwenrﬂ ‘comosiﬁon ‘com.test.CaJdisapm of cass com fest DraggingArea
‘cm)onenﬂ }component@ ‘meosiﬁon |com.test.Cadeeckisapm1 of class com fest DraggingArea
|c<ymponent3 }wmponeﬂiﬂ compostton (com.test Clock is a part of chass com.test Arthmetic24 i
f =l
Icomponenﬂ }componeﬂiﬂ ‘wmosi!ion ‘com.test.[)peraiorisapaﬁof class comtest DraggigArea
‘wmpmﬂ lcomponeml ‘composition ‘comtest.ﬂperaimisapmof class com st OtperatorSlot
Icompoﬂenﬂ iccm)onentﬂ ‘inheﬁtame ‘comlesi.[)ragginglmage is 2 base of class com test Card
‘wmponenﬂ iwmpouenrﬂ ‘ﬁlhmitance ‘com.test.])ragginghnage is 2 base of class com fest CardDleck
Icmnponenﬂ %componen!ﬁ) ‘inheﬁtame ‘comtest.DraggingImage i 2 base of class com test Oerator
‘componenﬁ }compmnil ‘ﬁlhezitance ‘com.test.Draggﬁ]gS}otisabaseof class com test OperatorShot u
‘cwmenﬁ }compcment@ ‘inhezitance ‘com.tesl.Dragginglmage i 2 base of class comtest Card
|cmq)onent3 }wmponeﬂiﬂ wheritance  {com.test Dragemglmage is 2 base of class com fest Cardlleck
| |
e sflaRaqg

L 1MSM |
F
¢ 1572

n:
iy

Research study by Shivani Budhkar 137



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.7 continued........

8o ESan Elpse WonSpaceCoplingeport

Fle Bt Navigate Search P
rﬁv %vﬂv%v @ﬁ@v @Ef\.‘;ﬁv :Lv‘lr:v“ (bv‘v @%Debug@
U] EvlutatonCouplingava ‘EI ResultDataStructure java |ﬂj Controller ava ‘L%\ﬁmm fis —

0 & el i orSpce Coting gt componrl NI

ot Run Window Help

comporet] icomponeﬂt[} ‘cmposi!iou |com.iest.DraggingS§olisapaﬂ of class com.test Dragginglmage

‘wmpmmtl !componenti Mﬂme ‘amiest.DraggiﬂgSioiisabase of class com test CardSlot

lcompoﬂenti iwmpomtl ‘h}heﬁtance ‘comtest.[)raggings}oiisabaseof class com test CardSlot

‘acmmonentl iwmponent(} ‘meﬁ}od ‘aom.!est.DraggingSlol uses trethod < public void com test DragpingSlot FTWith{com:test Diranpinglmage) > of class com test Draggingrea

lwmpoﬂenﬂ iaomponent(} ‘conmosition ‘c(mltest.SomdLisl is a part of class com st Arithmetic24

‘aomponenﬂ Icomponenll ‘composiﬁon ‘tom.test.SomdL'misapm of class com st SomdL oadzr

‘compoﬂenﬂ !compmzenﬁ ‘conq)osiﬁon ‘com.iest.CaIdisapm of cass com st CardDeck

!wmponenﬂ !wmponeﬂtl ‘composiﬁon ‘com.test.Cardisapm of cass com st CardSlot

lcomponenﬂ Icomponeﬂt[} ‘cvmposi!iou ‘com.iest.CaIdisapm of class com test DragoingArea

‘wu:pmmﬂ !componentﬂ ‘composiﬁm_ ‘amiest.ﬂaxd])eckisapaﬁ of class com.test DragetngArea

lcompoﬂenB iwmpcment{} ‘composﬁiou ‘comlest.Ciockisapm’( of class com st Arithmetic24

‘mponenﬂ iwmponent(} ‘compoﬁon ‘aom.!est.Opﬁaimisapm of class com.test DragetngArea
lwmpoﬂenﬂ iaomponenﬂ ‘conmosition ‘amtest.[)pera!orisapm of class com.test OperatorSlot
‘aomponenﬁ Icompmntﬂ ‘iﬂheritance ‘tom.test.Draggh]gImageisabase of cass com.test Card
‘compoﬂenﬂ !compmzentﬂ ‘iﬂheritance ‘aom.iest.DraggﬁlgImage fs @ base of class com test CardDeck
!wmponenﬂ !wmponeﬂﬂ} ‘hﬁeritmce ‘com.test.DraggingImageisabaseof class comfest Cperator

laomponenﬂ Icomponeﬂtl ‘inheﬁtance ‘com.iest.DraggingSEol is @ base of class com.test CpzratorSlot

‘wu:pmmﬂ !componentﬂ Mﬂme ‘amiest.[)raggiﬂghnageisabase of class com test Card
lcompoﬂenB iwmpcment{} ‘h}heﬁtance ‘comtest.[)ragginglmageisabaseof chass com.test CardDeck

‘mponenﬂ iwmponent(} ‘hlheﬁtaﬂce ‘com.!estDragginghnage'E a bass of class com-test Operator

lwmpoﬂenﬂ iaomponentl ‘hlheﬁtaﬂce ‘amtest.DraggingS]olisabase of class comtest OperatorSlot

‘aomponenﬁ Icompmnﬁ ‘method ‘tom.test.So]mion uses method < public iava ul Vector com test Solution getSohution() » of class com test CardDeck

T e aflakd

1046P
T3/

HEDO

Research study by Shivani Budhkar 138



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.8 a) UML Component Diagram for Arithmetic24 game

Corrpone nid

et Cormponent2
i L

Component3
Camponent

Candidate | Classes

components

Component(Q Arithmetic24,DraggingArea,Dragginglmage,Observaitieger,PlayingStatus

ScoreKeeper,SynchronizedVector, Type

Componentl CardSlot, DraggingSlot,SoundLoader

ComponentZ SoundList

Component3 Card, CardDeck, Clock, Expression, IllegalExpresBixception,
Operator, OperatorSlot, Solution

Table 6.1: Candidate components recovered from Ppmsed approach & tool for
“Arithmetic24” game

Research study by Shivani Budhkar 139



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.8 b) UML Components with interfaces as pdages for Arithmetic24 game
Componentd
R ﬁ-_""---____ Intarface
e FPackaged
Interface "\\
Fadiage1 s T
"y -
i, .
i Interface "
' FadkageZ Component?
.’ R
Component '1
S _| Components
Interfa ce {:""___
FPackagesd

Research study by Shivani Budhkar 140



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.9: Component Evaluation by using Componen®ize, Component Coupling and

Component Cohesion Metrics

Fle Edt Source Refactor Nevigate Search Project Run Window Help

S B0 R BHE B4 PIVED B B g e

Blmwk s k|G HEH 8 o
Controlle [lava Application] C:\Program Files\ ava\jref\bin'javaw.exe (Jun 5, 20129.36:46 PM)
component( having inheritance coupling coupling with componentd : details : com,test,DraggingImage is & base of class com.test,CardDeck E

companent having inheritance coupling coupling with componentd ! details : com.test.DraggingImage is a base of class com.test.(perator

conponentl having inheritance coupling coupling with componentl i details + com.teat.DraggingSlot is a base of class com.test.CardSlot

componentl having inheritance coupling coupling with componentd : details : com.test,DraggingSlot iz 2 base of class com.test.OperatorsSlot

component having inheritance coupling coupling with componentd : details : com.test.Observablelnteger is a base of class com.test.PlayingStatus

conponentd having method coupling coupling with componentd : details : com.test.Solution uses method < public java.util.Vector com.test.Solution.getSolution()
> of class com.test.3olution

component having method coupling coupling with componentl ! details : com,test.DraggingSlot uses method < public void com.test,DraggingSlot,fillWith(com.test,Dzagg
> of class com.test.DraggingSlot

conponent] having method coupling coupling with companentd : details : com.test.DraggingImage uses method < public void com.test.[raggingImage.centerht |int, int)
» of class com,test.DraggingImage

Formala For Evalation

= o Classes in the Component / Total Number of Classes

g/2=104

= Ho Classes in the Component / Total Number of Claages

3/ 20=1015

= fio Classes in the Component / Total Mumber of Classes

1/120=0.05

= o Classes in the Component / Total Mumber of Classes

8/ 20=104

Ratio OF all Component = 1.0

\Coupling among the components

component0 = 2 / 3 = 0.6666666666666666

companentd = 1/ 3 = 0. 6666686665686668

componentl = 1/ 3 = 0,3333333333333333

component2 = 2 / 3 = 0,666666666666666¢

ICohesion within component

companentd = 6/ 10 = 0.6

companentd = 3/ 12 =0.25

componentl = 1/ 4=10.2%

companent? = 0/ 2=10.0

an

[l

K It }

1 sLeBEAE

S42PM

<KEDO

05/06/2012

Research study by Shivani Budhkar 141



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Result Analysis

Figure 6.1 and figure 6.2 shows all the classeeatacted and different coupling tables
are displayed. Result shows most of the classeplaced in proper coupling tables. We
have identifies 20 classes(19 classes & 1 inteyfdmen the given input. We have
compared the result with the class diagram gergratéh the tool Enterprise
Architecture. Initial experimental results from ase study were encouraging. The tool
successfully extracted the classes and identibaplong dependencies and displayed it in

tabular format.

Using cluster levels, components are created forittiketic24 Game. We have
identified four components for the same, as shawfigure 6.6.We have also identified
20 classes of “Arithmetic24” game. We have compahedresult with the class diagram
generated with the tool Enterprise Architecturggué 6.6 shows these 20 classes are

placed in four components by proposed approach.

So from figure 6.7 and “Table 6.1” largest compdeare component0 and component3
consisting of 8 classes each. So Ratio of class&Esgest component0 =8/20 = 40% and
Ratio of classes in largest component3 =8/20 = 4Dére is a single class component,
component2, so Ratio of Single class component=%/%0%6.There is one intermediate
component, componentl, so Ratio of other intermediamponents = 3/20 = 15%. Thus
sum of these three ratios is 100%; it indicategradl classes in the software have been
considered by three ratios. Also Result screen6fj shows evaluation of components
by coupling metric. Coupled component Ratio (CC&)@omponent0 = 0.66, CCR for
Component1=0.33, CCR for Component2=0.66, CCR fan@bonent3=0.66.Again from
result screen “fig.6.9” shows evaluation of compaseby Component Cohesion Metric
(CCM). CCM for Component0=0.6, CCM for Component28) CCM for
Component2=0, CCM for Component3=0.25. “Fig.6.8sdbws dependencies among
components created through proposed tool. Compatep@ndencies must be decreased.

We decrease dependency by managing interfaceamatber package. So using interface

Research study by Shivani Budhkar 142



Extraction of connector classes from object oridrsgstem while recovering Software architecture

package, components with cyclic dependency caretmeved, as shown in “Fig.6.8 b”.
We can create component packages and interfaceageskwhich will play role of
required interface and provided interface. Deployna# components and interfaces will

depend upon the framework you use.

6.4 Sample Case studies — Analysis Chart

To assess the results from proposed study, we sigatifferent small and medium size
systems developed in java as input to the proptseld These experiments aimed to
evaluate the tool for producing components of gquadlity. In this section we present

experimental results and extracted artifacts froappsed tool for these six systems.

Table 6.2 summarizes the result from the proposeldfor various system.

Research study by Shivani Budhkar

143



Extraction of connector classes from object oridrsgstem while recovering Software architecture

System Arithmetic2¢ | Shoppin¢ | Feedbacl | MyTool CD Satellite

Name Cart Analysis project
—

Number of 2C 31 36 45 11 12
classes&
interface

extracted

Number of | 03 0C 0 08 04 02
Method

coupling
identified

Number of | 11 01 0 06 01 05
composition
coupling
identified

Number of | 03 0C 0 0C 0C 0C
Inheritance
coupling
identified

Number of | 12 01 0 14 04 06
integration

coupling

Number of 04 01 01 02 02 01
Cluster
levels

created

Number of 04 01 01 01 01 01
component
identified

Time 4.20 se 6 min 7.15 se 10 mir 2.30 se 2.48 se

Table: 6.2 Sample Casstudies— Analysis Chart

Research study by Shivani Budhkar 144



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.10 below shows various artifacts extrattggroposed tool for various systems.

All the classes and couplings like method couplic@mposition coupling, inheritance
coupling and integrated coupling of classes aregntg extracted. We can also see
appropriate cluster levels and components areexte@iosely related classes are grouped
together to form component. For shopping cart asdllback analysis system almost all
the classes are unrelated. So the distance betvsetwo classes is 1 or near to 1,hence
just single component is created for these syskam. the systems MyTool, CD project
and satellite very few dependencies are there,ehéris obvious for cluster calculation
distance goes to near 1 and again single companenéated. In case of Arithmetic24
system all the three basic dependencies are prelence integrated coupling is
calculated properly and all 20 classes of the systge placed properly into four
components. We are using integrated coupling, hetceach cluster level, distance
calculation of class with every other class or tdtesd group is considered repetitively for
similarity measure. Hence, if number of classes race it takes more time to form
components. We compare these results with ourgdinisse of generating class diagram
with existing reverse engineering tool Rational ®@nhd EA. We found that all the
classes and dependencies have been extractedgmsprbtool for all the systems tested.
Hence components are generated properly. Perfoenahthe tool is shown in figure
6.11.

Research study by Shivani Budhkar 145



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Figure 6.10: Sample Case Studies Analysis Chart

50
45
40

35

Count

Extracted Artifacts from the tool

H Number of classes & interface

extracted

H Number of Method coupling
identified

M Number of composition coupling

identified

H Number of nheritance coupling
identified
H Number of ntegration coupling

E Number of Cluster levels created

=i M Number of component icentified

Various systems

Figure 6.11: Performance of Proposed Tool

Time

12

10

Performance of proposed tool

10

.15
6
4.2
23 2.48 I
11 12 20 31 36 15
Number of classes

Research study by Shivani Budhkar 146




Extraction of connector classes from object oridrsgstem while recovering Software architecture

6.5 Comparative Study of Proposed Tool verses Exisgy Approaches

Following table 6.3 shows comparison of proposegar@gch with other approaches. We
have considered manual approaches like FOCUS, CRdihod and object-z method.
We have also considered automatic methods like RAMAE, Lee method and RCA
method along with semiautomatic Hassan method. Wle hmade comparison on the
basis of extraction of elements required for congmbripased architecture and evaluating
components for quality using the most importantrioetike cohesion, coupling and size
of component. The methods are described in detathapter 2. From the table 6.3 we
can see that all the methods are able to identifgponents. FOCUS method and Lee
method partially identifies connector details. RONTAC ,Hassan method and RCA do
not identify connectors but CRUD method, and obpeatethod identifies connectors.
But CRUD and object-z are manual methods. ROMANTICee and Hassan method
used clustering techniques for recovering artifacee method partially used cohesion
and coupling component evaluation.RCA method suppeophesion and coupling.
Component size metric is not used by any of thesthods. The proposed tool supports
all the details required for component based systismthe approach is automatic. It can
also be observed from table 6.3 that proposeddivals all the circumstances required

for component based system.

Research study by Shivani Budhkar 147



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Approach | ldentify Identify Clustering | Cohesion | Coupling | Component | Auto-
components| connectors | classes evaluation | evaluation | size mation
evaluation | level
FOCUS S P N N N N manua
approach
CRUD S S N N N N manua
method
ROMANTI | S N S N N N autc-
C method matic
Lee metho | S P S P P N autc-
matic
Objec-zZ S S N N N N manua
method
Hassar S N S N N N Sem-
method auto
RCA S N N S S N autc-
method matic
Proposed | S S S S S S auto-
tool matic
Table 6.3: Comparison of the proposed tool and otlh@pproaches
Here in the table 6.3,
S — Supports
P- Partially support
N — Not used
Research study by Shivani Budhkar 148




Extraction of connector classes from object oridrsgstem while recovering Software architecture

6.6 Research outcome

From the above experiments’ results and analysisamdnfer that —

- The research study conducted will help providingsisiance to software
maintenance for transforming existing object oreingystem to component based
system.

- Through research study reuse of existing codenaigrating to new environment
becomes easy and it saves cost, efforts of redesigrredeveloping the system
which suits to new evolving environment. This isawhhe software industry
always prefers.

- The powerful tool will assist to extract componeautsl interface details from object
oriented system to form component based system.

- The research study gives maximum automation argl Hasan intervention ,that
will reduce human efforts and cost of software digwaent.

- The tool itself evaluate extracted components tality.

- It also help management by reducing human effortiscast saving.

The work in this chapter summarizes the resultdrgaot small and medium size software

application.

Research study by Shivani Budhkar

149



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Chapter 7

Summary and Conclusion

7.1 Summary

Software architecture gives high level of abstacf system and plays very important
role in at least six aspects of software develogmamderstanding, reuse, construction,
evolution, analysis and management. However, thginat architecture of software

would deviate from actual system, due to softwaantenance and software evolution.

Most of the times software architecture documergsat available.

Today, computing environments are evolving from nframe systems to distributed

system. Standalone programs developed using olggehted technologies are not

suitable for these new computing environments. ebudtprograms developed using
component based technology has proven to be maebkufor new environments due to

their granularity and reusability. For this reasomponents can be used more effectively
and are better suited for reuse than the objects & object oriented system. We can get
maintainability and reliability of software by reng existing elements and classes in
legacy object oriented system. Therefore, we shdelive reusable components from

classes in object oriented system and change tleetalriented system into component
based system. Components within system interadt e#@ch other through required-

interfaces and provided-interfaces. These integfaeet as connectors between
components. This gave a direction to pursue relearche area of component based
software architecture recovery from object orierggstem.

Research study by Shivani Budhkar 150



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Software architecture recovery methods are claskificcording to process input used,
approach and techniques used to extract archieecWhichever is the input used or
approach used; manual techniques and semi- autoteatiniques are time consuming
and require lot of human efforts. The research $eduon quasi-automatic method and
implemented it into automatic tool. The proposedorapch and tool extracted
components and interface details from object osgnsystem. Clustering has been
applied for gaining architectural understanding amtovering component based
architecture of object oriented software systengafionship among the classes played a
very important role during clustering, as they ased to determine similarity between
entities to be clustered.
Our research study is mainly divided into two plsase

- Extract the classes of given source code usingiegitool available

- Develop tool for component identification and iféee details generation.
First phase is a kind of analysis phase of a legéggct oriented system through existing
reverse engineering tool. The main objective hees W examine different existing
reverse engineering tools, access the capabilifig®ols and choose best of them to
generate static structure of object oriented systéf@ have chosen here four reverse
engineering tools; commercial and non-commercifisTs required to generate UML
class diagram, which shows different classes aatic stelationship among the classes.
The research assumes that no documentation isablaibf legacy system. Hence, this
class diagram is useful to verify results fromtfimsodule of proposed framework. Here
we observed that most of the classes are extréteadl the four tools (Rational Rose,
Enterprise Architecture, Reverse and Argo UML) &llithe relationships have not been
extracted properly. We concluded that Rational ens# Enterprise Architecture extracts
maximum required static information. Hence, any @wvailable tool can be used to

generate class diagram.

Second phase of the research is proposing framewook and implementation of it,

which is again divided into three modules. Objextof this phase was to automate the

Research study by Shivani Budhkar 151



Extraction of connector classes from object oridrsgstem while recovering Software architecture

approach of component creation, interface idemtifosn and component evaluation. The
three modules are listed below.

- Identify dependencies in existing object orientgstam

The main objective here was to find inheritanceptiog, composition coupling and
method coupling and integrated coupling of theseehcouplings. We considered
these important coupling dependencies as they as#s lor identifying components
from object oriented system. Components are reduit@ create meaningful

connectors.
- ldentify components

The objective here was to group the similar classgsther to form the components
using existing dependencies among classes and sgppaplement agglomerative
hierarchical clustering algorithm.

- Component evaluation and interface identification.

The objective here was to identify interface dstaimong the components and to

evaluate components quality using metrics like,spepling and cohesion.

To evaluate the proposed approach and tool forymiod components of good quality,
we used six different small and medium size systdeveloped in java as input to our
tool. The proposed tool identified existing depergles among the classes of these
object oriented systems. The result showed thathall classes from object oriented
system are extracted and various dependenciessmiayed by tool. We have compared
the result with the class diagram generated with thol Enterprise Architecture.
Relationship among the classes are used to detersiinilarity between entities to be
clustered, hence module 1 is important and forrhbasas for module 2. In module 2, we
created components based on relationships extracdedy agglomerative clustering
algorithm. Results showed that appropriate clukteels are created and based on that
components are created. These components are &¢hfoa quality by using cohesion,

coupling and size metric of component, in the medilnterface details of the identified

Research study by Shivani Budhkar 152



Extraction of connector classes from object oridrsgstem while recovering Software architecture

components are also displayed in the result. We sawdied and provide guidelines for
implementing these components and interfaces ini@@@ework, which is one of the
popular frameworks for implementing component bagetem. We have written various
algorithms and implemented them in our tool. Weehased different java applications to
evaluate our tool. Results of the tool are satiefgcand showed reduced time and human
efforts than other methods available. Results sthenved various artifacts extracted from
various object oriented system and performanceuptanl. We developed tool in java to

migrate java applications into component basedegyst

Summary of Results Obtained:
Primary objective of this research was to come uh & tool that will help software

maintenance person to migrate object oriented sysieto a component based system.

This research will

- help software maintenance to migrate existing dbjedented system to
component based system.

- reuse existing code while migrating to new envirenm

- save cost, efforts of redesign and redevelopingsistem which suits to new
evolving environment.

- assist in extracting components and interface ldeft@im object oriented system
to form component based system.

- reduce human intervention by maximum automation.

- evaluate the extracted components for quality.

- help management in cost saving.

7.2  Conclusions
As stated earlier, components have more granulantyreusability than the classes and
are suitable for new distributed computing envirenm Software industry is migrating to

component based technology. Component identifioaio a critical part of software

Research study by Shivani Budhkar 153



Extraction of connector classes from object oridrsgstem while recovering Software architecture

reengineering. In this research study, we have gaeg and implemented Framework,
tool to recover component based architecture framohject oriented system. The
research study conducted on “Extraction of conmedssses from object oriented system
while recovering software architecture” helped ingrating legacy object oriented
system into component based system. The researdly sbmprises of three modules.
Before starting the first module, we need to idgnstatic structure of object oriented
system. This can be done by retrieving class dmgvhthe object oriented system. For
retrieving class diagram, we have examined fousteng reverse engineering tools - IBM
Rational Rose, Enterprise Architecture, Reverse ArgbUML. Post this, we have
compared results gained from these tools and selexttool which retrieves maximum
static information. Since we are recovering sofevarchitecture of a system whose
design documentation is not available, the statformation retrieved from reverse
engineering tool is used to compare the results frdule-1 of our tool.

Module-1 constitutes identifying existing dependeacin the object oriented system.
Existing relationships in the object oriented cdusps to group the related classes
together in the form of components hence this mredutesigned and implemented. Here
we have considered important relationships in djgat oriented systems i.e. inheritance
relationship, composition relationship and methalisdrom one class to other classes in
the system.

Module-2 constitutes of identifying components fraobject oriented system. We
proposed distance calculation function to find &aniy between classes of object
oriented system. We have implemented similaritytagise calculation algorithm and
agglomerative clustering algorithm to group simgkasses into one component. We have
used 6 small and medium size object oriented agpdics developed in java to test, how
our tool creates components based on the exiséilagianships in the object oriented
application.

Module-3 constitutes identifying interface detadls component identified on module-
2.These interface details are used to create ctomsesf components i.e. required and

provided interface of components. These required provided interfaces help to

Research study by Shivani Budhkar 154



Extraction of connector classes from object oridrsgstem while recovering Software architecture

components to communicate with each other. Compgsnereated in Module-2 are
evaluated here for quality using quality metricsmponent coupling, component
cohesion and component size. The proposed appsbaets these evaluations also.
Thus, these three modules are implemented in thlebfousing java language. We have
studied and provided guidelines for deploying thesmponents created and interface
details into OSGi framework. We have conductedeexpents on six small and medium
size object oriented systems. Experimental reshitsved that our tool gave satisfactory
result in terms of clustering quality. It was etige for software architecture recovery.
Even though hierarchical clustering is time conswgnit is better than manual and semi-

automatic approaches which require much more tivae hierarchical clustering.

7.3 Suggestions for Further Research
There are various avenues for further researchismresearch study. More specifically,
some of the areas which can be further investigatedisted below:

- The hierarchical clustering method is highly tin@suming process, especially
when it is employed in large-scale software systenproving the efficiency of
agglomerative hierarchical clustering algorithm Iwile considered in future
research.

- Identification of components and interfaces, bysidaring dynamic relationship
and dynamic interaction of classes, would be orteefuture works.

- Identified components and connector storage andevat could also be

considered as future work.

Research study by Shivani Budhkar

155



Extraction of connector classes from object oridrsgstem while recovering Software architecture

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Aline.P.V. Vasconcelos, and C.M.L. Werner, "Softevérchitecture Recovery based
on Dynamic Analysis”, XVIII Brazilian Symposium ofoftware Engineering,
Workshop on Modern Software Maintenance, 2, BrasihF, Brazil, October, 2004.

Abdelkrim Amirat and Mourad Oussalah , “Enhancedn@zxtors to Support
Hierarchical Dependencies in Software Architectuy/gCM NOTERE 2008, June23-
27, Lyon, France. pp. 257-266, 2008

Alae-Eddine El Hamdouni, A.Djamel Seriail, and Mane Huchard, " Component
based architecture recovery from OO systems viatioglal Concept Analysis”,
CLA10 7th International Conference on Concept ctattiand Their Applications,
Sevilla : Spain (2010) pp. 259-270 ,2010

Ali Shokoufandeh, Spiros Mancoridis, Trip Dentonatihew Maycock, ” Spectral
and meta-heuristic algorithms for software clusigiji The Journal of Systems and
Software, vol 77,No.3 pp. 213-223,2004

Andrey A.Terekhov, ” Dealing with Architectural less: a Case Study’, ACM
SIGSOFT Software Engineering Notes Volume 29 Nun2pep. 1-4,2004

Andre L. C. Tavares, Marco Tulio Valente,” A Genhtigroduction to OSGi”, ACM
SIGSOFT Software Engineering Notes, Volume 33 Nundbep 1-5, 2008

Arie van Deursen, Christine Hofmeister, Rainer Kik&; Leon Moonen,and Claudio
Riva. Symphony, “View-driven software architectueeonstruction”, In WICSA, pp.
22-134, 2004.

Bridget Spitznagel and David Garlan, “A ComposiabApproach for Constructing
Connectors”, Proceedings of the Working IEEE/IFIPnfeérence on Software
Architecture ,WICSA 2001

Research study by Shivani Budhkar 156



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Brian S. Mitchell, Spiros Mancoridis and Martin Veaiso , ” Search Based Reverse
Engineering” SEKE '02, Ischia, Italy pp. 431-438yJ16-19, 2002

Brian S. Mitchell and Spiros Mancoridis , “On thetAmatic Modularization of
Software Systems Using the Bunch Tool”, IEEE Trcexgtans On Software
Engineering, VOL. 32, NO. 3, pp. 193-208 MARCH 2006

Brian S. Mitchell and Spiros Mancoridis, “On theatation of the bunch search-
based software modularization algorithm”, Soft Campl2(1) pp. 77-93, 2008.

Chandrashekar Rajaraman, Michael R. Lyu, “Some QuypMeasures for C++
Programs”.

Chung-Horng Lung, Marzia Zaman, Amit Nandi, “Apg@itons of Clustering
Techniques to Software Partitioning, Recovery anelstRicturing”, Journal of
Systems and Software - Special issue: Applicatiofisstatistics in software
engineering, Volume 73 Issue 2, pp. 227 - 244 h#seScience Inc. New York, NY,
USA October 2004

Chung-Horng Lung, “Software Architecture Recovenyd aRestructuring through
Clustering Techniques”, Proceedings of the 3rdrh@tonal Software 1 Architecture
Workshop (ISAW), pp.101-104, 1998

Coad P., Yourdan E. (1991) “Object oriented DeSigprince-hall, Englewood cliffs,
NJ.

D.H.Hutchens and V.R. Basili, "System structure Kme: clustering with Data
Bindings,”. IEEE transactions software Engineeringol 11 No 8, pp 749-757,
August 1985

Danny Lange and Yuichi Nakamura “Interactive vigation of design patterns can
help in framework understanding”. In OOPSLA, pp23357, 1995.

Eunjoo Lee Byungjeong Lee Woochang Shin Chisu WAIReengineering Process
for Migrating from an Object-oriented Legacy Systdm a Component-based
System”, Proceedings of the 27th Annual InternaioG@omputer Software and
Applications Conference , COMPSAC’03,2003

Research study by Shivani Budhkar

157



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Frank Simon ,Silvio Loffler, Claus Lewerentz. AlDistance based cohesion
measuring”. Accepted for FESMA99, Amsterdam 4.08tober ,1999.

G. Murphy, D. Notkin, and K. Sullivan. “Softwareftexion models:Bridging the gap
between source and high-level models”. In SIGSQ#pT,18-28. ACM Press, 1995.

Gabriela Ar'evalo, St’ephane Ducasse and Oscarstkise, “Lessons Learned in
Applying Formal Concept Analysis to Reverse Engimeg, ICFCA'05 Proceedings
of the Third international conference on Formal €pt Analysis, pp. 95-112 ,2005.

Gabriela Ar'evalo and Tom Mens, “Analysing Objeatiedted Framework Reuse
using Concept Analysis”, In ECOOP 2002: Proceedimgsthe Inheritance
Workshop, A.Black, E.Ernst, P.Grogono and M. Sa&ki(Eds.), pp. 3-9, 2002.

Gall H., Jazayeri M, Klosch R, Lugmayr W., Trausin@., “Architecture Recovery
in ARES”. In Proc. of the 2nd International Sadiw, Architecture Workshop
(ISAW-2), San Francisco, 1996.

Ganter, B., Wille, R., “Formal Concept Analysis —atflematical Foundations”,
Springer, 1999.

Garlan, “Software Architecture : a roadmap”, In EES~uture of SE track, pp. 91-
101,2000.

George Yanbing Guo, Atlee, and Kazman, “A softwarehitecture reconstruction
method” In WICSA, pp. 15-34, 1999.

Ghulam Rasool, and Nadim Asif ,“ Software Architeet Recovery”, International
Journal of Computer, Information, and Systems S&em@nd Engineering 1;3 pp.
206-211 , 2007

Hassan Gomaa, Daniel A. Menascé and Michael E., SRausable Component
Interconnection Patterns for Distributed Softwanehtectures”, SSR’01, May 18-
20, Toronto, Ontario, Canada pp. 69-77, 2001.

Hassan Mathkour, Ameur Touir, Hind Hakami, Ghazysa#ssa , “On the
transformation of object oriented-based systen@amponent based Systems”, IEEE
International Conference on Signal Image Technolagg Internet Based Systems
'08, pp. 11-15, 2008.

Research study by Shivani Budhkar

158



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Hausi A. Miller, Kenny Wong, and Scott R. Tilleyriderstanding software systems
using reverse engineering technology”, In OO Tdoh.Database and Soft. Sys.,
pp.240-252. World Scientific, 1995.

Helgo M. Ohlenbusch and George T. Heineman, “Coitipasand interfaces within
software architecture”, Proceedings of the 1998feremce of the Centre for
Advanced Studies on Collaborative research, CAS@8Igp 17, 1998.

Hemant Jain, Naresh Chalimeda, Navin Ivaturi ,Batea Reddy, “Business
Component Identification- A Formal Approach”, Predengs of the Fifth
International Enterprise Distributed Object Compgti Conference (EDOC’01)
pp.183-187,2001.

Hironori Washizaki and Yoshiaki Fukazawa, “A tedjume for automatic component
extraction from object-oriented programs by refaoy. Sci. Comput. Program.,
56(1-2) pp. 99-116, 2005

Houari A. Sahraoui, Hakim Lounis, Walcelio Melo,darlafedh Mili, “A concept
formation based approach to object identificatiorpiocedural code”, In Automated
Software Engineering Journal, Volume 6 No 4, Kluweademic Publishers, 1999,
pp. 387-410.

IBM Rational Rose Enterprise Edition software.

Igor Ivkovic and Michael W. Godfred, “Architecturecovery of Dynamically Linked
Applications: A case study”, Proceedings of thethOnternational Workshop on
Program Comprehension (IWPC’02),2002

Ivkovic and Godfrey, “Enhancing domain-specifictgafre architecture recovery”, In
the proceedings of IWPC, pp 266-276, 2003

Istvan Gergely Czibula and Gabriela,Serban,” Hehvaral Clustering for Software
Systems Restructuring”, 2007

Ivan T. Bowman and Richard C. Holt,” Software atebiure recovery using
Conway's law”, in the proceedings of the 1998 ecarice of the Centre for
Advanced Studies on Collaborative Research CAS®8Nop 1-11,1998.

Research study by Shivani Budhkar

159



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Jain A.M,Murthy M.N and Flynn P.J. Dam,” Clusterind\ review”, ACM
Computing surveys,31(3); pp. 264-323,1999.

James Sasitorn and Robert Cartwright, “Deriving @onents from Genericity”,
SAC’07 March 11-15, Seoul, Korea, ACM, pp. 11091612007.

Jian Feng Cui,Heung Seok Chae, “Applying agglonnahierarchical clustering
algorithms to component identification for legacystems”, Information and
Software technology, 53, pp. 601-614 , 2011.

Jiawei Han and Micheline Kamber, “Data Mining Cepts and Techniques”, second
edition, Elsevier publisher,2006.

Jonas Lundberg and Welf L'owe, “Architecture Recgvédy Semi-Automatic
Component Identification”, Electronic Notes in Thetical Computer Science 82 No.
5, Published by Elsevier Science B. V., 2003.

Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, WamnHyng, Dong Han Ham,
“Component Identification method with coupling atmhesion” In the proceedings of
the Eight Asia Pacific Software Engineering ConfeesAPSEC’01, IEEE, 2001.

Kamran Sartipi and Kostas Kontogiannis,”* Compor@uistering Based on Maximal
Association” Proceedings of the Eighth Working Goehce On Reverse
Engineering , pp. 1-12 (WCRE.01),2001.

Lee E., B. Lee ,W. Shin and C.Wu, “A reengineenumgcess for Migrating from an
object oriented Legacy system to Component basstémsy, In proceedings of the
27th International Computer Software and Aplication
Conference(COMPSAC),Dallas, TX, USA, Nov 3-6 IEEEnGuter Science press,
pp.336-341,2003.

Lei Ding and, Nenad Medvidovic “Focus: A Light-Waig Incremental Approach to
Software Architecture Recovery and Evolution”, Rredings of the Working
IEEE/IFIP Conference on Software Architecture , \WAC'01 pp. 191-200, 2001.

Maher Salah and Spiros Mancoridis, “A hierarchydghamic software views: from
object-interactions to feature-interacions”. In MSp. 72-81, IEEE Press, 2004.

Research study by Shivani Budhkar

160



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Marie Chavent, “A monothetic clustering method”,ttBen Recognition Letters,
Volume 19, Issue 11, pp. 9886 September 1998.

Mircea Lungu and Michele Lanza, Tudor G'irba,“ lReyge Patterns for Visual
Architecture Recovery”, In Proceedings of Europe@onference on Software
Maintenance and Reengineering (CSMR 06),2006.

Nadim Asif, “Architecture Recovery”, In the Procf mternational Conference of
Information and Knowledge Engineering (IKE'02), L\degas, 2002.

Naouel Moha, Amine Mohamed Rouane Hacene, Petkéché&al, andYann-Ga'el
Gu’eh’eneuc, “Refactorings of Design Defects usegational Concept Analysis”,
ICFCA'08 Proceedings of the 6th international cceriee on Formal concept
analysis, pp. 289-304,2008.

Nenad Medvidovic , Alexander Egyed and Paul Gruehbg “Stemming
Architectural Erosion by Coupling Architectural DBowvery and Recovery”,
Proceedings of 2nd Second International Workshom f6oftware Requirements to
Architectures(STRAW), collocated with ICSE 2003ytiand,Oregon,May2003.

Nenad Medvidovic and Vladimir Jakobac, “Using Safter Evolution to Focus
Architectural Recovery”, Journal Automated SoftwBrggineering, volume 13, Issue
2, pp. 225-256 April 2006 .

Nicolas Anquetil and Timothy C. Lethbridge, “Recawng software architecture from
the names of source files”, Journal of Softwareritmnance, 11 pp. 201-221, 1999.

O'Brien, L., “Dali: A Software Architecture Recomsttion Workbench”, Software
Engineering Institute, Carnegie Mellon Universitday 2001.

Oleksandr Grygorash, Yan Zhou, Zach Jorgensen, iftMim Spanning Tree Based
Clustering Algorithms”, ICTAI '06 Proceedings ofethl8th IEEE International
Conference on Tools with Atrtificial Intelligencepp/3-81, 2006.

O. Magbool, H.A. Babri,” The Weighted Combined Atgom: A Linkage Algorithm
for Software Clustering”, Proceedings of the EigHiuropean Conference on
Software Maintenance and Reengineering, CSMR’0BEIE2004.

Research study by Shivani Budhkar

161



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Onaiza Magbool and Haroon A. Babri, “Hierarchicalugering for Software
Architecture Recovery”, IEEE Transactions On SofeéEngineering, Vol. 33, No.
11, pp. 759 - 780 November 2007.

Ondrej Galik and Tomas Bures“Generating Connectéos Heterogeneous
Deployment”, Proceedings of the 5th Internationabrkshop on Software
Engineering and middleware (SEM '05) Septembesban, Portugal pp.54-61,2005.

Pang- Ning Tan, Michael Steinbach, Vipin Kumar,tréduction to Data Mining”,
Published by Pearson Education Inc.,2006.

Pascal Andr’e, Nicolas Anquetil, Gilles Ardouredad-Claude Royer,* Component
types and communication channels recovery from 3avace code”, WCRE, Lille:
France, 20009.

Pollet, D., Ducasse, S., Poyet, L., Alloui, I., @am, S., Verjus, H.,* Towards a
process oriented software architecture reconstmictaxonomy”, In: CSMR '07:
Proceedings of the 11th European Conference onw&adt Maintenance and
Reengineering. pp. 137-148. IEEE Computer Socwgshington, DC, USA, 2007.

Prasanta K. Jana and Azad Naik,” An Efficient Miomm Spanning Tree based
Clustering Algorithm”, Methods and models in congugcience, ICM2CS ,pp. .1-5,
20009.

Qifeng Zhang, Dehong, Qiu, Qubo Tian, Lei Sun,”j&b Oriented Software
Architecture Recovery using New Hybrid Clusteringlgdyithm”, Seventh
Internationl conference on Fuzzy systems and KndgéeDiscovery (FSKD 2010),
2010.

Rainer Koschke, Daniel Simon,” Hierarchical ReexMadels”, Proceedings of 10th
working conference on Reverse Enginnering, pp 362083.

Rick Kazman and S. Jeromy Carriere,” View extractiand view fusion in
architectural understanding”, In International Gaehce on Software Reuse, 1998.

Rick Kazman and S. J. Carriere, “Playing detectiReconstructing software
architecture from available evidence”, Automatedt.Sengineer., 1999.

Research study by Shivani Budhkar 162



[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Rick Kazman, Liam O’Brien, and Chris Verhoef," Argltture reconstruction
guidelines. Technical report”, Carnegie Mellon UniSEI, 2001.

Robert Allen and David Garlan,“Formalizing Architeral Connection”, 0270-
5257/94 IEEE, pp. 71- 80, 1994.

Robert Allen and David Garlan, A Formal Basis fArchitectural Connection”
Journal ACM transactions on Software Engineering Methodology, TOSEM ,
volume 6 issue 3, pp. 213-249 July 1997.

Roger S. Pressman, “Software Engineering A pracgti’'s Approach”, Sixth
Edition, McGraw Hill Publications.

S.K.Mishra, Dr.D.S.Kushwaha, and Prof.A.K.Misra,te@ting Reusable Software
Component from Object-Oriented Legacy System thnoRgverse Engineering”, in
Journal of Object Technology, pp. 133-152 Jan-F#92

S. Mancoridis, B. S. Mitchell , Y. Chen, E. R. Gaas Bunch: A Clustering Tool for
the Recovery and Maintenance of Software Systeocires”, Proceedings of IEEE
International Conference on Software maintenange5@-59,1999.

Shaheda Akthar, Sk.Md.Réfilmproving The Software Architecture Through Fuzzy
Clustering Technique”, Indian Journal of ComputereSce and Engineering ISSN :
0976-5166 Vol 1 No 1 pp. 54 — 57,2010.

Shaheda Akthar and Sk.MD.Rafi, “Recovery of Sofevatrchitecture Using
Partitioning Approach by Fiedler Vector and Clustgt, Computer and Information
Science Vol.3, No.1, pp. 72-75, February 2010.

Shivani Budhkar and Arpita Gopal,” Reverse EngimggrJava Code to Class
Diagram: An Experience Report”, in Internationalidwl of Computer Applications
(0975 — 8887) Volume 29— No.6, September 20113613.

Shivani Budhkar and Arpita Gopal,” Component baseftivare architecture recovery
from object oriented system using existing depeodsn among classes”, ,in
International Journal of Computational Intelligenbechniques ISSN: 0976-0466 &
E-ISSN: 0976-0474, Volume 3, Issue 1, 2012, pp596-

Research study by Shivani Budhkar 163



[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Component identification from existing object otieth system using Hierarchical
clustering,” in IOSR Journal of Engineering, IS2250-3021, May. 2012, Vol. 2(5)
pp: 1064-1068.

Siff, M., Reps, T.W, “ldentifying modules via comteanalysis” IEEE Trans.
Software Eng. 25(6), pp. 749-768 ,1999.

Siraj Muhammad, Onaiza Magbool, Abdul Qudus Abbafgle of relationship
during clustering of object oriented software systebth International conference on
Emerging technologies (ICET), 2010.

Simon Allier, Salah Sadou, Houari Sahraoui andifk&geurquin “From Object
Oriented Applications to Component Oriented Apgtiien via Component Oriented
Architecture”, Ninth working IEEE/IFIP conferenca &oftware Architecture, 2011.

Simon Allier , Houari A. Sahraoui and Salah Sadddentifying Components in
Object-Oriented Programs using Dynamic Analysid @tustering”, in proceedings
of the 2009 conference of the Centre for Advancadlied on Collaborative
research, CASCON’09’, pp. 136-148.

Smeda, A., Oussalah, M., and Khammaci, T, “ImprigviComponent-Based
Software Architecture by Separating Computationsfinteractions” In Proceedings
of the ECOOP Workshop on Coordination and Adaptafiechniques for Software
Entities (WCAT '04), Oslo, Norway, 2004.

Soo Ho Chang, Man Jib Han, and Soo Dong Kim, “AlTtocAutomate Component
Clustering and ldentification”, M. Cerioli (Ed.)ASE 2005, LNCS 3442, pp. 141 —
144,Springer-Verlag Berlin Heidelberg, 2005.

Spiros Mancoridis and Brian S. Mitchell, “Using antatic clustering to produce
high-level system organizations of source codesTWPC. IEEE Press, 1998.

Spiros Xanthos, “ldentification of Reusable Compusewithin an Object- oriented
Software System using Algebraic Graph Theory”, OO®R84, October 24-
28,Vancouver, British Columbia , Canada, pp. 322;2004.

Stéphane Ducasse, Tudor Girba, Michele Lanza, amgeSDemeyer, “Moose: a
collaborative and extensible reengineering enviremh In Tools for Software
Maintenance and Reengineering, RCOST/Software Taaby, pp. 55-71, 2005.

Research study by Shivani Budhkar

164



[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Extraction of connector classes from object oridrsgstem while recovering Software architecture

Stephen Kell, “Rethinking Software Connectors”,ANCO 07 September pp.- 1-12
, Dubrovnik, Croatia, 2007

Suk Kyung Shin and Soo Dong Kim, “A Method to trimen Object oriented Design
into Component based Design using Object-Z”, Prdicggs of Third international
Conference on Software  Engineering Research, Managt and
Applications,SERA’05,IEEE,2005.

Sylvain Chardigny, Abdelhak Seriai, Dalila TamzaMourad Oussalah, “Quality-
Driven Extraction of a Component-based Architectimrem an Object-Oriented
System”, in the proceedings of the 2008 12th Eumop€onference on Software
maintenance and Reengineering, CSMR '08 pp. 26920708.

Sylvain Chardigny, Abdelhak Seriai, Mourad Oussal@alila Tamzalit, “Extraction
of Component-Based Architecture From Object-Oridr@gstems”, Seventh Working
IEEE/IFIP Conference on Software Architecture , 286 — 288, 2008.

T.A. Wiggerts, “Using clustering algorithms in Leyasystem Remodularization”, In
the proceedings of the 4th working Conference oweRe Engineering, WCRE'97,
IEEE,1997.

Thomas Tilley, Richard Cole, Peter Becker, and iPEtdund, A survey of formal
concept analysis support for software engineerictiviies”In ICFCA. Springer-
Verlag, 2003.

Trevor Parsons, Adrian Mos, Mircea Trofin, Thomasck@wvind, ” Extracting
Interactions in Component-Based Systems”, IEEE Saations on  Software
Engineering, vol. 34, No. 6, pp. 783- 799 Novenmbedember 2008.

Tzerpos V. and Holt R. C, A Hybrid Process for Rezong Software Architecture.”,
In the proceedings of CASCON’96, Toronto, 1996.

Van Deursen, A., Kuipers, T, “ldentifying objectssing cluster and concept
analysis”, In: ICSE. pp. 246-255, 1999.

Vijayan Sugumaran, Veda C. Storey” A Semantic-Ba&pgroach to Component
Retrieval”, The DATA BASE for Advances in Informati Systems - Summer 2003
Vol. 34, No. 3,pp. 8-24,2003.

Research study by Shivani Budhkar 165



Extraction of connector classes from object oridrsgstem while recovering Software architecture

[100] Wolfgang Eixelsberger, Lasse Warholm , Rene Kidsédarald Gall and Berndt
Bellay,” A Framework for Software Architecture Re&eoy” Proceedings of
International Conference on Software Engineerir@S@ '97), Boston, USA, May
1997.

[101] Wolfgang Eixelsberger, Michaela Ogris, Harald IGBlerndt Bellay, ” Software
Architecture Recovery of a Program Family”, pp. &8 IEEE, 1998.

[102] Woo-Jin Lee, Oh-Cheon Kwon, Min-Jung Kim, and €&ang Shin, ” A Method
and Tool for Identifying Domain Components Usingj&ib Usage Information”,
ETRI Journal, Volume 25, Number 2, pp.- 121-132r{iA2003.

[103] Xiaojin Zhu, "Clustering”, CS769 Spring 2010 Adwzed Natural Language
Processing, 2010.

[104] Xinyu Wang,Xiaohu Yang,Jianling Sun and Zheng@wag, "A New Approach of
Component Identification Based on Weighted Conmggti Stength Metrics",
Information Technology Journal 7(1), pp. 56-62,2008

[105] Yanbing Guo, Atlee, and Kazman, “A software at@tture reconstruction method”.
In WICSA, pp. 15-34, 1999.

[106] Yuxin Wang, Ping Liu, He Guo , han Li, Xin Chehlmproved Hierarchical
Clustering algorithm for Software Architecture Reerny”, International Conference
on Intelligent Computing and Cognitive Informati2§10.

[107] Young Ran Yu, Soo Dong Kim ,Dong Kwan Kim, "Coete® Modeling Method
for Component Extraction”|EEE, pp. 46-53,1999.

[108] Zhongjie Wang, Xiaofei Xu, and Dechen Zhan, ” &n&y of Business Component
Identification Methods and Related Techniques” ima¢ional Journal of Information
Technology Volume 2 Number 4, pp 229-238, 2005.

Reference Sites

[109] ArgoUML, http://argouml.tigris.org/ is a widely @8 open source tool for UML
modeling tool

Research study by Shivani Budhkar 166



Extraction of connector classes from object oridrsgstem while recovering Software architecture

[110] http://www.neiljohan.com/projects/reverse/ - Bese is non commercial tool to
convert java code to class diagram developed blyJdbian.

[111]_http://www.sparxsystems.com/products/ea/down|daas:.-Enterprise Architecture
(EA) is widely used commercial UML modeling tool

[112] http://en.wikipedia.org/wiki/Software_architecturecovery

Research study by Shivani Budhkar

167



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Appendix — |

Glossary of relevant terms

» Software Architecture: Software architectures are composed of components,
connectors and configurations, constraints on thrangement and behavior of
components and connectors. The architecture offtwas@ system is a model, or

abstraction of that system.

» Software architecture recovery: Software architectue recovery is a set of
methods for the extraction of architectural infotima from lower level
representations of a software system, such aseaode. The abstraction process to
generate architectural elements frequently involelesstering source code entities
(such as files, classes, functions etc.) into sstiesys according to a set of criteria

that can be application dependent or not.

» Class: In object-oriented programming, a class is a tameptlefinition of the method

s and variable s in a particular kind of object.

* Object: An object is a specific instance of a class; ittaors real values instead of

variables.

* Cluster: A group of the same or similar elements gatheredamurring closely

together.

» Clustering: Clustering is the process of forming groups of gewn such that entities

within a group are similar to one another and dé#ifé from those in other groups.

Research study by Shivani Budhkar 168



Extraction of connector classes from object oridrsgstem while recovering Software architecture

» Agglomerative: It is type of hierarchical clustering.This is a ttwon up" approach:
each observation starts in its own cluster, andspaii clusters are merged as one
moves up the hierarchy.

« Component: a component is an identifiable part of a largergpam or construction.
Usually, a component provides a particular functiorgroup of related functions. In
programming design, a system is divided into coneptsthat in turn are made up of
modules. In short, a component is group of claseigborating to provide a function

of application.

» Connectors: Connectors represents interaction among companéntsn the run
time perspective, connectors mediate the commuaric@nd coordination activities

among components.

» Interface: An interface defines the signature operationsroéatity; it also sets the
communication boundary between two entities, is ttase two pieces of software. It
generally refers to an abstraction that an assetiges of itself to the outside. The
main idea of an interface is to separate functioms implementations. Any request
that matches the signature or interface of an objexy also be sent to that object,
regardless of its implementation. The concept oingerface is fundamental in most

object oriented programming languages.

* Reverse Engineering:lt is the part of software engineering, which cstsiprocess

of recreating design by analyzing a final product.

* Reverse Engineer:A software engineer, who is responsible for periagreverse

engineering.

» Software maintenance: The software maintenance is modification of a safev
product after delivery to correct faults, to impeogperformance or other attributes, or
to adapt the product to a modified environment.

Research study by Shivani Budhkar 169



Extraction of connector classes from object oridrsgstem while recovering Software architecture

e Similarity: Similarity measures determine how similar a pdireatities is, in
clustering process.

» Dissimilarity: The dissimilarity between two objects is a nunedrimeasure of the
degree to which the two objects are different. €bsmon interval for dissimilarity
is [0, 1] but can range from 0 ta

Research study by Shivani Budhkar 170



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Appendix — 1l (a)

Experimental Environment

All programs were written in Java (version 1.6) gaage under Eclipse Galileo
version. The experiments were conducted on a 2-@téz (R) Pentium(R) P6100
CPU with 4 GB bytes of RAM running Windows 7 ultiteaversion.

Sample Source code:

MatrixController.java

package com.src;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.lterator;

import com.datastructure.Properties;

import com.datastructure.UnionintersectionMatrix;
import com.util.Intersection;

import com.util.Union;

public class MatrixController

{

private Properties properties;

Research study by Shivani Budhkar 171



Extraction of connector classes from object oridrsgstem while recovering Software architecture

private ArrayList<UnionintersectionMatrix> uniornérsectionMatrixs;
public MatrixController()
{

// TODO Auto-generated constructor stub

unionintersectionMatrixs = new
ArrayList<UnionintersectionMatrix>();

}
public Properties getProperties() {
return properties;
}
public void setProperties(Properties properties) {
this.properties = properties;
}
public ArrayList<UnionIntersectionMatrix> getUnibmersectionMatrixs() {
return unionintersectionMatrixs;

}

public void setUnionintersectionMatrixs(ArrayListRidnintersectionMatrix>
unionintersectionMatrixs) {

this.unionintersectionMatrixs = unionintersectatrixs;

}

public MatrixController(Properties properties) {
this();

this.properties = properties;

Research study by Shivani Budhkar 172



Extraction of connector classes from object oridrsgstem while recovering Software architecture

String [] classNameArray = properties.getKey();
for (inti = 0; i < classNameArray.length; i++)
{
for (intj =i+ 1; j < classNameArray.lengih+)
{
ArrayList<String> sourceList = properties.getVdltlassNameArray(i]);
ArrayList<String> destList = properties.getValuagsNameArray[j]);
int unionCount = Union.calclualteUnion(sourceLstList);

int intersectionCount = Intersection.calculatelagstion(sourceList, destList)

this.unionintersectionMatrixs.add(new
UnionintersectionMatrix(classNameArray][i],classNaney/[j],unionCount,intersec]
ionCount));

}
}

Cluster .java

package com.src;

import java.util.ArrayList;

import java.util.lterator;

import com.datastructure.Properties;

import com.datastructure.UnionintersectionMatrix;
import com.util. CompositePropertyMatrix;

public class Cluster

Research study by Shivani Budhkar 173



Extraction of connector classes from object oridrsgstem while recovering Software architecture

private Properties compositeProperties;
private ArrayList<UnionintersectionMatrix> listUsminterMatrix;

public
Cluster(CompositePropertyMatrixcompositePropertybarrayList<UnionIntersec
tionMatrix> listUnionInterMatrix)

{
super();
if(compositePropertyMatrix != null && listUniomiterMatrix !'= null)
{
this.compositeProperties = compositePropertyMajetProperties();
this.listUnionInterMatrix = listUnionInterMatrix
}
}

public Cluster(Properties compositeProperties,AristrUnionintersectionMatrix>
listUnionInterMatrix)

{
super();
if(compositeProperties !'= null && listUnionintetatrix != null)
{
this.compositeProperties = compositeProperties;
this.listUnionInterMatrix = listUnionInterMatrix
}
}

Research study by Shivani Budhkar 174



Extraction of connector classes from object oridrsgstem while recovering Software architecture

public Properties createCluster()

{
Properties clusterProperties = null;
try
{
if(this.compositeProperties = null && this.listlibninterMatrix != null)

{

clusterProperties = new Properties();
Il create a one single cluster for each classes
String [] classArray = this.compositePropergeskey();
for (inti = 0; i < classArray.length; i++)
{
/I starting this list will be empty
ArrayList<String> list = new ArrayList<String®(
for (intj =i+ 1;j < this.listUnionIinterMatxisize(); j++)
{
UnionintersectionMatrix intersectionMatrix = thistUnionInterMatrix.get(j);
if( intersectionMatrix.getSourceClassName().equmsteCase(classArray[i]) )
{
/I to get the distance
/Il to get the destination class

if(intersectionMatrix.distance() <= 0.70) {

Research study by Shivani Budhkar 175



Extraction of connector classes from object oridrsgstem while recovering Software architecture

list.add(intersectionMatrix.getDestClassName());

}

}

clusterProperties.put( "Cluster [ + classArrayi']", list );

}

}

catch(Exception exception)

{

exception.printStackTrace();

}

return clusterProperties;

Research study by Shivani Budhkar 176



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Appendix — I (b)

Clustering Concepts

The clustering techniques can be used effectivelyatilitate software Architecture

recovery. Clustering is identified as “quasi-auttioidechnique for software architecture
reconstruction and recovery. We present here th&taring concepts used for software
Architecture Recovery followed by method adoptedhis research, study of existing
reverse engineering tool and study of componergd&amework.

Overview of Clustering

Unsupervised classification or clustering is coased as most important unsupervised
learning problem. Clustering techniques have besd un many disciplines to support
grouping of similar objects of a system. This i® @i the most fundamental techniques
adopted in science and engineering. The abilitioton meaningful groups of objects is
one of the most fundamental modes of intellige@astering is the process of grouping
objects into clusters such that the objects froenghme clusters are similar and objects
from different clusters are dissimilar. Objects @@ndescribed in terms of measurements
(for example, attributes, features) or by relatiops with other objects (for example pair
wise distance, similarity).The inputs required follustering process are similarity
measures or data from which similarities can be mdaed. The primary objective of
clustering analysis is to facilitate better undamging of the observations and the
subsequent construction of complex knowledge siracfrom features and object
clusters. The key concept of clustering is to greumilar things into clusters, such that
intra-cluster similarity or cohesion is high, amder-cluster similar or coupling is low.
Coupling has great impact on many quality attributsuch as maintainability,
verifiability, flexibility, portability, reusabiliy, interoperability, and expandability. Thus,
the main objective of clustering is similar to tldtsoftware partitioning described by
Chung-Horng Lung [13].

Research study by Shivani Budhkar 177



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Cluster analysis is used in a number of applicatisnch as data analysis, image
processing, market analysis, software architeataeClustering helps in gaining, overall
distribution of patterns and correlation among adijcts.

Jiawei Han [42] defined clustering as it is datanimg activity for differentiating groups
(classes or clusters) insidgven set of objects so that objects within clusteave high
similarity in comparison to one another but areydissimilar to objects in other clusters.

Onaiza Magbool and Haroon A. Babri [59] definedygtéring is the process of forming

groups of items or such that entities within a grare similar to one another and

different from those in other groups. The similatietween entities is determined based
on their characteristics or features.

Many clustering algorithms have been presentederditerature, but they comprise of the
following three common key steps:

- Obtain the data set.
- Compute the resemblance coefficients for the detta s

- Execute the clustering method.

According to Chung-Horng Lung [13], an input dag¢éis an object-attribute data matrix.
Objects are the entities that we want to group dbasetheir similarities. Attributes are
the properties of the objects. A resemblance aaefft for a given pair of objects shows
the degree of similarity or dissimilarity betwedrese two objects, depending on the way
the data represents.

Categories of Clustering

Most clustering algorithms for software architeetwecovery are based on two popular
techniques known as partitional and hierarchiaadtelring.

Research study by Shivani Budhkar 178



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Partitional Clustering: Pang- Ning Tan [61] described, it is simply aislion of the set

of data objects into non-overlapping subsets (els¥tsuch that each data object is in
exactly one subset. Partitional algorithms usustiért with an initial partition consisting
of certain number of clusters. The partition isntimeodified at every step such that some
criterion is optimized while keeping the numberchisters constant. Sub categories of
partitional algorithms include graph-theoretic mpd, mixture resolving and mode-
seeking algorithms. Partitional algorithms requive number of clusters to be known in
advance, which is difficult, if we do not have primowledge about the data set. Onaiza
Magbool described [59]; algorithms are computatilgnexpensive because we seek to
partition n items into c clusters, which, eveniimoderate values of n and ¢, may result in
a very large number of partitions to choose fronccaxding to Brian S [9] and Ali
Shokoufandeh [4], to reduce the computational cewipt of partitional algorithms,
researchers have used heuristic-based approachéxilitate software Architecture
recovery. If number of clusters can be reasonakferchined in advance, partitional
algorithms can be wused for producing clusters sspring software systems.
D.H.Hutchens [15] described, partitional algorithmpsoduce flat decompositions,
whereas the natural decomposition of a softwartesyss usually presented as a nested
decomposition or hierarchy. Rainer Koschke and &a8imon [66] described, these
decompositions of modules into sub modules are cgslpe useful for understanding
large systems. Following are the categories oftgaral algorithms.

- Squared Error Algorithms -The most intuitive and frequently used criterfanction

in partitional clustering techniques is the squaeedr criterion, which tends to work
well with isolated and compact clusters. The k-nsaarthe simplest and most commonly
used algorithm employing a squared error criteritinstarts with a random initial
partition and keeps reassigning the patterns tst@ls based on the similarity between
the pattern and the cluster centers until a corererg criterion is met (e.g., there is no
reassignment of any pattern from one cluster tdhempor the squared error ceases to
decrease significantly after some number of iters). The k-means algorithm is popular
because it is easy to implement, and its time cexityl is O(n), where n is the number of
patterns. Several variants of the k-means algoritlare been reported in the literature.
Some of them attempt to select a good initial partiso that the algorithm is more likely
to find the global minimum value.

Simple k-means Algorithm

Research study by Shivani Budhkar 179



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Xiaojin Zhu, [102] presented widely used clustering algorithm. It assumes that
know the number of clusters k. This is an itera@gorithm which keeps track of the
cluster centers (means). The centers are in the &sature space as x.

1. Randomly choose k centers p1, . .., pk.

2. Repeat

3. Assign x1 . .. xn to their nearest centergeesvely.
4. Update pi to the mean of the items assigned to i
5. Until the clusters no longer change.

Step 3 is equivalent to creating a Voronoi diaguamer the current centers. K-means
clustering is sensitive to the initial cluster east It is in fact an optimization problem
with a lot of local optimal. It is of course sengtto k too. Both should be chosen with
care.

-Graph-Theoretic Clustering -The best-known graph-theoretic divisive clustgrin

algorithm is based on construction of the minim@dming tree (MST) of the data, and

then deleting the MST edges with the largest length generate clusters. The

hierarchical approaches are also related to grapbrétic clustering. Single-link clusters

are sub graphs of the minimum spanning tree ofdtita which are also the connected
components. Complete-link clusters are maximal detapsub graphs, and are related to
the node color ability of graphs.

T.A. Wiggerts [93] described, graph theoretic aidpons work on graphs. The nodes of
such graphs represent entities and the edges espretations. Graph algorithms do not
start from the individual nodes (entities), but toyfind sub graphs which will form the
clusters. Special kinds of sub graphs like conmkectemponents, maximal complete sub
graphs or spanning trees are used to derive modulese candidates themselves. The
algorithms used to find these special sub grapkspapovided by or based on graph
theory. Often applied examples of algorithms whiithin this category are Minimal
Spanning Tree (MST) clustering and aggregate dlyus.

Research study by Shivani Budhkar 180



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Minimal Spanning Tree: Oleksandr Grygorash [57] described, the MST chusge
algorithm is known to be capable of detecting dustwith irregular boundaries. Once
the MST is built for a given input, there are twiffetent ways to produce a group of
clusters. If the number of clusters k is given @dvance, the simplest way to obtain k
clusters is to sort the edges of the MST in dediognorder of their weights, and remove
the edges with the first k — 1 heaviest weightsisTdpproach is called the standard
EMST (Euclidean Minimal Spanning Tree) clusteririgosithm or SEMST (Standard
Euclidean Minimal Spanning Tree). The second apgrodoes not require a preset
cluster number. Edges, that satisfy a predefinednsistency measure, are removed from
the tree. It is the inconsistency measure suggdstethhn, and therefore it is called the
clustering algorithm Zahn’s EMST clustering alglonit or ZEMST.

The basic MST based clustering algorithm is a®¥adl.

First construct MST using Kruskal algorithm andrttset a threshold value and step size.
We then remove those edges from the MST, whoseHsrage greater than the threshold
value. Then calculate the ratio between the idluater distance and inter-cluster
distance and record the ratio as well as the tbtdsiWe update the threshold value
by incrementing the step size. Every time we obth&new (updated) threshold value,
we repeat the above procedure. We stop repeatingn we encounter a situation such
that the threshold value is maximum and as suckl®d edges can be removed. In such
a situation, all the data points belong to a singlester. Finally, we obtain the

minimum value of the recorded ratio and fothe clusters corresponding to the

stored threshold value. The above algorithm haso textreme cases:

1) With the zero threshold value, each point remsaimithin a single cluster.
2) With the maximum threshold value all the poidies within a single cluster.

Therefore, the proposed algorithm searches fordapamum value of the threshold for

which the Intra-Inter distance ratio is minimum. néed not be mentioned that this
optimum value of the threshold must lie betweens¢héwo extreme values of the
threshold. However, in order to reduce the numlbetecations, we never set the initial

threshold value to zero.MST gives comparativelytdseperformance than k-means
algorithm. The disadvantage is Threshold valuesiag size needs to be defined apriori,
described by Prasanta K. Jana and Azad Naik [64].

Research study by Shivani Budhkar 181



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Aggregation Algorithms- Aggregation Algorithms reduce the number of nodes
(representing entities) in a graph by merging theto aggregate nodes. The aggregate
nodes can be used as cluster or can be the inpoévoiteration resulting in higher level
aggregates.

T.A. Wiggerts [93] described; the graph reductiedhnique selects nodes (one at a time)
and makes a new aggregate node containing thetestlewmde together with its
neighborhood set (the set of nodes no further thadges away). For each node r is
determined so that the resulting aggregate nodecantain R nodes. So, R is the degree
of reduction. Less supervised variants allow vdeiafalues for R.

Hierarchical Clustering: It permits clusters to have sub clusters. Hieraedtalgorithms
produce nested decomposition or hierarchy. Whepgaa of clustering is architecture
recovery, a multiple level architecture view is onfant and facilitates architectural
understanding. Hierarchical algorithm provides ewivith earlier iterations presenting a
detailed view of the architecture and later itemasi presenting a high level view.
Moreover, hierarchical algorithms do not require ttumber of clusters to be known in
advance. The similarity between the entities iined based on their characteristic or
features.

Features: It represents characteristics of entities, onlthgis of which their similarity is
determined during clustering. The efficiency ofstlering depends on careful selection of
features. For software architecture recovery, rebeas have mostly utilized static
information of formal and non-formal features. Fatrfeatures includes functions called
by an entity, global variables, macros and useinddftypes referred to by an entity, files
included in an entity and classes in case of obgeEnted system. The non-formal
features include comments, identifiers, developEnes, directory path, LOC, time of
last update.

General Hierarchical Clustering Process:

- ldentify features and entities in the system argtagent each entity as feature
vector.
- Select similarity measure and develop nxn simiyariatrix representing the

similarity between every pair of entities withinssgm.

Research study by Shivani Budhkar 182



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Selection of clustering algorithm to form clustemsch that entities within a
cluster are more similar to each other than totiestin other clusters, until the
required number of clusters is formed or only olster remains.

- Selection of evaluation method: Evaluation of @ustfor quality assessment can
be performed by using internal assessment or edtemssessment. Internal
assessment refers to an intrinsic evaluation ofteting results like cohesion,
coupling of modules within decomposition. Exteragéessment can be performed

by comparing clustering results with manual recg\®r experts.

There are two types of hierarchical clustering atgms: agglomerative (bottom-up) and
divisive (top-down).Both build a hierarchy of cleshg in such a way that each level
contains the same clusters as the first lower lexeépt for two clusters which are joined
to form one cluster. A hierarchical clustering feen displayed graphically using a tree-
like diagram called a dendrogram, which displayshltbe cluster-sub cluster relationship
and the order in which the clusters were mergedgaggrative view) or split (divisive
view).

According to Jiawei Han [42] and Jain A. M. [39prfagglomerative hierarchical
clustering, given a set of n objects, this algonithegins with n singletons i.e. sets with
one element, merging them until a single clusteeached. The agglomerative clustering
algorithms differ in the way two most similar clest are calculated and the linkage
metric used. The linkage metric are single linkagenplete linkage, average linkage.
The single link algorithms merge the clusters whdsstance between their closest
objects is the smallest. Complete linkage algorghmerge the clusters whose distance
between their most distant objects is the smallegerage link algorithms merge the
clusters whose average distance i.e. the averagjstahces between the objects from the
clusters is smallest. One advantage of these #igusiis they are non- supervised. They
do not need any extra information such as numberxpkcted clusters and candidate
regions of search space for locating each cluster.

General Agglomerative Method:

T.A. Wiggerts, [93] presented agglomerative hignaral methods fit the following
scheme, known as Johnson’s algorithm.

Research study by Shivani Budhkar 183



Extraction of connector classes from object oridrsgstem while recovering Software architecture

- Begin with N clusters each containing one entitheve N is number of entities
and compute the similarities between the entitéss{ers).

- While there is more than 1 cluster

- Do

- Find the most similar pair of clusters

- Merge these clusters into a single cluster

- Update the similarities between the clusters
- Enddo

Often algorithms are presented in terms of dissintyl. In this case the two clusters
which are least dissimilar are joined. The différaigorithms all follow the scheme
above, however they use different parameters likdagity measures and updating rule.
Updating rules are nothing but different linkagetmoels used like single linkage,
complete linkage etc.

The Divisive (top-down) Methodsstart from one cluster containing all n objectsl an
split it until n clusters are obtained. In eaclpstecluster is split into two clusters. After
N-1 steps there are N clusters each containingemiéy, N is the number of entities.
Feasible divisive hierarchical methods can be eith@nothetic or polythetic.

Monothetic Methods: According to Marie Chavent [49], monothetic divisiclustering
methods have first been proposed in the particodme of binary data. Since then,
monothetic clustering methods have mostly beenldped in the field of unsupervised
learning and are known as descendant conceptusiedlg methods.

Research study by Shivani Budhkar

184



Extraction of connector classes from object oridrsgstem while recovering Software architecture

These methods are mostly used with binary featufd® division of clusters is
determined by certain features (usually one) onclvidertain scores are necessary to
belong to a certain new cluster. The best knowrauts of monothetic devise clustering
are association analysis. In this method only @aufe is used for the splitting. This
result in cluster in which all entities possesg feature and a cluster in which no entity
possess it. The splitting feature is chosen i suway that the similarity between newly
formed clusters is minimal in terms of a certaiitecron. (e.g. information loss which
should be maximized because it is dissimilarity soe@.) In the next step of algorithm,
another feature is selected for the splitting @& tusters. This need not be the same
feature for all clusters. By following this proceduthe resulting hierarchy is equivalent
to a decision tree in which each node is labeldd thie feature used for splitting.

In Polythetic Methods the possession of a certain subset of the featwkises for an
entity to belong to a cluster, no features are adagpy. Other definitions say that in
polythetic methods all features are taken into antqe.g. to compute a similarity
measure) where as monothetic methods only lookafeature at every level.

T.A. Wiggerts, [93] described, dissimilarity anagswhich is one of the most feasible
polythetic methods. In this method a cluster Agkt 9y taking out the entity a for which
sim(a, A-{a}) is minimal (the original descriptidoy was in terms of dissimilarity). For
this computation, several similarity measures wagkbn an entity and a cluster can be
used. Also the average Euclidean distance is udsasl entity ‘a’ is used to form a new
cluster, called splinter group. Now a number ofatiens are performed. In each
iteration, that entity which is the ‘more similad S than to A is moved to S and the
similarities are recomputed. The resulting clust#erand S are subdivided in the same
way in the next step of the hierarchical algorithm.

Divisive algorithms offer an advantage over agglmatiee clustering algorithms because
most users are interested in the main structudataf which consists of few large clusters
found in the first steps of divisive algorithms. gdgmerative algorithms start with the

details (the individual entities) and work their yvap to large clusters which may be
affected by unfortunate decisions in the first stdgowever Agglomerative hierarchical
algorithms are most widely used for software asttiire recovery. This is because it is
infeasible to consider all possible divisions ot thirst large clusters (2N-1 - 1

possibilities in the first step).

Both the partitional and hierarchical clusterings Haeen applied to facilitate software
architecture recovery. Here in our study we foau$ierarchical clustering technique.

Research study by Shivani Budhkar 185



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Different Types of Clusters

Clustering aims to find useful groups of objectsigters), where usefulness is defined by
the goals of the data analysis. Following are diffie types of clusters presented by Pang-
Ning Tan [61].

Well-Separated: A cluster is a set of objects in which each objsctloser (or more
similar) to every other object in the cluster tharany object not in the cluster. To show
all the objects in the cluster, they must be sidfily similar to one another. Sometimes
threshold is used to show this. In well separaledters the distance between any two
points or objects in different groups is largemtliae distance between any two points or
objects within a group. Well separated clusters lsame any shape and need not be
globular.

Prototype- Based:A cluster is a set of objects in which each obigchore similar to the
prototype that defines the clusters than to thetopype of any other cluster. The
prototype of cluster is often centroid i.e. therage (mean) of all the points in the cluster
or medoid, i.e. the most representative point diater.

Graph-Based: If the data is represented as a graph, then nafdgsaph are objects and
links between nodes represent connection amongtsbjm this case a cluster can be
defined as a connected component i.e. a group @cisbthat are connected to one
another but have no connections to objects outkelgroup.

Density-Based:A cluster is dense region of objects that is sumd®d by a region of low
density. A density based definition of a clusteroften used when the clusters are
irregular.

Shared —Property (Conceptual Clusters): A cluster is a set of digjghat share some
property. A clustering algorithm would need a vepecific concept of a cluster to
successfully detect these clusters. The processinding such clusters is called
conceptual clustering.

Measures of Similarity and Dissimilarity in Clusters

Research study by Shivani Budhkar 186



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Pang-Ning Tan [61] described, the most importardtdia in clustering process is
similarity measure and dissimilarity measure. Samamsformations can be used to
convert a similarity to dissimilarity or vice versehe similarity between two objects is a
numerical measure of the degree to which the twectbare alike.

Cluster algorithms group similar entities togetiarorder to talk about the similarity of
entities and say things like “entity ‘a’ is morengdlar to entity ‘b’ than it is to entity ‘c’ ”
we need some kind of measure of similarity. Sintiameasures determine how similar a
pair of classes is. Similarity of classes can Heutated by variety of ways and choosing
similarity measure is influence the result thanalgorithm.

T.A. Wiggerts, [93] described, a similarity measateays yields a value between 0 and
1. Two entities are more similar when their siniilameasure comes closer to 1. Often
dissimilarity measures are used. From these megssirilarity measures can easily be
computed as follows: sim (i, j) =1-dis (i, j).

Clustering is used for grouping the similar thirgsentities. Work with groupings is

strongly connected with the theory of similaritydagissimilarity. One characteristic of a
grouping might be that all things within one grane similar and all pairs of elements of
different groups are dissimilar. In more detail Wirag that two given things are similar
is not enough: There are “degrees of similarityfie ®ame holds for dissimilarity.

Clustering applications typically employ three tgpef similarity measures, namely,

distance measures, correlation coefficients andocesson coefficients. Distance

measures numerically describe how far apart estdie, and these are typically used
when features are continuous. Correlation coefiisieare usually used for correlating
continuous features. Association coefficients aneally applied to binary features.

Onaiza Magbool and Haroon A. Babri [59] presentethes well-known Distance and
Similarity measures as given below.

Association Coefficients: Association coefficients are applied to calculabeilarity
when the features are binary. To illustrate hove¢heoefficients are calculated, assume
two entities E1 and E2, represented by featureoveandicating the presence or absence
of a feature. The similarity between E1 and E2 loarcompactly represented by a table
as shown below:

E2

Research study by Shivani Budhkar 187



Extraction of connector classes from object oridrsgstem while recovering Software architecture

1 0
El 1 A
0 C D

In the above table ‘a’ represents the count ofuieat present in both E1 and E2, ‘b’
represents the total number of features preseBflibut absent in E2, ‘c’ represents the
total number of features present in E2 but abseBtli and ‘d ' represents the number of
features that are absent in both E1 and E2. lbighanoting that in the software domain,
typically d will be much larger than a, b, and nc& the feature vector associated with
each entity is likely to be sparse.

Let cxy be the resemblance coefficient for compdsm&rand y. Some examples are given
by Chung-Horng Lung [12].

- Jaccard Coefficient: cxy =a/(a+b +¢)

- Russel and Rao Coeffient: cxy=a/(a+b +c+d)

- Simple Matching Coefficient: cxy = (a + d) / (a +lr + d)
- Sokal and Sneath: cxy =2a/[2(a+d) + b + (]

- Sorrenson Coefficient: cxy =2a/ (2a + b + ]

- Yule Coefficient: cxy = (ad - bc) / (ad + bc)

The following association coefficients can therdeéned.

Research study by Shivani Budhkar 188



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Similarity measure (S) Formula
Simple matching coefficient (a+d)
(a+b+c+d)
Jaccard coefficient a
(a+b+c)
Sorenson-Dice 2a
(2a+b+c)
Rogers and Tanimoto (a+d)
(a+2(b+c)+d)
Sokal and Sneath a
(a+2(b+c))
Gower and Legendre (a+d)
(a+1/2(b+c)+d)

Table lll.a: Well- known Association Coefficients

In table Ill.a a represents the number of feattlhasare “1” in both entities, d represents

the number of features that are “0” in both erditwhereas b and c represent the features
that are “1” in one entity and “0” in the other.

Distance Measures:The distance measures calculate the dissimilagtyeen entities.

The larger the distance, the lesser is the siryléetween the entities. The measure is

zero if and only if the entities have the same saam all features. Some of the most
popular distance measures are the (squared) Eaclifestance, Canberra Distance,

Murkowski Distance.

Research study by Shivani Budhkar

189



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Distance measure (D) Formula
Minkowski Distance s P\
(r =1, City block distance) {Z x, — yl_| ]

r = 2, Euclidean distance) i1

Canberra Distance s )

Z X, =i /(Ixi|+ Vi

i=1

Bray-Curtis Distance S

Chord Distance

Hellinger Distance

Table Il b: Well-known Distance measures

In table 11l b, x and y represents points in theliglian space Rs

Correlation Coefficients: Correlation coefficients are used to correlatduiess. They
are applied to the correlation of entities as va#though it makes no statistical sense to
obtain mean value across different feature typ#serahan across entities. The well -
known Pearson product moment correlation coeffidienbinary features reduces to:

P = (ad-bc) Al (a+b) (c+d) (a+c) (b+d)

According to O. Magbool [58], in the case of softeyasince normally d is much larger
than a, b and c, the above formula can be writsen a

P =aH (ath) (a+c)

Research study by Shivani Budhkar 190



Extraction of connector classes from object oridrsgstem while recovering Software architecture

The value of a correlation coefficient lies in ttaege from -1 to 1. A value of 0 means
that the two entities are not related at all.

Probabilistic Measures: According to T.A. Wiggerts [93] probabilistic meses are
based on the idea that agreement on rare feator@sibuites more to the similarity
between two entities than agreement on featureshwhre frequently present. So,
probabilistic coefficients take into account thestdbution of the frequencies of the
features present over the set of entities. Whendisiribution is known, for each feature
a measure of information or entropy can be compuldee entropy quantifies the
disorder, variance, confusion or surprisal. The {aets of) entities which provide the
least information gain (change of entropy) when lbm@ad have the highest similarity.

Linkage Methods: During clustering the similarity between the newlrmed and
existing components should be iteratively recakeda For this recalculation various
linkage methods are available. Some of the welMkmdinkage methods are presented
below in table Il c.

Algorithm Cluster Similarity

Single Linkage (SLA) sim (Ei,Emo)=Max(sim(Ei,Em), sim (E;,Eo))
Complete Linkage | sim(EiEmo)=Min(sim(E;,Em),sim (E;Eo))
(CLA)
Weighted  Average | sim(EiEmo)=1/2(sim(Ei,Em))+1/2(sim(E;E,))
Linkage (WLA)
Unweighted Average | sim(EiEmo)=(sim(E; Em)*size(Em)+sim(E;Eo)*
Linkage (ULA) size(Eo))/ (size(Em)+size(E,))

Table 11l c: Well known Hierarchical Linkage Methed

These four linkage methods presented in Table ltdetermine similarity between a
newly formed cluster and existing entities by usginen cluster similarity formulas. In
table Ill ¢ Ei, Em, and Eo represent entities amdoEepresents the cluster formed by
merging entities Em and Eo.

Dissimilarity Measure: According to Pang- Ning Tan [61], the dissimilgritetween
two objects is a numerical measure of the degreehioh the two objects are different.
Dissimilarities are lower for more similar pair abjects. Often the term distance is used
as synonym for dissimilarity. The common intervat tlissimilarity is [0, 1] but can
range from O too.

Research study by Shivani Budhkar 191



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Dissimilarity Measures are used to find dissimpairs of objects in X. The dissimilarity
coefficient, dij, is small when objects i and | aé&ke, otherwise, dij becomes larger. A
dissimilarity measure must satisfy the followinghdaions:

. 0<dij< 1
«dii=0
« dij = dii

Typically, distance functions are used to measwr@iguous features, while similarity

measures are more important for qualitative featugelection of different measures is
problem dependent. For binary features, the siitylateasure is commonly used. Let us
assume that a number of parameters with two binadlgxes are used for counting
features in two objects. For example, n00 andnlioethe number of simultaneous
absence and presence of features in two objegisctgely, and n0O1 and n10 count the
features presented only in one object.

Research study by Shivani Budhkar

192



Extraction of connector classes from object oridrsgstem while recovering Software architecture

Appendix — Il (c)

Research Paper Repository

a. Component evaluation and component interface ifiesion from object
oriented System by Shivani Budhkar, Dr. Arpita Gppalnternational Journal of
Advanced Research in Computer Science, ISSN N06-88%87, Volume 3, No.
4, July- August 2012

b. Component identification from existing object otieth system using Hierarchical
clustering by Shivani Budhkar, Dr. Arpita Gopal ISR Journal of Engineering,
ISSN: 2250-3021, May. 2012, Vol. 2(5) pp: 1064-1068

c. Component based software architecture recovery fobpect oriented system
using existing dependencies among classes by ShBadhkar, Dr. Arpita
Gopal,in International Journal of Computationalellhgence Techniques ISSN:
0976-0466 & E-ISSN: 0976-0474, Volume 3, Issuel,Z pp.-56-59.

d. Reverse Engineering Java Code to Class DiagramExXperience Report, by
Shivani Budhkar, Dr. Arpita Gopal, in Internationdburnal of Computer
Applications (0975 — 8887) Volume 29— No.6, Septent011, pp. 36-43

e. Component interactions from software architectevery by Shivani Budhkar,
Dr. Arpita Gopal, in International Journal of Congu Science and
Communication Vol. 2, No. 1, January-June 2011,149-15

f. Extraction of Connector Classes from Object —Ogdrbystem while recovering
Software Architecture by Shivani Budhkar, Dr. AgitGopal, in IEEE
International Advance Computing Conference (IACQ20Patiala, India, 6—
7March 2009, pp.1826-1828

Research study by Shivani Budhkar 193



