

EXTRACTION OF CONNECTOR CLASSES

FROM

OBJECT ORIENTED SYSTEM

WHILE RECOVERING SOFTWARE

ARCTITECTURE

A thesis submitted to

Tilak Maharashtra University, Pune

For the Degree of Vidyavachaspati (Ph.D.)

in the

Computer Management

Under the Faculty of Management

By

Mrs. Shivani Budhkar

Under the Guidance of

Dr. Arpita Gopal
Director-MCA

Sinhagad Institute of Business Management and Research,
Kondhwa, Pune - 411048

July 2013

I hereby declare that the thesis entitled “Extraction of connector classes from object

oriented system while recovering Software Architecture” completed and written by

me has not been previously formed the basis for the award of any Degree or other similar

title upon me of this or any other university or examining body.

Place: Pune (Shivani Budhkar)

Date: 30th July 2013 Research Student

Certificate

This is to certify that the thesis entitled “Extraction of connector classes from object

oriented system while recovering Software Architecture ” which is being submitted

for the degree of Doctor of Vidyavachaspati (Ph.D.) in Computer Management to Tilak

Maharashtra University is an original piece of research work completed by Mrs. Shivani

Budhkar under my supervision and guidance.

To the best of my knowledge and belief the work incorporated in this thesis has not been

formed the basis for the award of any Degree or similar title of this or any other

university or examining body upon her.

Place: Pune Dr. Arpita Gopal

Date: 30th July 2013 Director-MCA

Sinhgad Institute of Business Administration

and Research, Kondhwa-Bk, Pune – 411048

Acknowledgement

It would not have been possible to write this doctoral thesis without the help and support

of the kind people around me, to only some of whom it is possible to give particular

mention here.

I would like to express my deepest gratitude to Dr. Arpita Gopal, my research supervisor,

for her patient guidance, valuable support, enthusiastic encouragement, useful critiques of

this research work and assistance in keeping my progress on schedule.

My heartfelt thanks go to my fellow research scholar and friend, Chandrani Singh, whose

valuable support and help kept me on track.

I am particularly grateful for the assistance given by my friend Aniket Gujarathi. I would

like to thank him, who as a good friend was always willing to help and give his best

suggestions.

I would also like to thank my parents, my younger sister, and brother in law. My parents

are always big source of inspiration for me. They were always supporting me and

encouraging me with their best wishes for which my mere expression of thanks likewise

does not suffice.

I deeply grateful to my husband, Mr.Ashutosh Budhkar for constant support and sharing

the household responsibilities with me to let me have time to focus on my work. He was

always there cheering me up and stood by me through the good times and bad. To my

sweet little daughter, Devashree, who was always excited to see my research work and

was happy to see my research publications. She never disturbed me when I was doing my

research work at home and did her studies at her own.

To my in laws who are very excited to see my completed research study. Their constant

encouragement and blessing were always with me during my research work. I express my

deepest gratitude.

I am indebted to Dr. Prof. K.R.Joshi, Principal Modern College of Engineering, Pune,

who always has a positive attitude towards academic, and research endeavours and

provided me with ample opportunities to work and explore her academic leadership, and

quest for excellence have always been a source of inspiration. I would also like to thank

Dr. Prof. Desai A.D., vice- principal, Modern College of Engineering, Pune, Dr. Ekbote

G.R. Chairman, P.E.Society, Pune for their valuable support.

Finally I would like to thank all my friends who encouraged me during my research

work. Thank you all.

Shivani Budhkar

Research student

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar i

Contents

List of Figures ………………………………………………………………………….. v

List of Tables……………………………………………………………………………vii

Chapter 1 Introduction

1.1.Software Architecture Recovery ………………………………………………...3

1.2.Issues in Component Based Software Architecture Recovery …………………..4

1.3.Approaches towards Software Architecture Recovery …………………………..6

1.3.1 Inputs for Software Architecture Recovery………………………6

1.3.2 Software Architecture Recovery based on Approaches used…….9

1.3.3 Software Architecture Recovery based on Techniques used……11

1.4.Research Hypothesis ……………………………………………………………14

1.5.Research Methodology adopted ……………………………………………….14

1.6.Theoretical and Practical Significance of Proposed Work……………………..17

1.7.Organization of Thesis …………………………………………………….........17

Chapter 2 Review of Literature

2.1. Software Architecture Recovery ……………………………………………19

2.2. Software Architecture Recovery Approaches based on techniques used …...20

2.2.1 Quasi manual techniques………………………………………………..20

2.2.2 Semi-automatic techniques ……………………………………………..24

2.2.3 Quasi-automatic techniques …………………………………………….25

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar ii

2.3 Other Approaches ……………………………………………………………45

2.4 Observations from Literature Review……………………………………......54

2.5 Limitations of Existing Methods……………………………………………..54

2.6 The Present Study…………………………………………………………….56

Chapter 3 Study of Existing Reverse Engineering Tools, Framework and

Selecting Clustering Process for proposed Methodology

3.1. Study of Existing Reverse Engineering Tools ………………………………58

 3.1.1 Extracting Classes from Given Object Oriented System using Tool ….58

 3.1.2 Examine Model Properties of these Tools …………………………….60

 3.1.3 Comparison of the Tools ………………………………………………62

3.2. Study of Existing OSGi Framework for Implementing Components

 Created ……………………………………………………………………...70

 3.2.1 OSGi Model …………………………………………………………..70

 3.2.2 Creating Bundle using OSGI Framework……………………………..71

 3.2.3 Activators Management in OSGi Framework ………………………...72

 3.2.4 Guidelines for Implementing Components in OSGi Framework ……..73

3.3. Selection of Clustering Process for the Methodology ……………………….76

 3.3.1 Identification of Features and Entities in the System …………………76

 3.3.2 Selection of Similarity Measure ………………………………………76

 3.3.3 Selection of Clustering Algorithm …………………………………….77

 3.3.4 Selection of Evaluation Criteria for Assessment of Components……..78

Chapter 4 Proposed Component Based Software Architecture Recovery

4.1. The Proposed Component Based Software Architecture Recovery

 Approach……………………………………………………………………..79

4.2. Rationale for Component Based Software Architecture Recovery ………….81

4.3. The Proposed Framework and Tool………………………………………..…82

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar iii

 4.3.1 Identify Dependencies in Existing Object Oriented System ………….84

4.3.2 Identify Components …………………………………………………88

4.3.3. Component Evaluation and Interface Identification…………………95

4.4. Summary …………………………………………………………………..98

Chapter 5 Implementation of proposed component based software architecture

recovery framework

5.1 Implementation of the Proposed Framework in to the tool…………………99

 5.1.1. Module 1: Identify Dependencies in Existing Object Oriented

 System ………………………………………………………………..100

 5.1.2. Module 2: Identify Components ……………………………………101

 5.1.3. Module 3: Component Evaluation and Interface Identification…….103

5.2 Summary ……………………………………………………………………..108

Chapter 6 Results & Analysis

6.1. Module 1: Identify Dependencies in Existing Object Oriented System ……110

6.2. Module 2: Identify Components …………………………………………... 113

6.3. Module 3: Component Evaluation and Interface Identification…………….132

6.4. Sample Case studies – Analysis Chart ……………………………………...142

6.5. Comparative Study of Proposed Tool verses Existing Approaches ……….146

6.6. Research Outcome ………………………………………………………….148

Chapter 7 Summary & Conclusion

7.1 Summary ……………………………………………………………….…..149

7.2 Conclusion ………………………………………………………………....152

7.3 Suggestions for Further Research…………………………………………..154

References ………………………………………………………………………..155-166

Appendix I Glossary of Relevant Terms …………………………….167-169

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar iv

Appendix II – (a) Experimental Environment & Sample Programs ……….170-175

Appendix II – (b) Clustering Concepts……………………………………..176-191

Appendix II – (c) Research Paper Repository

a. Component evaluation and component interface identification from object
oriented System by Shivani Budhkar, Dr. Arpita Gopal, in International Journal of
Advanced Research in Computer Science, ISSN No. 0976-5697, Volume 3, No.
4, pp. 84-90,July- August 2012

b. Component identification from existing object oriented system using Hierarchical
clustering by Shivani Budhkar, Dr. Arpita Gopal, in IOSR Journal of Engineering,
ISSN: 2250-3021, Vol. 2(5) pp: 1064-1068, May. 2012

c. Component based software architecture recovery from object oriented system
using existing dependencies among classes by Shivani Budhkar, Dr. Arpita
Gopal,in International Journal of Computational Intelligence Techniques ISSN:
0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012, pp.-56-59, April
2012

d. Reverse Engineering Java Code to Class Diagram: An Experience Report, by
Shivani Budhkar, Dr. Arpita Gopal, in International Journal of Computer
Applications (0975 – 8887) Volume 29– No.6, pp. 36-43, September 2011

e. Component interactions from software architecture recovery by Shivani Budhkar,
Dr. Arpita Gopal, in International Journal of Computer Science and
Communication Vol. 2, No. 1, pp. 149-15, January-June 2011

f. Extraction of Connector Classes from Object –Oriented System while recovering
Software Architecture by Shivani Budhkar, Dr. Arpita Gopal, in IEEE
International Advance Computing Conference (IACC 2009) Patiala, India,
pp.1826-1828, 6–7March 2009

Synopsis…………………………………………………………………………….i-xvii

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar v

List of Figures

Figure 1.1 Architecture Recovery steps of FOCUS

Figure 2.1 Proposed Approach

Figure 3.1 Class Diagram of Arithmetic24 game from Rose

Figure 3.2 Class Diagram of Arithmetic24 game from ArgoUML

Figure 3.3 Class Diagram of Arithmetic24 game from Reverse

Figure 3.4 Class Diagram of Arithmetic24 game from Enterprise Architecture

Figure 3.5 CASE Tools Analysis Chart

Figure 3.6 Example of OSGi Bundle

Figure 3.7 Representation of bundles for ‘Arithmetic24’ game application

Figure 4.1 Proposed Frameworks and Tool

Figure 4.2 Process for Identifying Dependencies

Figure 4.3 Process for Identifying Components

Figure 4.4 Class diagram with Method Coupling

Figure 4.5 Class diagram with Inheritance Coupling

Figure 4.6 Process for Identification of Interfaces and Component Evaluation

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar vi

Figure 6.1 Method, Composition, Inheritance Dependency identified from

 Proposed Approach & Tool of ‘Arithmetic24’ Game software

Figure 6.2 Integrated Coupling identified from Proposed Approach & Tool of

 Arithmetic24 Game software

Figure 6.3 Distance table created using integrated coupling

Figure 6.4 Cluster levels created for ‘Arithmetic24’ game

Figure 6.5 Remaining cluster levels created for ‘Arithmetic24’ game

Figure 6.6 Components created for ‘Arithmetic24’ game

Figure 6.7 Components created and interface details among components

Figure 6.8 a) UML Component Diagram for Arithmetic24 game

Figure 6.8 b) UML Components with interfaces as packages for Arithmetic24

 game

Figure 6.9 Component Evaluation by using Component Size, Component

 Coupling and Component Cohesion Metrics

Figure 6.10 Sample Case Studies Analysis Chart

Figure 6.11 Performance of Proposed Tool

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar vii

List of Tables

Table 3.1 Elements found by CASE Tools

Table 4.1 Distance Calculation using Method Coupling

Table 4.2 Distance Calculation using Inheritance Coupling.

Table 6.1 Candidate components recovered from Proposed approach & tool

 for “Arithmetic24” game

Table: 6.2 Sample Case studies – Analysis Chart

Table 6.3 Comparison of the proposed tool and other approaches

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 1

Chapter 1

Introduction

Computing environments are evolving from mainframe systems to distributed system.

Many legacy systems today are object oriented. Today in addition to object oriented

techniques in software development, components are used. Development of distributed

systems is more and more based on the use of component technology. Components are

regarded as being more course-grained compared to traditional reusable artifacts such as

objects and provide high level representation of the domain. Components can be used

more effectively and are better suited for reuse than using objects. Maintainability and

reliability of software is improved by reusing existing elements / components. Hence, we

should derive reusable components and connectors from classes in object oriented

systems and change object oriented systems into component based systems. These

component based systems are suitable for distributed systems and multiple systems can

make use of these components and connectors.

Software reuse is one of the most researched subjects in software engineering. Software

reuse is the process of implementing and / or updating software systems using existing

software assets. This results in improved software quality and productivity. This in turn

reduces the time to market.

According to Suk Shin et al [91] Component based development is an effective reuse

technology which extensively utilizes object oriented design; therefore, it is economical

approach to generate component based design form object oriented design.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 2

Component based software development extends object oriented software development

paradigm. It assembles and reuses pre- existing software components. Creating new

Component based development cost is higher than conventional software development .It

is better to use existing object oriented code to create components and migrate into

component based system.

One of the most prominent maintenance objectives is migrating systems to distributed

computing environments using components.

To maintain and understand large applications, it is crucial to know software architecture.

Software Architecture plays very important role in all phases of software development.

Most of the existing systems do not have reliable software architecture and some legacy

systems are designed without software architecture design phase. Thus software

architecture recovery is very important task. Reverse engineering will always be

necessary and play important role for software architecture recovery from the existing

software. So, by doing reverse engineering, we can retrieve component based software

architecture from existing object oriented software. Component based software

architecture is beneficial as it is useful for reusing system parts represented as

components. The software architecture of the system is described as a collection of

components along with the interaction among these components, where as the main

system functional block are components, they strongly depend on connectors – which is

abstraction capturing nature of these interactions.

Therefore we should derive reusable components and connectors from classes in object

oriented system and change object oriented system into component based system suitable

for distributed environment where many systems make use of components and

connectors.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 3

1.1. Software Architecture Recovery

Software architecture definitions in general contain three elements: components,

connectors and rationales, such as e.g. ‘The structure of the components of a

program/system, their interrelationships, and principles and guidelines governing their

design and evolution over time’ described by Wolfgang et al [100]. Gall et al [23] defined

architecture recovery as a process of identifying and extracting higher level of

abstractions from existing software systems. Architecture recovery and reengineering to

handle legacy code is critical for large and complex systems. Software architecture

recovery is a set of methods for the extraction of architectural information from lower

level representations of a software system, such as source code. The abstraction process

to generate architectural elements frequently involves clustering source code entities

(such as files, classes, functions etc.) into subsystems according to a set of criteria that

can be application dependent or not. It is described in Wikipedia [112] that Architecture

recovery from legacy systems is motivated by the fact that these systems do not often

have an architectural documentation, and when they do; this documentation is many

times out of synchronization with the implemented system. Alae-Eddine et al [3] defined

Component-based software architecture as a high level abstraction of a system using the

architectural elements: components which describe functional computing, connectors

which describe interactions and configuration which represents the topology of

connections between components.

The figure 1.1 shows architecture recovery steps using FOCUS approach proposed by

Nenad Medvidovic and Vladimir Jakobac[55]. This is light weight approach for

recovering and evolving architectures of undocumented Object oriented applications.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 4

Figure 1.1: Architecture Recovery Steps of FOCUS

1.2. Issues in Component Based Software Architecture Recovery

- There is a distinct lack of a complete methodology for reengineering an object

oriented legacy system into system that consists of components described by Eunjoo

Lee Byungjeong [18].

- Object oriented design (OOD) can be transformed into Component –based design

(CBD) suggested by Suk Shin [91]. For this approach one can have object oriented

design specification available, which is mostly not available for legacy systems.

- According to Mishra et al [74] there are various approaches which deal with partial

recovery of component based architecture i.e. only reusable components are identified

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 5

through reverse engineering. Using weighted directed graph and hybrid clustering

algorithm, object oriented software is partitioned to groups as components, described

by Qifen et al [66] but no details about interfaces between classes or components,.

- Simon, Houari et al [83] and Aline et al [1] used executing execution traces which are

generated by using use cases as dynamic dependencies to identify components from

object oriented system. Then using global search (genetic algorithm), and local search

(Simulating Annealing algorithm) components are defined. For this approach, system

use cases are needed. If no documentation is available for use cases, it becomes

difficult to start with.

- Formal concept analysis technique can also be used to identify methods shared by use

case implementation. Each concept in the generated conceptual lattice encompasses a

set of use cases and their shared methods. However, the lattice does not make clear

where a source code entity, such as class, must be located in the architecture, since

same entity appears in more than one concept, suggested by Thomas Tilley et al [95].

- Some of the approaches which support dynamic analysis for component based

software architecture, described by Lei Ding and, Nenad Medvidovic [48], which is

not automated.

- For many existing legacy systems, software architecture representation is not

available. This is required in every phase of software, mostly in software maintenance

phase and migrating to new technology. Cost wise it is beneficial to reuse existing

source code rather than developing entire new system.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 6

- Most of the transformations from object oriented system to component based systems

require lots of human experts like designers of old system, maintainers, user etc. Fully

automated approaches are very less in this kind of transformation.

1.3. Approaches towards Software Architecture Recovery

Several excellent approaches and techniques have been proposed in literature to support

software architecture recovery. Sylvain Chardigny et al [93] distinguish these works

according to process input used, approach and techniques used to extract architecture.

1.3.1 Inputs For Software Architecture Recovery:

The various works proposed in the literature have various inputs for software recovery

process. Inputs used for software architecture recovery can be of two types: Non

architectural input and architectural input.

- Non architectural input : Pollet et al [64] suggested non architectural inputs are

source code e.g. RMTool, symbolic textual information available in comments or in

the method names e.g. Anquetil and Lethbridge recover architecture from the source

file names, dynamic information like run time events such as method calls, CPU

utilization, network bandwidth, physical organization of application in terms of files

and folders often tells architectural information ManSART and Softwarenaut work

from the structural organization of physical elements such as files, folders, or

packages. Some approaches map packages or classes to components and use the

hierarchical nature of the physical organization as architectural input. It is then

important to consider the influence of the human organization on the extracted

architectures or views. Bowman et al [39] used the developer organization to form an

ownership architecture that helps stakeholders reconstruct the software architecture.

According to Pollet et al [64] non architectural information like historical information

is rarely used in software architecture recovery. For example ArchView is a recent

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 7

approach that exploits source control system data and bug reports to analyze the

evolution of recovered architectural views. To assist a reverse engineer in

understanding dependency gaps in a reflexion model, Hassan and Holt, Murphy

annotates entity dependencies with sticky notes. These sticky notes record

dependency evolution and rationale with information extracted from version control

systems. ArchEvo produces views of the evolution of modules that are extracted from

source code entities. Human expertise as non architectural information is very helpful

when it is available. At high abstraction levels, Software architecture recovery is

iterative and requires human knowledge to guide it and to validate results. To specify

a conceptual architecture, reverse engineers have to study system requirements, read

available documentation, interview stakeholders, recover design rationale, investigate

hypotheses and analyze the business domain. Human expertise is also required when

specifying viewpoints, selecting architectural styles, or investigating orthogonal

artifacts. While software architecture recovery processes involve strategy and

knowledge of the domain and the application itself, only a few approaches take

human expertise explicitly into account. Ivkovic and Godfrey [36] proposed to

systematically update a knowledge base that would become a helpful collection of

domain-specific architectural artifacts.

Most often it works from source code representation but it also considers other kinds

of information. Most of them are non-architectural. For example - human expertise

used in interactive way in order to guide the process. Some works use architectural

input like style. For example Focus approach proposed by Lei Ding and, Nenad

Medvidovic [48] uses style in order to infer a conceptual architecture that will be

mapped to a concrete architecture extracted from source code. Some uses

documentation as input along with source code. According to Pollet et al RMTool

[64] directly query the source code using regular expressions as non architectural

inputs. Finally most works are based on human expertise: Some use expertise of

architect which uses tool as input.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 8

- Architectural inputs: Architectural inputs can be architectural style and viewpoints.

Style: Architectural styles such as pipes and filters, layered system, data flow are

popular because like design patterns, they represent recurrent architectural situations.

They are valuable, expressive, and accepted abstractions for software architecture

recovery and more generally for software understanding. Examples of architectural

styles are pipes and filters, blackboard, and layers. Recognizing them is however a

challenge because they span several architectural elements and can be implemented in

various ways. The question that turns up is whether software architecture recovery

helps reverse engineers specify and extract architectural styles suggested by Pollet et

al [64]. For Examples: In Focus, Ding et al [48] use architectural styles to infer a

conceptual architecture that will be mapped to a concrete architecture extracted from

the source code. Medvidovic et al [54] introduce an approach to stop architectural

erosion Their approach considers architectural styles as key design idioms since they

capture a large number of design decisions, their rationale, effective compositions of

architectural elements, and system qualities that will likely result from using the style.

Viewpoints: The system architecture acts as a mental model shared among

stakeholders. Since the stakeholders’ interests are diverse, viewpoints are important

aspects that software architecture recovery may consider. Viewpoint catalogues were

built to address this issue: the 4 + 1 viewpoints of Kruchten; the four viewpoints of

Hofmeister et al [7], the build-time viewpoint introduced by Tu and Godfrey or the

implicit viewpoints inherent to the UML standard. Pollet et al [64] described that

most software architecture recovery approaches reconstruct architectural views

according only to a single or a few preselected viewpoints. For Examples: The

Symphony approach of Van Deursen et al [98] aims at reconstructing software

architecture using appropriate viewpoints. Viewpoints are selected from a catalogue

or defined if they don’t exist, and they evolve throughout the process. They constrain

SAR to provide architectural views that match the stakeholders’ expectations, and

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 9

ideally are immediately usable. The authors show how to define viewpoints step by

step, and apply their approach on four case studies with different stakeholder goals.

They provide architectural views to reverse engineers following the viewpoints, these

reverse engineers typically use during design phases. Pollet et al [64] described that

Riva proposed a view-based SAR approach called Nimeta based on Symphony:

Nimeta is a full SAR approach that uses the Symphony methodology to define

viewpoints.

- Mixed inputs: Most approaches work from a limited source of information, even if

multiple inputs are necessary to generate rich and different architectural views.

Kazman et al [68] advocate the fusion of multiple sources of inputs to produce richer

architectural views: for example, they produce inter-process communication and file

access views. Lange and Nakamura [17] mix dynamic and static views to support

design pattern extraction. Pollet et al [64] described ArchVis uses source code,

dynamic information such as network log or messages sends and file structures.

Multiple inputs must be organized and Ivkovic and Godfrey [37] proposed a

systematic way to organize application domain knowledge into a unified structure.

1.3.2 Software Architecture Recovery Based on Approaches used:

Software Architecture Recovery processes classified based on their flow to identify

architecture: bottom-up, top down or hybrid.

- Bottom-up approach

In this approach we start with low level knowledge like source code and gradually

discover the complete architecture. Several tools support this bottom-up process.

The Dali tool by Rick et al. [69] [70] supports a typical example of a bottom-up process:

(1) Heterogeneous low-level knowledge is extracted from the software implementation,

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 10

treated and stored in a relational database. (2) Using the Rigi visualization tool by Hausi

et al [30], a reverse engineer visualizes and manually abstracts this information. (3) A

reverse engineer specifies patterns by selecting source model entities with SQL queries

and abstracting them with Perl expressions. Based on Dali, Guo et al [26] proposed ARM

which focuses on design patterns conformance.

Other examples of bottom-up approaches include ArchView, Revealer and ARES,

ARMIN Gupro described by Pollet and Ducasse [64]. Also ROMANTIC approach

proposed by Chardigny, et al [93] is bottom up approach.

- Top-down approach

In this approach we first build conceptual architecture of system in terms of some pattern.

The software system is then searched to find instances of that pattern. Conceptual

architecture is formed with the help of requirements or architectural styles.

Top-down processes start with high-level knowledge such as requirements or

architectural styles and aim to discover architecture by formulating conceptual

hypotheses and by matching them to the source code. The term architecture discovery

often describes this process. For example Reflexion Model of G. Murphy [20] is a typical

example of Top- Down process. In this model reverse engineers first defines his high-

level hypothesized conceptual view of the application then he specifies how this view

maps to the source code concrete view. The reverse engineer iteratively computes and

interprets reflexion models until satisfied.

- Hybrid approach

This approach is a combination of the previous two – Bottom-up and Top-down. On one

hand, low level knowledge is abstracted up using various techniques. On the other hand

high level knowledge is refined.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 11

For example, Igor et al [36] proposed a hybrid architecture recovery methodology called

Dynamo-I, which recovers conceptual architecture based on documentation available. It

also identifies key use cases by analyzing user level behavior of the application. The

approach also uses source code of the application for recovering of software architecture.

Tzerpos et al [97] presented a hybrid process in which they combined extracted code

facts and information derived from interviewing developers to determine the architectural

structure of a legacy system. This approach is combination of the classic top down and

bottom up approaches. The approach is based on experience with large industrial

application.

FOCUS proposed by Ding and Medvidovic [48] also uses hybrid process. Other hybrid

processes are Nimeta, ManSART, ART, X-Ray, ARM and DiscoTect described by Pollet

and Ducasse [64].

As with any classification, the borders are fuzzy for these categories.

1.3.3 Software Architecture Recovery Based on Techniques used:

The research community has explored various techniques to reconstruct architecture that

can be mainly classified according to their automation level.

- Quasi-manual

The reverse engineer manually identifies architectural elements using a tool to assist him

to understand his findings. There are two categories of this technique namely:

Construction based techniques and Exploration based techniques. Construction based

techniques reconstruct the software architecture by manually abstracting low level

knowledge e.g. Rigi, CodeCrawler described by Pollet et al [64].Exploration based

techniques give reverse engineers an architectural view of the system by guiding them

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 12

through the highest-level artifacts of the implementation, like in Softwarenaut by Mircea

Lungu et al [51]. The architectural view is then closely related to the developer’s view.

Another example of quasi-manual technique is, Focus by Ding and Medvidovic [48]

regroups classes and maps the extracted entities to an idealized architecture obtained

from an architectural style according to the human expertise. It is one of the bottom-up

approaches, where it is assumed that little or no documentation is available for system

modification. In addition to this, the basic architecture of the original system and desired

properties of the application are assumed to be known.

- Semi-automatic

It automates repetitive aspects of the extraction process but reverse engineer steers

iterative refinement or abstraction, leading to the identification of architectural elements.

That is the reverse engineer manually instructs the tool how to automatically discover

refinements or recover abstractions.

For example, in Dali reverse engineer specifies reusable abstraction rules and execute

them automatically using SQL described by Sylvain et al [93].

Some approaches build analyses as plain object-oriented programs. Stéphane Ducasse et

al described [89] For example; the groupings made in the Moose environment are

performed as object-oriented programs that manipulate models representing the various

inputs.

- Quasi-automatic

Pure automatic techniques for reconstructing the software architecture tend towards

automatic process but still reverse engineer must steer them. Concept, dominance and

cluster analysis are the techniques which are often combined for software architecture

recovery in quasi-automatic techniques.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 13

Concepts: Formal concept analysis is a branch of lattice theory used to identify design

patterns, features or modules. Tilley et al [95] present a survey of work using formal

concept analysis.

Clustering Algorithms: Clustering algorithms identify groups of objects whose

members are similar in some way. They have been used to produce software views of

applications. To identify subsystems, Anquetil and Lethbridge [56] cluster files using

naming conventions. Some approaches automatically partition software products into

cohesive clusters that are loosely interconnected suggested by Spiros et al [87] and Theo

Wiggerts et al [94]. Maher Salah [49] described that Clustering algorithms are also used

to extract features from object interactions.

Dominance: In directed graph, a node D dominates a node N if all paths from a given

root to N go through D. In software maintenance, dominance analysis identifies the

related parts in an application .Lundberg and Löwe [44] outline a unified approach

centered around dominance analysis. On the one hand, they demonstrate how dominance

analysis identifies passive components. On the other hand, they state that dominance

analysis is not sufficient to recover the complete architecture: it requires other techniques

such as concept analysis to take component interactions into account.

Recent example of quasi-automatic approach is ROMANTIC approach developed by

Chardigny et al [93]. It is also bottom-up approach which uses other semantic

information about the system like architecture elements, architectural quality to extract

architecture in addition to source code and decreases the need of human expertise.

Even though software architecture recovery works are classified according to process

input used, approach and techniques used to extract architecture, but the process of

software architecture recovery depends on what are the stakeholders’ goals; how does the

general reconstruction proceed; what are the available sources of information, based on

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 14

this entire software architecture approach is decided, and finally what kind of knowledge

does the process provide.

1.4 Research Hypothesis

The proposed work is aimed at providing assistance to software maintenance for

transforming existing object oriented system to component based system. Thus, reusing

existing code and migrating to new environment saves cost, efforts of redesign and

redeveloping the system which suits to new evolving environment. This is what the

software industry always prefers.

This research work endeavors to achieve the following

- To develop approach and tool for migration from object oriented system to component

based system.

- The tool will assist to extract components and interface details from object oriented

system to form component based system.

- Maximum automation and less human intervention will reduce human efforts and cost

of software development by reusing existing object oriented system instead of starting

development from scrap.

- Extracted components will also be evaluated by tool for quality monitoring using

metrics like size of component, coupling of component and cohesion within component.

1.5 Research Methodology adopted

The proposed research work is divided into 3 steps

Before using proposed approach and tool, use any UML reverse engineering tool to

generate class diagram, which will help to compare the results from step-I. To extract

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 15

classes from existing object oriented system, any good quality reverse engineering tool

like IBM’s Rational Rose or Enterprise architecture can be used .By experiments find

which tool extracts maximum and accurate information about classes from object

oriented system.

Step – I Component Based Architecture Recovery from Object Oriented System

from Existing Dependencies among Classes -

The proposed approach is based on the identification of source code entities and the

relationship between them. The list of possible relationships between object oriented

systems includes inheritance, composition, invocation relationship etc. Also these

dependencies are used to generate input needed for next step i.e. identify components.

Thus this step consists of

- Existing java source code from folder is input to the tool

- Identify and display dependencies among classes like inheritance coupling,

composition coupling, method coupling and integrated coupling of them in tabular

format.

Step –II Component Identification from Existing Object Oriented System using

Hierarchical Clustering -

- Using identified dependencies and clustering algorithm, cluster levels will be formed

and components will be defined.

- We will propose agglomerative hierarchical Clustering algorithm for this step. Input

for the algorithm is taken from the previous step i.e. dependencies among classes

Step-III Component Evaluation and Component Interface Identification from

Object Oriented System -

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 16

Identified group of classes working together will form components. Using the

components created in previous step interface details will be identified and components

will be evaluated for quality using component quality metrics. The interface details can

be bundled into packages, which will act as connector between the components. Thus this

step consists of

- Identify interface details for the components created in the previous step.

- Evaluate the components for quality monitoring using metrics like size of component,

coupling of component and cohesion within component.

Once components are evaluated, interface details are extracted and the component based

software representation is ready.

The above mentioned methodology will be simulated on a java application. The study is

specific to Java object oriented source code but gives general idea about proposed tool

and entire approach.

This work is not proposes for deploying components and connectors. It is assumed that

software maintenance person knows how to deploy using the component based

framework or model, the organization uses. For example, if a software company uses

OSGi model, then extracted interface details can be bundled into package which can be

imported and exported as per requirement. So classes and interfaces play a role of

required and provided interfaces.

The software maintenance person can use the extracted details from proposed approach

and using his or her knowledge can rewrite components and connectors by giving names

to them. For example, the tool extracts components with the names e.g. Component0,

Component1, Component2 etc. He should rename these at the time of implementation

like in ATM system component-bank, component- transaction etc. Thus user should be

able to create packages with the component name.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 17

1.6 Theoretical and Practical Significance of Proposed Work

Theoretically this research will contribute to the existing component based software

recovery approaches from object oriented system implemented and followed in software

industry.

Outcome of this research will be of practical importance to software developer and

software maintenance person and to the Management of software industry for migrating

the software into new computing environment by reusing existing object oriented system

and reducing cost of software development with less human efforts.

1.7 Organization of Thesis

Chapter 2 presents the review of literature and the background material. First it addresses

details about software architecture recovery. It gives the details of component based

architecture extraction approaches and lists out their shortcomings. We have proposed the

quasi- automatic approach along with its relative advantages and disadvantages.

Chapter 3 will describe which clustering algorithm type we will choose for proposed

approach and why. In proposed approach, it helped us to create components from object

oriented classes. The chapter presents study of existing reverse engineering tools and

existing component based framework OSGi.

Chapter 4 discusses proposed entire process approach and tool. It discusses about class

extraction using reverse engineering tool, identifying dependencies among the classes,

clustering algorithm defined, creating inputs for the algorithm, components created,

component evaluation and interface details extraction, process for creating connectors.

We have proposed agglomerative hierarchical clustering algorithm and inputs required

for algorithm are generated. The process of input generation is defined in this chapter.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 18

Quality metrics for components are proposed for evaluation of components, criteria is

mentioned here so that it can be easily find that components created are of good quality.

It also briefly discusses the clustering techniques, component based system, advantages

of using it.

Chapter 5 gives actual implementation of tool proposed in chapter4. The chapter presents

various algorithms to implement proposed tool.

Chapter 6 provides results and analysis of various experiments conducted for proposed

extraction process is performed. It discusses the case study of “arithmetic24” game,

developed in java, this gives guideline for user for creating components and connectors of

any java object oriented system. This chapter provides a comparative study with various

java application systems and comparison of the proposed approach with other existing

approaches.

Chapter 7 presents summary and conclusion. It also talks about suggestions and scope for

future work.

Appendix – I lists relevant definitions for understanding of fundamental about software

architecture recovery.

Appendix – II (a) lists the experimental environment to implement the proposed

approach and sample programs of proposed tool.

Appendix – II (b) contains overview of clustering, different kinds of clustering methods

which are used for software Architecture recovery like partitional clustering algorithms

and hierarchical clustering algorithm. It also describes similarity measures based on

which similar clusters are grouped together.

Appendix – II (c) contains a copy of all the published papers during this research work.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 19

 Chapter 2

Review of Literature

Component based software architecture recovery from object oriented system has been

handled since 1998. The present study gives thorough understanding of different

approaches used to recover component based software architecture from object oriented

system. The result of literature survey of these approaches is presented here.

2.1 Software Architecture Recovery

Gall H et al [23] defined software architecture recovery as a process of identifying and

extracting higher level of abstractions from existing software systems. Software

Architecture recovery and reengineering to handle legacy code is critical for large and

complex systems. O’Brien [57] described, the recovery process can be assisted by

different tools available in the market like Dali. Architecture representation consists of

structural and non-structural information about software architecture. Structural

information is the components and connectors describing the configuration of a system.

Non structural information is architectural properties for example, safety patterns,

communications patterns, behavioral patterns, structural patterns and creational patterns.

According to Garlan [25] Software Architecture plays an important role in at least six

aspects of software development: understanding, reuse, construction, evolution, analysis

and management. These aspects make software Architecture crucial for software

development.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 20

Stephane Kell [90] described, first problem is that architectures are not explicitly

represented in code as classes as the packages are. The second problem is that software

applications continually evolve and grow and so does its architecture. Hence, conceptual

architecture does not match with concrete architecture.

Various works are proposed in literature in order to extract architecture from an object-

oriented system. We present survey according to techniques used to extract architecture.

The inputs of the extraction approaches are various. Most often it works from source

code representations, but it also considers other kinds of information. Most of them are

non-architectural.

2.2 Software Architecture Recovery Approaches based on techniques used

The techniques used to extract architecture are various and can be classified according to

their automation level like quasi manual approaches, semi-automatic and quasi-automatic

techniques.

2.2.1 Quasi manual techniques

Some methods are almost manual. These techniques construct the software architecture

by manually abstracting low level knowledge and uses interactive, expressive

visualization tools. Following is survey of the quasi manual approaches.

S.K.Mishra, Dr.D.S.Kushwaha, and Prof.A.K.Misra, ” Creating Reusable Software

Component from Object-Oriented Legacy System through Reverse Engineering”, 2009.

In this paper authors proposed the approach Component Oriented Reverse Engineering

(CORE) for development of reusable components through reverse engineering. By using

the reverse engineering techniques; they extracted architectural information and services

from legacy object oriented system and later on converted these services into components

using OOAD(Object Oriented Analysis and Design) models like use case model, class

diagram and sequence diagram. Use cases from the use case model having similar

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 21

functionalities are grouped together. They also used classes from class diagram and their

relationship to identify system components. They used CRUD matrix i.e. Created, Read

,Updated and Deleted during some scenario, message-call information and class

clustering for component creation. The approach is manual and time consuming. It

requires some kind of automation.

Nenad Medvidovic and Vladimir Jakobac,” Using Software Evolution to Focus

Architectural Recovery”, 2006. In this paper authors proposed light weight approach

Focus for recovering and evolving architectures of undocumented Object oriented

applications. Architecture recovery took place in two categories logical and physical

Architecture recovery. The architectures are recovered incrementally: only those parts of

an application affected by a given change are modified and their architecturally relevant

characteristics extensively studied and documented (hence the name “Focus”); the

recovery of additional subsystems’ architectures will occur only as new modifications

that pertain to those subsystems are required. With each new modification, the task of

recovering the architecture of the relevant subsystem and enacting the change becomes

easier since a larger portion of the overall system’s architecture is known and correctly

documented. The approach takes the help of reverse engineering tool available in market

such as Rational Rose and generates class diagram. Then some rules for grouping classes

are defined by authors, using that classes are grouped together manually to form

components. Once application architecture is recovered, evolution step of Focus is

applied to modify application that satisfies new requirements.

Suk Kyung Shin and Soo Dong Kim ,” A Method to transform Object oriented Design

into Component based Design using Object-Z” , 2005. In this paper authors proposed

technique for transforming object oriented Design to Component based Design using

Object –Z specifications. Object-Z is a formal language to design object oriented system.

Using formal specifications of both OOD and CBD, they proposed set of rules to

transform OOD into CBD. In this approach initially they specify key elements of OOD in

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 22

its own meta-model and then showed how OOD can be specified in object-Z. The meta-

model they used of OOD is based on Object Modeling Technique (OMT).The meta-

model based on OMT consists of static, dynamic and functional model. Authors then

defined key elements of CBD and represented components in Component-Z which is

based on Object-Z. Since there is no standard component reference model provided by

OMG (Object Modeling Group), a meta- model of CBD was proposed from static,

functional and dynamic viewpoints such as meta-model of OOD. Authors also specified

provided and required interfaces by using some transformation rules. Resulting CBD

from above approach can be implemented by utilizing object in EJB, .NET or CORBA.

Nenad Medvidovic , Alexander Egyed and Paul Gruenbacher, “Stemming

Architectural Erosion by Coupling Architectural Discovery and Recovery”, 2003. Nenad

Medvidovic et al presented approach to combine techniques for architectural discovery

from system requirements and architectural recovery from system implementations. For

software Architecture recovery, they generate class diagram from available tools like

Rational Rose and then Classes can be grouped based on different criteria and/or

architectural concerns as components. Remote procedure call (RPC) identified as

connectors. In this approach the result of the recovery step is not a complete architecture

of the system. Several pieces of information is still missing. This approach is not fully

automated. For recovering classes form object oriented system, help from existing tools is

needed.

Lei Ding and Nenad Medvidovic, “Focus: A Light-Weight, Incremental Approach to

Software Architecture Recovery and Evolution”, 2001. In this paper Lei and Nenad

proposed a guideline to a hybrid process which regroups classes and maps the extracted

entities to a conceptual architecture obtained from an architectural style according to the

human expertise. Authors proposed an approach called Focus, to be applied to recovering

and evolving architectures of undocumented, moderately sized Object Oriented

applications. Each iteration of approach is composed of two interrelated steps:

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 23

architecture recovery and system evolution. Lei Ding recovered architecture of object

oriented application by proposing idealized software architectural model and then

mapping it to actual component recovered. So, in this approach entire knowledge of

application of which software architecture needs to be recovered should be there. Human

expertise is needed for this approach.

Wolfgang Eixelsberger, Michaela Ogris, Harald Gall, Berndt Bellay,” Software

Architecture Recovery of a Program Family”, 1998. Wolfgang et. al presented a

framework for recovering the software architecture of a program family. In this

framework, architectural properties such as safety or system control are recovered using

different reverse engineering methods and tools in combination with architectural

descriptions. The result of the architecture recovery process is the system’s architectural

properties and their architectural descriptions representing the architecture of a specific

system. The framework was developed and applied to recover the architectures of

embedded software systems. The architecture recovery framework described here is

based upon four parts: - the case study, architectural properties, architectural descriptions

and architecture recovery methods. These parts influence each other and limit and/or

guide the architecture recovery process. As a case study authors used Train Control

System (TCS) which is an embedded real time system successfully in use in different

countries. The available information of case study was source code of TCS, system

documentation domain knowledge engineer, application specific engineer. While

working on case study authors identified several architectural properties that were not

explicitly expressed in design and then enhanced them with other related properties not

originally found in the case study. Each architectural property then described using one or

more architectural description notations. Different architecture recovery methods are used

to recover each of the previously defined architectural properties. The authors also

addressed the recovery of the architecture also from structural point of view i.e.

component and connector based and typically described using Architecture Description

Language(ADL).

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 24

Wolfgang Eixelsberger, Lasse Warholm, Rene Klösch , Harald Gall and Berndt

Bellay,” A Framework for Software Architecture Recovery” ,1997. In this paper authors

proposed software architecture recovery framework. The input of the recovery process is

the source code, the design documentation, and domain knowledge. Information from the

source code can be extracted with the help of reverse engineering tools and by manual

recovery. Reverse engineering tools perform static analysis on the code and extract

information like call graphs, cross reference tables, and data flow diagrams. Human

interaction is not possible while the tools are analyzing the source code. Manual recovery

is performed on the source code by human experts, especially domain experts, can

analyze the source code using their knowledge which other cannot be done by the reverse

engineering tools. Thus, the framework combines application domain knowledge and the

capabilities of reverse engineering tools in order to strive for the requirements of an

architecture recovery tool.

2.2.2 Semi-automatic techniques

Semi-automatic methods automate repetitive aspects of the recovery process but the

reverse engineer steers the iterative refinement or abstraction for identification of

architectural elements. Following is survey of the semi-automatic approaches.

Aline.P.V. Vasconcelos, and C.M.L. Werner, "Software Architecture Recovery based

on Dynamic Analysis", 2004. In this paper authors proposed an approach to software

architecture recovery from object-oriented legacy systems mainly based on the dynamic

analysis of systems. The process described here is iterative and incremental. The

architecture is recovered in cycles, starting by the use-case modeling activity. In each

cycle a more complete description of the system architecture is obtained. The process is

semi-automatic and guided by a developer who must have some knowledge about the

application. If developer does not have knowledge, then it has to be obtained from system

experts, available system documentation and application execution. The process starts by

the static reverse engineering and use-case modeling activities. The static reverse

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 25

engineering aims at the recovery of a static model of the system, which is represented

through UML Class Diagrams. This activity is executed only once. The static reverse

engineering was performed with Ares tool which is capable of extracting a UML static

model from Java source code. Use case modeling can start in parallel. For use case

modeling use cases are selected according to the change and evolution requirements of

the application. Then dynamic reverse engineering starts by behavioral models such as

sequence diagram. The system is executed for the specified use case scenarios and these

executions are monitored, allowing the collection of execution traces. Execution traces

encompass the set of events and messages generated during system execution with their

sender and receiver instances and their types. To support this dynamic reverse

engineering authors had developed a trace collector tool, named tracer to monitor java

program executions. The approach requires domain expert knowledge.

George Yanbing Guo, Atlee, and Kazman. “A software architecture reconstruction

method”, 1999. This paper presents semi-automatic method ARM (Architecture

Reconstruction method) is an approach to architectural reconstruction distinguishing

between the conceptual architecture and the actual architecture derived from source code.

ARM applies design patterns and pattern recognition to compare the two architectures.

ARM assumes the availability of system designers to formulate the conceptual

architecture. The approach is divided into two phases:1) identification and extraction of

source code artifacts, including the architectural elements and 2) analysis of extracted

source artifacts to derive a view of the implemented architecture.ARM is an iterative and

interpretive process; a human is integral part of the loop to evaluate the results and

determine what patterns to apply in subsequent iterations.

2.2.3 Quasi-automatic techniques

Pure automatic techniques for reconstructing the software architecture tend towards

automatic process but still reverse engineer must steer them. Concept, dominance and

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 26

cluster analysis are the techniques which are often combined for software architecture

recovery in quasi-automatic techniques.

Following is survey of quasi-automatic techniques.

- Software Architecture Recovery using Concepts

Gabriela and Tom [22] described, Concept Analysis (CA) is a branch of lattice theory

that allows us to identify meaningful groupings of elements (referred to as objects in CA

literature) that have common properties (referred to as attributes in CA literature) 1.

These groupings are called concepts and capture similarities among a set of elements

based on their common properties. Mathematically, concepts are maximal collections of

elements sharing common properties. They form a complete partial order, called a

concept lattice, which represents the relationships between all the concepts.

Pollet et al [64] described formal concept analysis is a branch of lattice theory used to

identify design patterns, features or modules. Ganter [24] described formal concept

analysis is a general mathematical method for identifying commonalities within systems.

It provides a way to discover sensible groupings of objects that have common attributes

in a certain context (“objects” of concept analysis shall not be confused with “objects” of

object-oriented programming). Informally, a concept is a collection of all the objects that

share a set of attributes in a given context. The set of common attributes of the concept is

called the concept’s intent, and the set of objects belonging to the concept is called the

concept’s extent. Formally, a context is a triple C = (O, A, I), where O and A are finite

sets of objects and attributes, respectively, and I is a binary relation (an instance relation)

between O and A expressing the attributes each object has. The concept lattice

constructed from a context describes the input on various levels of abstraction. In

reengineering many approaches used formal concept analysis to identify modules and

components in legacy systems. Thus concept analysis does not group items, but rather

builds up so-called concepts which are maximal sets of items sharing certain features. It

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 27

does not try to find a single optimal grouping based on numeric distances. Instead it

constructs all possible concepts, via a concise lattice representation.

Alae-Eddine El Hamdouni, A. Djamel Seriai, and Marianne Huchard, ”Component-

based Architecture Recovery from Object Oriented Systems via relational Concept

Analysis”, 2010.In this paper authors presented approach of extracting component based

architecture recovery from object oriented system using relational concept

analysis(RCA).In RCA approach architectural components are identified from concepts

derived by using all existing dependency relations between classes of the object oriented

system. This approach is based on ROMANTIC approach developed by S. Chardigny

[93]. RCA process is based on the identification of source code entities and the relations

between them by source code analysis . These relations are matched with ROMNTIC

refinement model. The four step RCA process is : i) Extraction of a Dependency graph

(DG) of source code classes. ii) Create RCA model using dependency graph data. iii)

Generate lattice of concepts representing clusters of object classes. iv) Identify candidates

components from resulting lattice.

Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, andYann-Ga¨el

Gu´eh´eneuc,” Refactoring of Design Defects using Relational Concept Analysis”, 2008.

In this paper authors proposed automated approach for suggesting defect-correcting

refactoring using relational concept analysis (RCA). They defined a three-step RCA-

based correction process that follows a two-step defect detection process. First, they build

a model of the program that is simpler to manipulate than the raw source code and

therefore eases the subsequent activities of detection and correction. The model is

instantiated from a meta-model to describe OO programs. Next, they apply well-known

algorithms based on metrics and–or structural data on this model to single out suspicious

classes having potential design defects. For each suspicious class, they automatically

extract a RCF that encodes relationships among class members from the model of the

program. Then, the obtained RCF is fed into a RCA engine that drives the corresponding

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 28

concept lattices. Finally, the discovered concepts are explored using some simple

algorithms, which apply a set of refactoring rules that allow the identification of cohesive

sets of fields and methods.

Gabriela Ar´evalo, St´ephane Ducasse and Oscar Nierstrasz,” Lessons Learned in

Applying Formal Concept Analysis to Reverse Engineering,” 2005. In this paper authors

used formal concept analysis to build tool to identify recurring set of dependencies for

object oriented software reengineering. The approach is divided into five steps:1) Model

Import: A model of the software is constructed from the source code. Moose

reengineering platform, is used for these purpose , which is reengineering vehicle for

object oriented software.2) FCA Mapping: A FCA Context (Elements, Properties,

Incidence Table) is built, mapping from meta model entities to FCA elements (referred as

objects in FCA literature) and properties (referred as attributes in FCA literature) This

step is used to map the model entities to elements and properties, and they need to

produce an incidence table that records which elements fulfill which property. 3) ConAn

Engine: The concepts and the lattice are generated by the ConAn tool. Once the elements

and properties are defined, they run the ConAn engine.The ConAn engine is a tool

implemented in VisualWorks 7 which runs the FCA algorithms to build the concepts and

the lattice.4) Post-Filtering: Concepts that are not useful for the analysis are filtered out.

Once the concepts and the lattice are built, each concept constitutes a potential candidate

for analysis. But not all the concepts are relevant. Thus they have a post-filtering process,

which is the last step performed by the tool. In this way they filter out meaningless

concepts. Analysis: The concepts are used to build the high level views. In this step, the

software engineer examines the candidate concepts resulting from the previous steps and

uses them to explore the different implicit dependencies between the software entities and

how they determine or affect the behavior of the system. Thus in this paper authors

presented a general approach for applying FCA in reverse engineering of object oriented

software. They also evaluate the advantages and drawbacks of using FCA as a meta tool

for our reverse engineering approaches.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 29

Gabriela Ar´evalo and Tom Mens,” Analyzing Object Oriented Framework Reuse

using Concept Analysis”, 2002. In this paper authors used the concept analysis technique

to analyze classes and their methods based on their relationships in terms of inheritance,

interfaces and message sending behavior. The inheritance relationship indicates whether

a class is an ancestor or descendant of another one. The interface relationship indicates

which methods are exported by the classes. The message sending behavior indicates

which methods are called by other methods in a class. Authors calculated the concept

lattice for a well-known inheritance hierarchy: the Smalltalk Magnitude hierarchy. Then,

they analyzed the results after classifying the generated concepts into concept patterns.

Each concept pattern allowed us to discover a number of interesting non-documented

relationships (based on self sends and super sends) among classes in a hierarchy.

Especially for large inheritance hierarchies, this information is crucial for understanding

the software and reengineering.

Arie Van Deursen, A., Kuipers, T,” Identifying objects using cluster and concept

analysis”, 1999. In this paper authors proposed a method for identifying objects by semi-

automatically restricting legacy data structures. Authors used both Formal Concept

Analysis and clustering algorithm to build Object Oriented classes from procedural

source code. Elements from source code are gathered according to the features they

share. Then, the resulting concepts are candidate classes and sub-concept relationships

represent relations between these classes. Authors here used agglomerative hierarchical

clustering algorithm. The dendrogram is prepared based on actual clusters found by the

algorithm. The clustering algorithm used average linkage to measure distance between

two clusters.

Houari A. Sahraoui, Hakim Lounis, Walcelio Melo, and Hafedh Mili, “A concept

formation based approach to object identification in procedural code”, 1999. In this

paper authors described migration of procedural software systems to the object-oriented

(OO) technology. Their approach is based on the automatic formation of concepts, and

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 30

uses information extracted directly from code to identify objects. The approach tends,

thus, to minimize the need for domain application experts. The approach is based on the

relationship between data and routines. It consists of five steps. First, they compute some

metrics to determine the profile of the application at hand. This profile allowed them to

choose the appropriate program abstraction that they can use to identify objects. Then,

they identify objects using different algorithms. Third, they identify the methods of these

objects. The fourth step consists of identifying the relationships between the objects

(generalization, aggregation, or more generally, associations). Finally, the source code is

transformed using the so-derived object model. For object identification step they used

two algorithms, a graph decomposition algorithm, and their own algorithm, which uses

concept formation with Galois lattices.

Siff, M., Reps, T.W.,” Identifying modules via concept analysis.”, 1999. In this paper,

author has presented a method for identifying modules in legacy systems based on

concept analysis. The entire approach is divided into three steps: - 1) Build a context,

where objects are functions defined in the input program and attributes are properties of

those functions. The attributes could be any several properties relating the function data

structure. 2) Construct a concept lattice from the context – Concept lattice can be built

from a program in such a way that concept represent potential modules. 3) Identify

concept partitions. Each partition corresponds to possible modularization of input

program. In this approach a formal context is built from the system elements, and both

negative and positive attributes are used in order to extend the context to be well formed.

Then, an algorithm of concept partition is used to discover possible partitions in the set of

the generated concepts. The chosen partition represents the set of candidate classes.

- Software Architecture Recovery using Clustering

Clustering algorithms identify groups of objects whose members are similar in some way.

They have been used to produce software views of applications. Different kinds of

clustering algorithms are used in literature for software architecture recovery.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 31

Simon Allier, Salah Sadou, Houari Sahraoui and Regis Fleurquin, ” From Object

Oriented Applications to Component Oriented Application via Component Oriented

Architecture”, 2011.In this paper authors proposed a method to automatically transform

an operational object oriented application in an operational component based application.

The method consists of two steps: i) identify components ii) identify provided and

required interfaces. For component identification step authors used traces which are

identified by executing scenarios corresponding to applications use cases . Heuristic

search is used to find a near –optimal solution. The static call graphs are also generated

from source code. Thus using execution traces and static call graph components are

created. They manually refine the components created. This approach combines two

different heuristics, a genetic algorithm and simulated annealing algorithm. For second

step i.e. identifying required and provided interfaces, component’s services are identified

by using system’s call graph. These system call graphs are produced by using Variable

Type Analysis (VTA) algorithm and execution traces. The identified required services are

grouped together and respectively provided services according to application domain.

Siraj Muhammad, Onaiza Maqbool, Abdul Qudus Abbas, “ Role of relationship

during clustering of object oriented software system” , 2010. In this paper relationship

within object oriented system are divided into different categories evaluated them for

clustering process. Authors in this approach used 26 different relationships to find the

similar entities, which are commonly used in the object oriented system. These

relationships can be direct or indirect. The approach uses an objective function which

counts the number of relationships that exists between entities (in this case

classes).Greater number of relationships between two entities indicates the higher

similarity between them. Thus similarity matrix is produced and hierarchical

agglomerative clustering algorithm is used to cluster object oriented software system.

The results produced by clustering algorithm is compared with the architecture produced

manually by human experts.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 32

Qifeng Zhang, Dehong, Qiu, Qubo Tian, Lei Sun, “Object Oriented Software

Architecture Recovery using New Hybrid Clustering Algorithm” , 2010. Object oriented

software architecture recovery using a new hybrid clustering algorithm – A Authors

defined Weighted Directed Class Graph(WDCG)to represent object oriented system and

then new hybrid clustering algorithm based on hierarchical clustering and partition

clustering is proposed for recovering high level architecture from object oriented system.

WDCG is extracted from Java byte code to represent static structure of software. They

also used coupling between classes like inheritance coupling, method coupling,

composition coupling , data coupling, coupling between classes , module coupling and

cohesion coupling as the weights of edges. The hybrid clustering algorithms takes input

WDCG , number of clusters and produced output a partition of WDCG.

Yuxin Wang, Ping Liu, He Guo , han Li, Xin Chen ,” Improved Hierarchical

Clustering algorithm for Software Architecture Recovery”, 2010. In this paper authors

proposed improved hierarchical clustering algorithm called LIMBO Based Fuzzy

Hierarchical clustering (LBFHC) to increase the software architecture recovery accuracy

and enhance the effectivity. LIMBO (ScaLable InforMation Bottleneck) algorithm

proposed by Tzerpos [97] is the foundation of proposed algorithm. The LBFHC

algorithm is composed of four steps: i) Identification of entities and features- For the

improvement of quality and enhance cohesion of clusters , more detailed information

extracted from legacy system is defined as meaningful features and associated with each

entity or cluster. Different kinds of meaningful features considered here are global

variables referred to by an entity , local variables referred to by an entity , user defined

types used by an entity, entities called by an entity, system calls referred to by an entity ,

macro referred to by an entity. ii) Calculation of similarity- Based on LIMBO,

information loss measure is used to calculate similarity instead of using traditional

distance measure. In this case greater the information loss is , the smaller degree of

similarity is . Therefore , the pair of entities or clusters , which hold the minimum value

of information loss is combined into same cluster. iii)Process of clustering – The

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 33

LBFHC algorithm is presented in this step to form the clusters. iv) Selection of measures

- To evaluate the clustering results for quality various measures are defined here. This

step describes two primary types of measures -1) Internal evaluation It is intrinsic

evaluation of clustering. It comprises the number of clusters and the percentage of

arbitrary decisions, which are used to evaluate LBFHC.2) External evaluation is done

with the help of expertise and experience from specialists. Both internal and external

type of evaluations are compared for assessment of result from clustering.

Simon Allier , Houari A. Sahraoui and Salah Sadou” Identifying Components in

Object-Oriented Programs using Dynamic Analysis and Clustering”, 2009. In this paper

authors proposed an approach for component candidate identification as a first step

towards the extraction of component-based architectures from object oriented programs.

The approach used dynamic call graphs as input, built from execution traces

corresponding to use cases. This approach is divided into four steps:-1) data extraction 2)

possible class groups identification, 3) candidate component selection, 4) Candidate

component refinement. Data (method calls) are extracted using dynamic analysis. They

are obtained by executing typical use cases of the program and by grouping the

corresponding execution traces into dynamic call graph (DCG).Use cases are derived

from the application documentation. Using DCG concept lattice is built. The lattice’s

node defines group of interrelated classes. Using some heuristic selected groups are

optimized. Thus resulting set of candidate components and their connections would form

the component based architecture. For capturing execution traces and generating DCG,

authors used existing tool, MuTT(Multithreaded Tracer). Also for constructing lattice

from DCG framework Galicia is used. For selection and refinement of components they

wrote algorithms. This approach is limited up to component identification and connector

identification is not considered.

Brian S. Mitchell and Spiros Mancoridis, “On the evaluation of the bunch search-

based software modularization algorithm”, 2008. The Bunch algorithm extracted high

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 34

level architecture by clustering modules (files in C or class in C++ or Java) into sub-

systems based on module dependencies. The clustering is done using heuristic-search

algorithms. This approach first uses source code analysis tool to first create a graph of

system structure, where the nodes are modules (e.g. Java classes/C++ files), and the

edges are binary relations that represent the module level dependency (e.g. method calls,

inheritance).The search based clustering algorithm has been implemented in Bunch tool.

The tool generates a random solution from search space and then improves it by using

evolutionary computation algorithms.

Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, Dalila Tamzalit ,

“Extraction of Component-Based Architecture From Object-Oriented Systems”, 2008. In

this paper proposed an approach called ROMANTIC which focuses on extracting a

component-based architecture of an existing object-oriented system. It is a quasi-

automatic process of architecture recovery based on semantic and structural

characteristics of software architecture concepts. Software Architecture is extracted using

a variant of the simulated annealing algorithm.

Sylvain Chardigny, Abdelhak Seriai, Dalila Tamzalit, Mourad Oussalah,” Quality-

Driven Extraction of a Component-based Architecture from an Object-Oriented System”,

2008. It is quasi-automatic process of architecture recovery based on the quality

characteristics of architecture by formulating it as a search-based problem. These

characteristics guide the partitioning of the system classes in order to define architectural

components.

The ROMANTIC tool uses metrics, but relies on a different approach than clustering.

The first step of the extraction consists of defining a correspondence model between

object concepts and architectural ones. This correspondence is elaborated by the

architect. Then the tool validates this correspondence using predefined guides based on

semantic and qualities of the architecture. The process selects among all the architectures

that can be abstracted from a system, the best one according to the set of guides. The

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 35

guides are assumed to be measurable constraints to model the extraction process as a

balancing problem of these competing constraints. The extraction problem is a search-

based one and uses the Low-Temperature Simulated Annealing algorithm. The currently

available information do not provide performance measures, the approach is costly, at

least from a theoretical point of view. However, ROMANTIC is not yet publicly

available to compare it with others.

Xinyu Wang,Xiaohu Yang,Jianling Sun and Zhengong Cai,"A New Approach of

Component Identification Based on Weighted Connectivity Strength Metrics", 2008. In

this paper authors proposed component extraction method based on Weighted

Connectivity Strength (WCS) metrics. The method proposed weighted connectivity

strength metrics to measure connectivity between components and then applied clustering

process to group classes based on WCS into components. On the basis of connectivity

strength and considering variations of user defined types this study proposed new

measure of component metrics WCS.WCS reflects the differences of user defined classes

in the system and assign high weight to crucial classes, enlarge connectivity strength of

classes related with crucial classes to help closely related classes easily cluster into

component. The study also used hierarchical clustering algorithm for improvement of

precision and efficiency. In this methodology interfaces between components are not

identified.

Istvan Gergely Czibula and Gabriela¸Serban, “Hierarchical Clustering for Software

Systems Restructuring”, 2007. In this paper author’s proposed new agglomerative

hierarchical clustering algorithm for restructuring of object oriented software systems in

order to improve the structure of software system. For this purpose a heuristic that

determines the no of application classes was proposed. This approach would help

developers to identify appropriate refactoring. This approach consists of three steps: 1)

Data collection-The existing software system is analyzed in order to extract from it the

relevant entities like classes, methods, attributes, and the existing relationships between

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 36

them. 2) Grouping- The set of entities extracted in the previous step are regrouped into in

clusters using hierarchical agglomerative clustering algorithm for improved structure of

existing software system.3) Refactoring extraction- The newly obtained software

structure is compared with the original software structure in order to provide a list of

refactoring which transform the original structure into an improved one. The approach

was evaluated on open source jHotDraw and results were obtained.

Onaiza Maqbool and Haroon A. Babri ,” Hierarchical Clustering for Software

Architecture Recovery” , 2007.In this paper authors provided a review of hierarchical

clustering techniques for architecture recovery and modularization of software systems,

which is helpful for applying clustering successfully for the purpose of architecture

recovery and modularization. As in the last few years, clustering has emerged as a

promising technique for software architecture recovery. According to author

understanding behavior of clustering measures and algorithm is the first step towards

meaningfully employing clustering techniques for subsystem recovery. For this purpose:

1) they analyzed the behavior of various similarities and distance measures in the

software context, thus identifying families of similarity/distance measures. 2) They

analyzed the clustering approach of the Weighted Combined Algorithm (WCA) and

LIMBO and described similarities between their two step approaches. The authors

showed that these algorithms substantially reduce arbitrary clustering decisions that are

common during the hierarchical clustering process in software domain. 3) They analyzed

the clustering process of well-known hierarchical clustering algorithms and evaluated

their strengths and weaknesses by using multiple assessment criteria. They demonstrated

that the performance of an algorithm depends not only on its own characteristics but also

on those of the software system to which it is applied. Thus the focus of this paper is on

the analysis of hierarchical clustering measures and algorithms in the software domain

and identification of their strengths and weaknesses in this domain so that they may be

used effectively for architecture recovery.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 37

Hironori Washizaki and Yoshiaki Fukazawa, “A technique for automatic component

extraction from object-oriented programs by refactoring”, 2005. In this paper authors

concentrated on the extraction of components by refactoring Java programs. They

proposed a technique for extracting components from existing object oriented programs

by their new refactoring ‘extract component’ method. This extraction is based on the

class relation graphs. Class relation graphs are obtained by static analysis of the

dependencies among java classes. Then clustering algorithm was applied on graphs. In

this approach authors first defined a class relation graph (CRG) that represents the

relations among classes/interfaces in the target Java program. Next, using a CRG, they

propose a technique for extracting components from OO programs, and changing the

parts surrounding the extracted components to allow these surrounding parts to use the

newly extracted components. These surrounding parts become the usage examples of the

extracted components. This approach is limited to java beans components only.

Soo Ho Chang, Man Jib Han, and Soo Dong Kim, ”A Tool to Automate Component

Clustering and Identification”, 2005. In this paper authors developed tool which

identifies components from the object oriented system. The tool takes raw data input,

which needs to be derived from fundamental artifacts of object oriented modeling such as

use case model, object model and dynamic model. Hence, it is clear that if these artifacts

are not available, it is difficult to identify components from the object oriented system.

This means the method assumes that the fundamental artifacts of object oriented

modeling such as use case model; object model and dynamic model are available. The

approach consists of four steps:-1) measure functional dependency 2) clustering related

use cases 3) allocate classes to components 4) Refine components. This method considers

three types of relationships for identifying components. In step 1 and 2 functional

dependency between use cases is used as the fundamental means to cluster related

functions. The dependencies are measured with the four criteria in step 1 and related use

cases are clustered in step 2. In step 3 functionality-to-data relationship expressed in

dynamic model such as sequence diagram are taken to assign related classes to candidate

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 38

components. In step 4 dependency or coupling between classes is to verify and refine the

identified components. If there are two closely related classes which are separated into

two components, it is identified and refined in this step. Thus tool automates component

clustering and identification method.

Eunjoo Lee Byungjeong Lee Woochang Shin Chisu Wu, “A Reengineering Process

for Migrating from an Object-oriented Legacy System to a Component-based

System”,2003 In this paper authors presented reengineering process for migrating from

object oriented legacy system into component based system. The process consists of

creating basic components using existing relationship and then refines the components by

using metrics and clustering algorithm they have proposed. Components are retrieved

from C++ source code. In this approach only dependency relationship among

components is considered. The approach did not give much detail about the interfaces

among the components. Lee et al defined criterions of component metrics, including

connectivity strength, component complexity, etc. In the definition of connectivity, Lee

assigned equal weight to all user defined types. However, the complexity of user defined

types in a real system varies greatly, which is not reflected in Lee’s definition and results

in low precision of component classification. They created components based upon the

original class relationships that they determine by examining the program source code.

They described the system and process formally and suggested applicable metrics for the

process. These can be used to help create components with the desired level of

complexity that can operate as cohesive functional units in a distributed environment.

Woo-Jin Lee, Oh-Cheon Kwon, Min-Jung Kim, and Gyu-Sang Shin,” A Method and

Tool for Identifying Domain Components Using Object Usage Information”, 2003. In

this paper authors presented a systematic method and its supporting tool called a

component identifier that identifies software components by using object-oriented

domain information, namely, use case models, domain object models, and sequence

diagrams. These object oriented domain models were obtained from a domain analysis

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 39

process, in which common domain objects and common use cases were extracted through

commonality and variability analysis. Assuming that common class diagrams, common

use cases, and sequence diagrams are given after the domain analysis process, they focus

on the component identification process, in which they clearly define dependencies

among objects and propose object clustering algorithms. To precisely describe the

dependencies among objects , authors merge the three viewpoints –structural, functional,

behavioral into uniform model in which they extract the structural relationship among

objects from class diagram. To clarify ambiguous dependencies among objects, they

extracted object usage which represents usage relationship among objects such as create,

destroy, update and reference, from sequence diagrams automatically or additionally

specified the object usage according to use cases. The authors weighted each object

usage according to the frequency or significance of each use case. To uniformly describe

object usage and structural dependencies in a single notation they proposed an actor and

object usage graph (AO usage graph). To perform the clustering algorithms they provide

new graph concept called object dependency network. An object dependency network

can be obtained from AO usage graph by calculating weighted value for the accumulated

object usage and by eliminating actor nodes.. On the basis of object dependency network,

authors provided two object clustering algorithms called seed algorithm and cohesion

algorithm. In addition to this they provide supporting tool called object identifier.

Brian S. Mitchell, Spiros Mancoridis and Martin Tra verso ,” Search Based Reverse

Engineering”, 2002. In this paper authors have described a process for reverse

engineering the software architecture of a system directly from its source code, which

consists of clustering the modules from the source code into abstract structures called

subsystems and then reverse engineering the subsystem-level relations using a formal

(and visual) architectural constraint language. This approach is especially helpful when

other forms of traditional design documentation are outdated or not available. This

approach consists of two steps supported by a suite of integrated tool. The first step uses

their clustering tool, namely Bunch, to generate subsystem hierarchy automatically .

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 40

Using reverse engineered subsystem hierarchy as input , then they used a second tool ,

called ARIS(Architecture Relation Inference System) that enabled software developers

to specify the rules and relations that govern how modules and subsystems can relate to

each other. These formal descriptions are called interconnection styles and are created

using visual architectural constraint language called ISF.

Hemant Jain, Naresh Chalimeda, Navin Ivaturi ,Balarama Reddy,” Business

Component Identification- A Formal Approach”,2001. In this paper authors developed

approach which helps in identifying components from analysis level object model

representing a business domain. It is assumed that domain modeling has been done at

analysis level which is input to the process .Thus domain model represents significant

object classes using UML notations, the structural relationship between object classes,

use cases and sequence/interaction diagrams presenting dynamic relationship between the

classes. Author developed tool ‘CompMaker’ by implementing clustering algorithm for

identifying initial set of components and then using super type, subtype relationship and

set of heuristic enhance and refine the solution obtained from clustering algorithm. The

approach uses Hierarchical Agglomerative clustering algorithm. For this approach, UML

analysis model consisting of use case diagram, class diagram and sequence diagram

needs to be prepared. User needs to have domain knowledge to assign weights to use

cases.

Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun Jang, Dong Han Ham,

“Component Identification method with coupling and cohesion”, 2001. In this paper

authors proposed component identification method that considers class cohesion, class

coupling, the quality metrics to define the quality of identified components. By using

domain knowledge and experience of developer architecture design is performed.UML

diagrams like use case, class diagram sequence diagram are used in it. Then component

clustering algorithm is used to identify components using suggested component metrics.

In this clustering algorithm mathematical basis is clustering binary relation, cluster

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 41

relation, class relation graph. For class relation graph developer’s domain knowledge is

required. Thus this approach consists of six steps:-1) Defining architecture 2) Design

models using UML diagrams like use case diagram and class diagram. 3) Finding key

classes 4) considering component cohesion 5) considering coupling among components

6) considering component interface. This approach is combined approach of clustering

and graph.

Kamran Sartipi and Kostas Kontogiannis ,” Component Clustering Based on Maximal

Association” , 2001. Authors presented a supervised clustering framework for recovering

the architecture of a software system. The application of data mining techniques allows to

extract the maximum association among the groups of entities. The user incorporates the

knowledge about the system domain and documents into the clustering process. This

approach first provides a new similarity metric based on maximal association property(

maximum number of shared properties) between two groups of entities such as files.

After this Supervised clustering technique is used for decomposing a large system of files

into cohesive subsystems and finally used search space reduction technique to manage

the search complexity. Authors implemented a prototype reverse engineering tool to

recover the architecture of software system as cohesive components. Depending upon the

user expertise and knowledge about the system, the user interaction can range from few

steps of guidance to the clustering algorithm, up to determining a whole cluster. The tool

represents the result of clustering as a subsystem and interconnections representation

using both HTML pages to browse and analyze the quality of results and different graphs

to visualize and investigate.

S. Mancoridis, B. S. Mitchell , Y. Chen, E. R. Gansner ,”Bunch: A Clustering Tool for

the Recovery and Maintenance of Software System Structures”, 1999. Mancoridis et. al

proposed Bunch tool which can cluster source level modules and dependencies into

subsystem. The tool assumes that the modules and dependencies of a system are mapped

to a Module De-pendency Graph (MDG).The MDG is automatically constructed using

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 42

readily available source code analysis tools. The Bunch tool was extended to take into

account human knowledge. The approach uses clustering algorithms to automatically

partition software products into cohesive clusters that are loosely connected. Clustering

algorithms, based on hill climbing and genetic algorithms are applied on module

dependency graphs and extracted from source code.

Spiros Mancoridis and Brian S. Mitchell,” Using automatic clustering to produce high-

level system organizations of source codes, 1998. This paper describes automatic

recovery of the modular structure of a software system from its source code. First step in

this process is to extract module level dependencies from the source code and store

resultant information in a database. Authors used AT&T’s CIA tool and Acacia for C++

for this step. After all of the module-level dependencies have been stored in the database,

they executed an AWK script to query the database, filter the query result and produce as

output a textual representation of module dependency graph. The clustering tool Bunch is

applied to their clustering algorithms to the module dependency graph. Then they used

the AT&T’s dotty visualization tool to read the output file from clustering tool and

produce visualization of results.

Chung-Horng Lung,” Software Architecture Recovery and Restructuring through

Clustering Techniques”, 1998. In this paper author proposed a quantitative approach

based on clustering techniques for software architecture restructuring, reengineering and

recovery. Use cases are used together with the different clustering methods to reduce

complexity at different levels of abstraction along with the design patterns. A

visualization tool, SPV (Software Partition & Visualization) was developed on top of the

clustering methods to provide a user friendly environment. Using two examples authors

showed a result of decoupling effort of a legacy system and an application of the

clustering technique to support the identification of a design pattern. This study also

illustrates how the combination of use cases and clustering techniques help them

restructure the system.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 43

- Graph Based or using Dominance Software Architecture Recovery

Dominance analysis is a graph based technique to identify certain nodes in directed

graph. The dominance analysis can be applied on call graphs derived from system to

identify candidates for reusable modules and components in object oriented system.

A dominance is a relation between nodes in directed graphs G=(N,E), where N is a finite

nonempty set of nodes and E N× N is a set of edges. A root node of a directed graph is

a node r N with no incoming edges. A root directed graph Gr = (N, E, r) is a directed

graph (N,E) with unique root node r N.

Thus in this approach mathematical graphs are developed either by static analysis or

dynamic analysis whose nodes are classes and edges are interaction between classes.

Using these graphs components are created.

Hassan Mathkour, Ameur Touir, Hind Hakami, Ghazy Assassa,”On the

transformation of object oriented-based systems to Component based Systems”, 2008.

The approach proposed a framework which creates component based software from

object oriented based software.This approach consists of following steps:-1) Taking

UML class diagrams as inputs; UML class diagram is generated of inputted java code and

then exported to XMI. Open source tool ArgoUML is used for this purpose. 2) Analyzing

the class diagrams to generate a graph; reading the class diagram’s design elements and

relations from XMI file which is output of the class diagram phase. Weighted directed

graph is created for the XML file generated. Nodes of the graphs are elements such as

classes and interfaces, the edges are relationship between those elements.3) Setting a

weight for each edge of the graph according to the type of relation it represents. 4)

Taking the weighted graph and clustering it into highly connected clusters; a hierarchical

divisive clustering technique is used for clustered graph generation and based on graph

components are created.5) Generating the result so that each cluster represents a

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 44

component.6) Producing fully deployable components using one of the available forward

engineering tools.

Spiros Xanthos, "Clustering Object-Oriented Software Systems using Spectral Graph

Partitioning", ACM Student Research Competition 2005.In this paper author proposed a

method for analyzing object oriented software system trying to identify highly coupled

communities of classes. Utilizing this he obtained the modules that form the system. Also

this method can identify clusters that are autonomous and might possibly imply reusable

components. Finally this method can estimate the degree of modularity in the software

system by recognizing the individual modules that constitute the system. These are

accomplished by applying Algebraic Graph theory techniques in the object oriented

software domain. The innovation of this paper is use of spectral graph partitioning

techniques in object oriented domain and the application of these techniques for

decomposing an object oriented system into smaller modules, some of which might be

used as reusable components. In this method author uses class diagram to create graph

representation and then algorithm is applied to partition the graph into sub graphs. This is

iterative process and the algorithm stops when external edges are more than internal

edges. This methodology focuses on only component identification and not about the

interface details among components created.

Spiros Xanthos,” Identification of Reusable Components within an Object- oriented

Software System using Algebraic Graph Theory”, 2004. The approach for identifying

reusable components from object oriented system has been developed. The technique

used here is Spectral Graph partitioning. In this approach graph were created from class

diagram in which classes stands for the nodes and the discrete messages exchanged

between the classes stand for the edges. The approach is based on iterative method for

partitioning graph in order to identify possible reusable components within system. From

the graph eigenvectors of Laplacian matrix derived and is used for partitioning i.e.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 45

algebraic graph theory is used for identifying reusable components. Thus class diagram

needs to be generated and then spectral graph partitioning algorithm is applied.

Jonas Lundberg and Welf L¨owe , “Architecture Recovery by Semi-Automatic

Component Identification”, 2003. In this paper authors proposed to use semi-automatic

program analysis to extract the information. The overall process consists of starting point

as input source code of the program about to be investigated. Then certain information as

series of abstractions is extracted from source code. This information is used to construct

a call graph, which is low level representation of program. Using this low level

representation system architecture is recovered. The authors used dominance analysis to

identify possible software components in an object oriented system. The actual

dominance analysis is applied on a high level representation of the system i.e. the class

graph – a directed graph where nodes are the system’s classes and edges class

interactions. It can easily be obtained from the system call graph. Dominance analysis

was applied to class interaction graph, which was derived from object oriented system. In

class graph, nodes are system’s classes and edges are class interactions. Dominance

analysis is good at identifying certain types of components but cannot be used to recover

the complete architecture of the system at hand. Much more human intervention is

required for component identification.

2.3 Other Approaches

Shaheda Akthar and Sk.MD.Rafi,” Recovery of Software Architecture Using

Partitioning Approach by Fiedler Vector and Clustering”, 2010. In this paper authors

proposed approach in which modules are identified i.e. procedures, files functions etc.

Based on this information graph constructed and identified relations between modules.

The input to graph are adjacency matrix, Degree matrix and Laplacian matrix. The graphs

are decomposed into sub graphs using similarity measures. Finally clustering methods

and the general notion of fielder vector are used for evaluating design patterns, which is

part of Software Architecture recovery.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 46

Shaheda Akthar, Sk.Md.Rafi, “Improving The Software Architecture Through Fuzzy

Clustering Technique”, 2010. In this paper authors used a fuzzy clustering technique to

make the Software Architecture recovery to be more efficient and accurate. The approach

uses one of the most popular clustering algorithm called the fuzzy C-means to find the

related data items which share the common properties. The steps in this approach are : i)

Identify the data sets present in the software. Ii) Calculate the degree of relatedness of

these components iii) Apply the fuzzy C means algorithm to reconstruct the components

obtained. This step involves with two phases- 1) Calculate the cluster centers 2) Assign

these points to the clusters. This process is repeated until the cluster center is stabilized.

Thus the architecture is recovered using fuzzy clustering.

Pascal Andr´e, Nicolas Anquetil, Gilles Ardourel, Jean-Claude Royer,” Component

types and communication channels recovery from Java source code”, 2009. In this paper

authors proposed tool which recognizes components, its type and communication

channels in existing java source code. The approach explicitly identifies communication

paths between existing components. This project aims at establishing link between

component implementation that could be called the concrete model - and component

specifications- that could be called the abstract model. The concrete model can be any

object oriented application like java application. This research project tries to establish:

1) A common meta-model that addresses both the problem of handling several specific

components models E.g. SOFA, Kmella etc. in a generic way and the problem of linking

abstract models and concrete code. The meta-model also provides the data structure to

store the traceability links between models and code and set of rules to check abstract

models well-formed. 2) The structure abstraction tool extracts and infers architectural and

typing features from source code. It is designed as an iterative and rule based process. 3)

The behavioral abstraction tool extracts a specification of the dynamic behavior of the

components identified during the structure abstraction process. It also works from static

analysis of the source code. The input to project is java source code and output is the set

of components with several kinds of relations between them and set of data types.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 47

Abdelkrim Amirat and Mourad Oussalah , “Enhanced Connectors to Support

Hierarchical Dependencies in Software Architecture”, 2008. In this paper authors

proposed C3 (component, connector, configuration) meta model. Authors also proposed

two complementary models to describe system’s architecture. They used representation

model to describe architectures based on C3 elements and reasoning model to understand

, analyze the representation model. The core elements of the C3 representation models

are components, connector and configurations, each of these elements have an interface

to interact with its environments. The reasoning model is defined by four types of

hierarchies and each type represents a specific views on C3 representation model

different from others. The four hierarchies are: 1)The structural hierarchy used to show

the different nested levels of system architecture. 2) The behavioral description hierarchy

to show different level of system behavior, generally represented by protocols.3)The

conceptual hierarchy to describe the libraries of element types corresponding to

structural or behavioral elements at each level of architecture description. 4)The

metamodeling hierarchy to locate where our model coming from and what we can do

with it. Each hierarchy is associated with two points of view first the external view i.e.

logical architecture. Second view is internal view i.e. physical architecture. The

approach described software architectures which is a minimal and complete Architecture

Description Language. They also introduced new concept of connectors.

Trevor Parsons, Adrian Mos, Mircea Trofin, Thomas Gschwind,” Extracting

Interactions in Component-Based Systems”, 2008. This paper covers dynamic techniques

for collecting component interactions. It presented number of different approaches for

capturing component level interactions. Authors presented approaches here cover the

most widely used techniques for interaction extraction in enterprise Java systems. For

each approach they presented need and technical requirement for implementation of

approach. They used different tools to extract and recording interactions from java

system. They also presented performance and functional consideration and contrast them

against each other by outlining their relative advantage and disadvantages.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 48

James Sasitorn and Robert Cartwright,” Deriving Components from Genericity”,

2007. In this paper authors described how to formulate a general component system for a

nominally typed object-oriented language supporting first-class generic types simply by

adding appropriate annotations. The fundamental semantic building blocks for

constructing, type checking and manipulating components are provided by the underlying

first class generic type system. To demonstrate simplicity and utility of this approach to

support components authors have designed and implemented an extension of Java called

Component NEXTGEN (CGEN). CGEN is based on Sun Java 5.0 javac compiler

backward compatible with existing code and runs on current Java Virtual Machines.

Stephen Kell ,” Rethinking Software Connectors”, 2007. In this paper author precisely

characterized connectors, resolving many ambiguities and inconsistencies in the literature

and contradicting the popular assumption that components and connectors are disjoint.

The paper contributes : 1) A more precise characterization of connectors and relationship

with coordinators and adapters. 2) They described the relationship between coupling and

connectors and argued that connectors should be capable of adaption in order to

maximize component reuse. 3) They identified the class configuration languages and

stated their relevance to connections, proposing explicit configuration and suitable

configuration language. Authors also described about what the connectors are and what

aren’t connectors.

Mircea Lungu and Michele Lanza, Tudor Gˆırba,” Package Patterns for Visual

Architecture Recovery”, 2006. In this article authors proposed a set of package patterns

which are used for augmenting the exploring process with information about the

worthiness of the various exploration paths. The patterns are defined based on the internal

package structure and on relationships between the package and other packages in the

system. Authors also proposed classification of packages based on information regarding

the structural properties of the packages and on the way they interact with one another.

When only the source code is available, recovering the architecture of a large software

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 49

system is a difficult task, authors presented this interactive visual approach to architecture

recovery based on package information. This approach considers only dependencies

among packages and automatically decompose the system based on package structure.

Ondrej Galik and Tomas Bures ,” Generating Connectors for Heterogeneous

Deployment”, 2005. Authors presented approach to create an extensible connector

generator with features needed for heterogeneous deployment. They have designed an

open framework allowing to add plug-ins for supporting different connector features (in

the form of connector elements) and different component systems and their associated

type-systems.

Authors have followed a connector model based on composing the overall connector

functionality from small components (connector elements). They have designed an open

framework allowing to add plug-ins for supporting different connector features (in the

form of connector elements) and different component systems and their associated type-

systems. We have implemented our approach in Java. The current implementation allows

them to build connectors that comply with all the requirements brought in by the

heterogeneous deployment.

Zhongjie Wang, Xiaofei Xu, and Dechen Zhan,” A Survey of Business Component

Identification Methods and Related Techniques”, 2005. Authors in this paper presented

various component identification methods. Authors classified these methods into four

types i.e. domain analysis based methods, cohesion coupling based clustering methods,

CRUD matrix based methods and other methods. In domain engineering based methods,

component designers do domain analysis from a group of similar requirements in one

business domain, find commonalities and variables across them, construct domain

specific software architecture to seek reusable business semantics, then construct reusable

business component specifications. As any software artifacts require changing itself

along with time these methods are not reasonable. Basic idea of Cohesion coupling based

clustering methods are : calculate the strength of semantics dependencies between two

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 50

business elements and transform business model into the form of weighted directional

graph, in which business elements are nodes and semantics dependency strength are the

weight of edges between nodes, then cluster the graph using graph clustering or matrix

analysis techniques. CRUD matrix based methods are actually a clustering method which

uses those behavioral business elements(e.g. use case, events, operations) and static

business elements(e.g. business entities) as sample data, uses four semantic

relationships(Create-C, Read-R, Update-U, Delete- D, with priorities as C>D>U>R)

between behavioral and static elements to calculate association weight and merges those

use cases and entities with C or D relationships into one business components. Other

methods include Similarity based component identification method, Variation Oriented

Decomposition Method, Information loss Minimization based method, Business Model

stability based method etc. These methods lacked complete methodology for component

and connector identification. More over these methods have less automation degree.

Andrey A.Terekhov,” Dealing with Architectural Issues: a Case Study”, 2004. In this

paper author tried to recover and improve software architecture in a large-scale industrial

project. Author presented a case study in software architecture recovery and

transformation.

Smeda, A., Oussalah, M., and Khammaci, T, “Improving Component-Based Software

Architecture by Separating Computations from Interactions”, 2004. In this paper authors

presented approach in which authors justify why connectors should be separated from

components and treated as first-class entities, while describing component based

Architecture, As most of the ADL (Architecture description language) defines connectors

implicitly. The approach used by author is known as COSA (Component based Software

Architecture) in which connectors are defined explicitly by separating their interfaces

from their implementations and configurations. COSA connector is mainly represented

by an interface and a glue specification. The interface shows the necessary information

about connector, including number of roles, service type that the connector

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 51

provides(communication, conversion, coordination, facilitation),connection

modes(synchronous, asynchronous),transfer mode etc. The glue specification describes

the functionality that is expected from connector. It could be simple protocol links the

roles or it could be a complex protocol. In short glue of connector represents the

connection type of that connector. Therefore different deployment of components and

connectors can be obtained resulting in different architectures of the same system.

Vijayan Sugumaran, Veda C. Storey,” A Semantic-Based Approach to Component

Retrieval”, 2003. In this paper authors developed semantic-based approach to component

retrieval. A reuse repository was developed that contains the components relevant for the

creation of new applications, along with their attributes and methods that uses Web and

JavaBeans technologies. Authors developed component retrieval approach which consists

of creating: 1)a reuse repository of design objects or components; 2)a domain model that

contains meta level knowledge about the reusable components presented in terms of

objectives, processes, actions, actors and objects; 3)an ontology that supports an

interpretation of the meaning and use of application domain terms(for both the reusable

repository and the domain model); and 4)a natural language interface for expressing

queries .Thus initial query generation, query refinement, component retrieval and

feedback through above steps is performed. In this approach user executes query for

component retrieval.

Bridget Spitznagel and David Garlan, “A Compositional Approach for Constructing

Connectors”, 2001. Bridget et.al introduced an approach to connector construction based

on incremental transformation. Authors defined connectors as a six tuple-[c,l,s,t,p,w},

where c is application level code that appears within component or compilation unit, l is

– communication libraries , generated stubs etc, below application level , s is low level

infrastructure services provided by operating system. t- is data/ tables . p- is a policy

documenting the proper use of these parts and w is formal specification describing the

connector’s proper behavior. A connector transformation modifies one or more parts of

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 52

an existing connectors and resulting into new connector. Using set of different

transformation new connectors can be constructed. For this authors have developed

prototype tool which transfers Java RMI based i.e. basic interactions into new type of

connectors. Basically this work is viewed as a step towards a more comprehensive

engineering basis for component integration. They need to demonstrate for other kind of

interactions beyond RMI.

Hassan Gomaa, Daniel A. Menascé and Michael E. Shin , “Reusable Component

Interconnection Patterns for Distributed Software Architectures”, 2001. Hassan Gomaa

et. al have described the design of reusable component interconnection patterns in

client/server systems. Pattern which define and encapsulate the way client and server

components communicate with each other using UML. Given these patterns, the designer

of a new distributed application can select and reuse the appropriate component

interaction patterns. So, this method is for selecting components and interfaces which are

already created.

Young Ran Yu, Soo Dong Kim ,Dong Kwan Kim, ”Connector Modeling Method for

Component Extraction”,1999 In this paper authors proposed a method that extracts

domain specific components for a particular business domain using the connector model.

Requirement specification was used for Use case model, class diagram and connector

extraction. This approach consists of three phases:- connector modeling, component

modeling and implementation. Connector modeling phase consists of use of requirement

specification for connector extraction and for use case & class diagram modeling and

proposed new diagram i.e. requirement diagram. Using class diagram ,use case and

connectors components are extracted. In component modeling phase connector

specification is modified to find interfaces of components. And components extracted in

previous step are specified in more detail. Finally software Architecture is described in

particular format. Thus, connectors are used as tools for extracting components instead of

connector as interactions.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 53

Helgo M. Ohlenbusch and George T. Heineman, “Composition and interfaces within

software architecture”, 1998. In this paper authors explored the part that composition and

inheritance play in defining interfaces using ports and roles. Author discusses these

concepts within the context of the JavaBeans component model and shows how to

capture the complexity inherent in the interfaces of components and connectors.

Ivan T. Bowman and Richard C. Holt,” Software architecture recovery using

Conway's law”, 1998. In this paper authors have introduced the idea of ownership

architecture for a software system, and have shown how such a structure is useful in

reverse engineering. It is a useful mechanism for predicting system structure. Authors

presented three case studies using Conway’s law. For each of the systems as case study

authors presented following architectures:1) A conceptual architecture based on available

system documentation. 2)An ownership architecture extracted from system

documentation or revision control log.3) A concrete architecture extracted from the

actual system implementation.

Robert Allen and David Garlan , “A Formal Basis for Architectural Connection” ,

1997. Robert Allen and David Garlan presented a formal approach to one aspect of

architectural design: the interactions among components. The key idea is to define

architectural connectors as explicit semantic entities. In this approach connectors are

treated as types that have separable semantic definitions (i.e. independent of component

interfaces), together with the notion of connector instantiation. Authors used theory of

algebras to show connector specifications.

Robert Allen and David Garlan,” Formalizing Architectural Connection”, 1994.

Robert Allen et. al. presented a theory for the interactions between components, which

shows the most important aspect of architectural description . The key idea here is to

define architectural connectors as explicit semantic entities. Authors provide a formal

basis for specifying the interactions between architectural components by describing and

reasoning about architectural connection also by assuming certain component types and

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 54

connector types. The description of these connector types is based on the idea of adapting

communications protocols to the description of component interactions in software

architecture. This approach provides notation and underlying theory for architectural

connection explicit semantic status.

Summarizing the above papers, it can be said that software architecture recovery of

object oriented system is an active and important area of software engineering research.

2.4 Observations from Literature Review

- Quasi - manual techniques are systematic and good and also able to extract

components but requires lot of time and human efforts.

- Few of the good semi-automatic techniques are available which requires help of

other tool and partially automated.

- Large numbers of quasi-automatic techniques are available in the literature. Many

algorithms are proposed and implemented in tools. Mathematical concepts like

graph theory and data mining algorithms are used. but reverse engineer has to

drive the process.

- Most of previous studies focused on quasi automatic and applying clustering

algorithms.

- Most of quasi-automatic approaches requires more inputs other than source code ,

which may not be available all the time for legacy system and then it need to be

generated by any way first.

- Few of the approaches combines clustering and graph approach together for

software architecture recovery.

2.5 Limitations of Existing Methods

Software architecture recovery approaches discussed above have following draw

backs.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 55

- Quasi manual approaches by S.K.Mishra[74] and Suk Kyung [91] discussed

above identified components properly but most of the task needs to manually,

which is time consuming. More over only components are identified, no guideline

for connector identifications.

- Nenad’s [55] approach identifies components and connectors but approach is

manual and time consuming.

- For some manual approaches like Suk Kyung’s approach [91] design specification

of object oriented system should be available for migration into component based

system which is not possible for every legacy system.

- Some quasi-automatic approaches like Soo Chang et al approach [86] requires

fundamental artifacts of object oriented modeling such as use case model, object

model and dynamic models available for component identification which may not

be available for object oriented legacy systems. For such systems the approach is

not suitable. This method also does not consider about the interface details among

components.

- Quasi automatic graph based approach proposed by Hassan Mathkour [29] also

identifies components and no interface details are provided.

- Some of the approaches like Simon Allier’s approach [84] are limited up to

component identification and connector identification is not considered.

- In some Quasi-automatic approach like Woo-Jin’s approach [102], common class

diagrams, common use cases, and sequence diagrams need to be given after the

domain analysis process, they focus on the component identification process.

- For some approach like Hemant Jain’s approach [32], UML analysis model

consisting of use case diagram, class diagram and sequence diagram needs to be

prepared. User needs to have domain knowledge to assign weights to use cases.

- For the approach used by Jonas [44] Much more human intervention is required

for component identification . Moreover interactions among components is not

recovered.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 56

- Some of the approaches requires architectural style, conceptual architecture,

architectural properties etc as input other than source code, which may not be

available and then need to be generated by any means first then the recovery

process starts.

It is also evident from the review of literature on software architecture recovery

techniques that even though the domains and techniques of recovering architecture have

varied with time, to the best of our knowledge, none of these gives automatic component

retrieval only with the help of source code as input to the tool . Since industry is

migrating from object oriented system to component based system as components more

reusable and beneficial than objects. It is important to have a tool which help software

developer or software maintenance person to create components and also interface among

these components. So this study aims at finding such method and tool to recover

components and interface details

2.6 The Present Study

The present study has an objective to propose quasi- automatic methodology and develop

tool that will display components that can be created and interface details automatically.

In the present study approach is to reduce time efforts of software developer or

maintenance person for migrating into component based system. Thus, reusing existing

code and migrating to new environment saves cost, efforts of redesign and redeveloping

the system which suits to new evolving environment. This is what the software industry

always prefers.

Thus the study proposes agglomerative clustering algorithm for creating components

from object oriented system and implement it into proposed tool. The study will also

focus on using and proposing Component Cohesion Metrics(CCM) for component

evaluation. The interface details will also be extracted so that connector classes can be

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 57

created for the components. In the present we will focus on object oriented system

developed in java.

Proposed Model:

The Figure 2.1 shows the entire proposed approach. The approach uses java source code

as input to the model. It recovers software architecture by using clustering algorithm. The

approach takes help of existing reverse engineering tools to verify all the classes from

source code is covered or not. The approach recovers components and interfaces i.e.

connector as a part of software architecture recovery. The approach also evaluates

components for quality using metrics. Thus software architecture representation is ready.

Figure 2.1: Proposed Approach

Software Architecture Recovery

Reverse

Engineering

tool

Interface

details

Clustering

Algorithm

Software Architecture

Representation

Component identification

Connecter

identification

Evaluation

Object Oriented System Code

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 58

Chapter 3

Study of Existing Reverse Engineering Tools, Framework and

Selecting Clustering Process for Proposed Methodology

3.1 Study of Existing Reverse Engineering Tools

Software Engineering research and industry recognize the need for practical tools to

support reverse engineering activities. Most of the well-known CASE-tools now a day’s

support reverse engineering in some way or other. Reverse engineering is first step

towards software Architecture recovery. The most commonly used standard today is

Unified Modeling Language to depict the architecture and design of an application. An

UML class diagram describes the architecture of object oriented programs. Class diagram

captures the essence of its design.

3.1.1 Extracting Classes from Given Object Oriented System using Tool

As proposed approach focuses on software architecture recovery when design document

of legacy object oriented system is not available. We need to extract class diagram of

legacy application to cross verify with our proposed tool results whether all the objects

from the application system are considered in component creation or not. Class diagram

shows classes and relation between them and it is necessary for creating components, as

it will help in reconstructing the software architecture from existing implemented

software. The idea behind choosing these tools was assessing different kinds of tools like

commercial, non-commercial, open source tools that support reverse engineering of java

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 59

code. For this we have assessed capabilities of software reverse engineering tools to

generate class diagram from java source code. Proposed framework is designed and

implemented assuming that no design documents of legacy object oriented system is

available. Hence we need to retrieve static structure of the object oriented system. UML

class diagram provides this structure in the form of different classes in the system and

relationship between the classes. Different reverse engineering tools are available in the

market which take input as source code and give output as class diagram. Four tools were

selected in this study as they support java reverse engineering. These are IBM Rational

Rose, ArgoUML, Reverse, and Enterprise Architecture (EA).

Rational rose - Rational Rose is a widely used commercial UML modeling tool. Rational

Rose offers reverse engineering capabilities, but their capabilities are very limited.

Rational Rose supports reverse engineering of Java software systems. When reverse

engineering a Java program, Rose constructs a tree view that contains classes, interfaces,

and association found at the highest level. Methods, variables etc. are nested under the

owner classes. Rose also constructs (on demand) a class diagram representation of the

extracted information and generates a default layout for it. Additionally, Rose

automatically constructs a package hierarchy as a tree view. Rose is able to reverse

engineer the information from the source code (.java files), byte code (.class files), jar

files, or packed zip files. In Rose, the Java reverse engineering module can be given

instructions on files, directories, packages, and libraries to be examined.

ArgoUML - ArgoUML is a widely used open source tool for UML modeling tool.

ArgoUML provides a modular reverse engineering framework. Currently Java source

code is provided by default and there are modules for Java Jar and class file import.

Similar to Rose ArgoUML constructs a tree view that contains classes, interfaces and

association found at the highest level. Methods, variables etc. are nested under the owner

classes. Using Drag and drop facility user can create class diagram. Reverse engineering

capability of the tool is very limited as it cannot extract association and interface.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 60

Reverse - Reverse is non-commercial tool to convert java code to class diagram

developed by Neil Johan. User needs to select main java file and tool automatically

displays class diagram. Tool has extracted limited classes, but no interfaces. Hence,

realization relationships have not been extracted. It was successful in identifying most of

the associations.

Enterprise Architecture (EA) - Enterprise Architecture (EA) is widely used commercial

UML modeling tool. Tool generates tree view of classes and methods. Variables are

nested under methods. EA’s current reverse engineering capabilities can only reverse

engineer UML semantics such as class diagrams and associations.

To assess the capability of these tools we examine following model properties of the

tools-

3.1.2 Examine Model Properties of these Tools

Number of Classes (NOC) -This is a general measure for the overall size of a software

module. Therefore, high NOC values may indicate a more detailed representation.

Number of Associations (NOA) - NOA is a metric measure of interconnectedness in a

module. In reverse engineering it is important to understand how classes are connected.

Number of Generalization relationship (NGR) – It models “is a” and “is like”

relationships, enabling you to reuse existing data and code easily. It is a generalization /

specialization relationship between classes, which helps to measure how tightly coupled

classes are. From reverse engineering point of view it will help for concluding component

structure.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 61

Handling of Interfaces - An interface is a specifier for the externally-visible operations

of a class, component, or other classifier (including subsystems) without specification of

internal structure. In UML diagrams, interfaces are drawn as classifier rectangles (with a

stereotype << Interface >>) or as circles. The interfaces are attached by a dashed

generalization arrow to classifiers that support it, known as realization relationship. This

indicates that the class provides (implements) all of the operations of the interface. The

circle notation is used when the operations of the interface are hidden .A class that uses

or requires the operations supplied by the interface may be attached to the circle by a

dashed arrow pointing to the circle. From the reverse engineering point of view,

generation of such dependencies is important for understanding the usage of interfaces

and for concluding component structures and dependencies (e.g., to abstract class

diagrams to a component diagram). Furthermore, different ways of handling interfaces

have impact on the NOC metric and possibly on the readability of the respective class

diagram.

Role Names - The function of role names at association ends is comparable to that of

attribute names in the sense of giving to an association between classes a meaningful

descriptor, which depends on the end it’s attached to. Therefore in reverse engineering,

role names can hold relevant additional information about the system infrastructure. We

examine, whether role names are used and if, what kind of information they represent.

These model properties are beneficial to create components and connectors in component

based architecture. Hence dependencies generated through our tool are verified with class

diagram generated through one of the above tool (i.e. Enterprise Architecture). As, we

found that Enterprise Architecture tool was able to extract maximum information from

the object oriented source code like all the classes ,interfaces, basic relationship among

the classes like inheritance, composition etc.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 62

Thus, dependencies generated through the proposed tool are verified with class diagram

generated through one of the above tool (i.e. Enterprise Architecture). We found that

Enterprise Architecture tool was able to extract maximum information from the object

oriented source code like all the classes, interfaces, basic relationship among the classes

like inheritance, composition etc.

Steps to Examine Tools to Generate Class Diagram:

- Keep input source code in one folder.

- Open tool and do reverse engineering.

- Classes along with attributes and method will be extracted.

- By dragging classes into framework of tool, class diagram will be prepared.

- Count manually number of classes retrieved (NOC), Number of association

relationship retrieved (NOA), Number of generalization relationship retrieved, and

roll names retrieved.

- Do the comparison of tools based upon the counts.

- Decide which tool extracts all the information.

- Use class diagram generated from the tool, which extract maximum information

above, to compare results from module one of our tool.

3.1.3. Comparison of the Tools

For the comparison of reverse engineering tools we chose following application as

Case study: We have chosen small java software. ‘Arithmetic24 Game’. This is a

software game application developed in Java by Huahai Yang. It is a simulation of

popular traditional card game. It consists of 19 classes and 1 interface.

Following are results from different tools. The static elements found by the CASE tools

are classes, association relationship, generalization relationship, interfaces and roll

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 63

names. Comparison of the elements found by these tools is shown in table 3.1 and Class

diagrams generated by the tools are shown in Figure 3.1 –3.4.

Classes–IBM Rational Rose, ArgoUML, and Enterprise Architecture were able to find 19

classes, when applied to the “*.java” files ofArithmetic24.Tool Reverse was able to find

out only 17 classes as this tool accepts only main java file for reverse engineering. The

name compartment of the class reverse engineered by all the four tools contains the name

of the actual

class. Both the attributes and operations compartments contain the names, types and

visibility (public, private or protected) for Rose, EA, and Reverse. ArgoUML could not

identify visibility.

Associations - Total number of associations found by Rose and EA was 12.ArgoUML

could not find any association. Reverse found 18 associations and showed mutually

dependent classes with red dashed line. Associations are directed in all cases except for

ArgoUML. The roll is named by the variable itself. Rose and EA could produce roll

names. For tool ’Reverse’, associations are directional but do not specify any roles.

Generalization - All the four tools were able to recognize generalization relationships.

All the tools found a total of 6 such relationships.

Handling of Interfaces - Rose uses a circle to illustrate interfaces in the class diagram.

The (abstract) methods of the interfaces are written below the circle, separated with two

horizontal lines, which is not recommended in UML.EA illustrates them using class

rectangles with a <<Interface>>stereotype shown above the interface name. This notation

is also available as an option in Rose. Both Rose and EA found one interface in the

Arithmetic24 core package. Both connect the interfaces to the classes that support them,

that is, the classes that implement the abstract methods defined in the interfaces. Rose

does that with a solid line (a realization relationship). EA uses a dashed line with a

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 64

triangle at the end pointing to the interface (similar to the inheritance notation).However,

neither Rose nor EA were able to generate any dependencies between interfaces and the

classes that use them (typically shown with a dashed arrow from a class pointing to the

interface). This is an obvious limitation to understanding the roles of the interfaces.

Further, interface dependencies are needed for abstracting a class diagram into a

component diagram, understanding the interaction among different components, etc.

Tools ‘Reverse’ and ‘ArgoUML’ could not able to extract interface.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 65

Figure 3.1 : Class Diagram of Arithmetic24 game from Rose

Card

SUIT_NAMES[] : String = {"club","diamond","heart","spade"}
CLUB : int = 0
DIAMOND : int = 1
HEART : int = 2
SPADE : int = 3
suit : int
value : int

Card()
Card()
Card()
getCardValue()
getValue()
getType()

CardSlot

WIDTH : int = 75
HEIGHT : int = 99

CardSlot()
getType()

Clock

actionCommand : String
timeLimit : int
timeUnit : int
timer : int

Clock()
Clock()
setTimeLimit()
getTimeLimit()
getTime()
createOffScreen()
getPreferredSize()
getMinimumSize()
start()
stop()
run()
paint()
update()
addActionListener()
removeActionListener()
setActionCommand()
sourceActionEvent()

DraggingImage

trueSizeKnown : boolean
INITIAL_WIDTH : int = 1
INITIAL_HEIGHT : int = 1
tmpWidth : int
tmpHeight : int
draggable : boolean
x : int
y : int
width : int
height : int

DraggingImage()
DraggingImage()
getLocation()
setLocation()
centerAt()
getSize()
setSize()
contains()
enableDrag()
disableDrag()
isDraggable()
settle()
unsettle()
isSettled()
getSlot()
getPreferredSize()
getMinimumSize()
paint()

DraggingSlot

x : int
y : int
width : int
height : int
type : int
CARD_SLOT : int = 0
OPERATOR_SLOT : int = 1

DraggingSlot()
DraggingSlot()
isEmpty()
getLocation()
setLocation()
getSize()
setSize()
contains()
holds()
underneath()
fillWith()
getHoldenImage()
kickOff()
empty()
remove()
paint()

slot

holdenImage

Expression

inputExpression : String
operatorStack : Stack
postFixStack : Stack
EOL : int = 0
VALUE : int = 1
OPAREN : int = 2
CPAREN : int = 3
MULT : int = 4
DIV : int = 5
PLUS : int = 6
MINUS : int = 7
INPUT_PRECEDENCE[] : int = {0,0,100,0,3,3,1,1}
STACK_PRECEDENCE : int = {- 1,0,0,99,4,4,2,2}
currentValue : double
theResult : double
lastToken : int

Expression()
Expression()
Expression()
setExpression()
getValue()
processToken()
applyOperation()
getPostStackTop()
isOperator()

IllegalExpressionException

IllegalExpressionException()
IllegalExpressionException()

ObservableInteger

value : int

ObservableInteger()
set()

Operator

OP_NAMES[] : String = {"add","minus","multi","div","oparen","cparen"}...
OP_SYMBOLS[] : char = {'+','-','*','/','(',')'}
ADD : int = 0
MINUS : int = 1
MULTI : int = 2
DIV : int = 3
OPAREN : int = 4
CPAREN : int = 5
OP_NUMBER : int = 6
opId : int
opSymbol : char

Operator()
Operator()
Operator()
getOpSymbol()
getValue()
getType()

OperatorSlot

WIDTH : int = 27
HEIGHT : int = 40

OperatorSlot()
getType()

PlayingStatus

DEALED : int = 1
WAITING : int = 0
ROUND_OVER : int = 2

PlayingStatus()
PlayingStatus()

DraggingArea

imageCount : int
dragImages : Vector
updateLeft : int
updateTop : int
updateRight : int
updateBottom : int
animating : boolean

DraggingArea()
start()
arrangeOperators()
addSlots()
stop()
run()
getPreferredSize()
getMinimumSize()
userCreatedExpression()
isFullExpression()
currentSolution()
beginAnimation()
endAnimation()
setStatus()
presentSolution()
clearSlots()
removeCards()
addCards()
loadAllImages()
resetClip()
paint()
update()
clipRepaint()
drawDragSlots()
drawDragImages()

theMoving

container

draggingSlots[]

operators[]

status

ScoreKeeper

score : int
increase : int
levelWeight : double
NO_NO : int = 1
NO_HAS : int = - 2
HAS_NO : int = - 1
HAS_WRONG : int = - 2
HAS_RIGHT : int = 2
TIME_OUT : int = - 1
BEGINNER : double = 1
INTERMEDIATE : double = 1.5
EXPERT : double = 2

ScoreKeeper()
resetScore()
getScore()
updateScore()
setLevelWeight()

Solution

numbers : Vector
hasSolution : boolean
theSolution : Vector = null
theResult : double
TOTAL_POSITION : int = 13
NUM_POSITION[] : int = {1,4,8,11}
numCombin[][] : Integer
OP_POSITION[] : int = {2,6,10}
opCombin[][] : int
PAREN_POSITION[] : int = {0,3,5,7,9,12}
PAREN_COMBIN[][] : int = {{0,0,0,0,0,0},{1,0,2,0,0,0},{1,0,0,0,2,0},{0,1,0,0,2,0},{0,1,0,0,0,2},{0,0,0,1,0,2},{1,0,2,1,0,2},}...

Solution()
getSolution()
hasSolution()
numberCombination()
operatorCombination()
searchSolution()

Arithmetic24

BEGINNER_TIME : int = 120
INTERMEDIATE_TIME : int = 90
EXPERT_TIME : int = 60
correctSound : String = "well_done.au"
wrongSound : String = "missed.au"
badExpSound : String = "Hah.au"
timeOutSound : String = "bell.au"
fillSlotSound : String = "click2.au"
clickDeckSound : String = "click1.au"

init()
startLoadingSounds()
start()
stop()
beginWaitSolution()
endWaitSolution()
update()
actionPerformed()
itemStateChanged()

clock

playingBoard

score

SoundList

SoundList()
startLoading()
getClip()
putClip()
playClip()

soundList

SoundLoader

relativeURL : String

SoundLoader()
run()

soundList

SynchronizedVector

vector : Vector
available : boolean

SynchronizedVector()
get()
put()

CardDeck

deck : Vector
cardPointer : int
clickable : boolean

CardDeck()
setThreadPriority()
stop()
run()
enableClick()
disableClick()
isClickable()
deal()
currentDealNumber()
currentSolution()
shuffle()

container

cardDeck

solutions[]

Type

CARD : int = 0
OPERATOR : int = 1

getType()

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 66

Figure 3.2: Class Diagram of Arithmetic24 game from ArgoUML

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 67

Figure 3.3: Class Diagram of Arithmetic24 game from Reverse

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 68

Figure 3.4: Class Diagram of Arithmetic24 game from Enterprise Architecture

cmp Component Model

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version EA 9.0 Unregistered Trial Version

Applet
ActionListener

ItemListener
Observer

Arithmetic24

~ badExpSound :String = "Hah.au"
~ BEGINNER_TIME :int = 120 {readOnly}
~ clickDeckSound :String = "click1.au"
~ clock :Clock
~ correctSound :String = "well_done.au"
~ difficultyLevel :Choice
~ doneButton :Button
~ EXPERT_TIME :int = 60 {readOnly}
~ feedBackLabel :Label
~ fi l lSlotSound :String = "click2.au"
~ INTERMEDIATE_TIME :int = 90 {readOnly}
~ noSolutionButton :Button
~ playingBoard :DraggingArea
~ score :ScoreKeeper
~ soundList :SoundList
~ timeOutSound :String = "bell.au"
~ wrongSound :String = "missed.au"

+ actionPerformed(ActionEvent) :void
- beginWaitSolution() :void
- endWaitSolution() :void
+ init() :void
+ i temStateChanged(ItemEvent) :void
+ start() :void
~ startLoadingSounds() :void
+ stop() :void
+ update(Observable, Object) :void

Card

~ CLUB :int = 0 {readOnly}
~ DIAMOND :int = 1 {readOnly}
~ HEART :int = 2 {readOnly}
~ SPADE :int = 3 {readOnly}
~ suit :int
~ SUIT_NAMES :String ([]) = { �� ... {readOnly}
~ value :int

+ Card(int, int, Image, DraggingArea)
+ Card(int, Image, DraggingArea)
+ Card(int, int, int, Image, DraggingArea)
+ getCardValue() :int
+ getType() :int
+ getValue() :Integer

Runnable

CardDeck

~ cardPointer :int
~ clickable :boolean
~ container :DraggingArea
~ deck :Vector
~ solutions :SynchronizedVector ([])
~ solutionThread :Thread

+ CardDeck(int, int, Image, DraggingArea)
+ currentDealNumber() :int
+ currentSolution() :Vector
+ deal() :Card[]
+ disableClick() :void
+ enableClick() :void
+ isClickable() :boolean
+ run() :void
+ setThreadPriority(int) :void
+ shuffle() :void
+ stop() :void

CardSlot

~ HEIGHT :int = 99 {readOnly}
~ WIDTH :int = 75 {readOnly}

+ CardSlot(int, int)
+ getType() :int

Canvas
Runnable

Clock

~ actionCommand :String
~ actionListener :ActionListener = null
~ clockThread :Thread = null
~ offScreenDimension :Dimension
~ offScreenGraphics :Graphics
~ offScreenImage :Image
~ timeLimit :int
~ timer :int
~ timeUni t :int

+ addActionListener(ActionListener) :void
+ Clock(int)
+ Clock(int, int)
- createOffScreen() :void
+ getMinimumSize() :Dimension
+ getPreferredSize() :Dimension
+ getTime() :int
+ getTimeLimit() :int
+ paint(Graphics) :void
+ removeActionListener(ActionListener) :void
+ run() :void
+ setActionCommand(String) :void
+ setTimeLimi t(int) :void
+ sourceActionEvent() :void
+ start() :void
+ stop() :void
+ update(Graphics) :void

Panel
Runnable

DraggingArea

~ animating :boolean
~ applet :Applet
~ cardDeck :CardDeck
~ cardDeckImage :Image
~ cardImages :Image ([])
~ currentCards :Card ([])
~ defaultCursor :Cursor
~ draggingSlots :DraggingSlot ([])
~ dragImages :Vector
~ dragThread :Thread
~ grabPoint :Point
~ handCursor :Cursor
~ imageCount :int
~ offScreenDimension :Dimension
~ offScreenGraphics :Graphics
~ offScreenImage :Image
~ operatorImages :Image ([])
~ operators :Operator ([])
~ status :PlayingStatus
~ theMoving :DraggingImage
~ tracker :MediaTracker
~ updateBottom :int
~ updateLeft :int
~ updateRight :int
~ updateTop :int

+ addCards() :void
addSlots() :void
+ arrangeOperators() :void
+ beginAnimation() :void
+ clearSlots() :void
+ clipRepaint() :void
+ currentSolution() :Vector
+ DraggingArea()
drawDragImages(Graphics) :void
drawDragSlots(Graphics) :void
+ endAnimation() :void
+ getMinimumSize() :Dimension
+ getPreferredSize() :Dimension
+ isFullExpression() :boolean
+ loadAllImages() :void
+ paint(Graphics) :void
+ presentSolution() :void
+ removeCards() :void
+ resetClip() :void
+ run() :void
+ setStatus(int) :void
+ start() :void
+ stop() :void
+ update(Graphics) :void
+ userCreatedExpression() :Vector

MouseMotionAdapter

DraggingArea::MyMouseMotionAdapter

+ mouseDragged(MouseEvent) :void
+ mouseMoved(MouseEvent) :void

MouseAdapter

DraggingArea::MyMouseAdapter

+ mousePressed(MouseEvent) :void
+ mouseReleased(MouseEvent) :void

DraggingImage

~ container :DraggingArea
~ draggable :boolean
~ height :int
~ image :Image
~ INITIAL_HEIGHT :int = 1 {readOnly}
~ INITIAL_WIDTH :int = 1 {readOnly}
~ slot :DraggingSlot
- tmpHeight :int
- tmpWidth :int
~ tracker :MediaTracker
~ trueSizeKnown :boolean
~ width :int
~ x :int
~ y :int

+ centerAt(int, int) :void
+ contains(int, int) :boolean
+ disableDrag() :void
+ DraggingImage(Image, DraggingArea)
+ DraggingImage(int, int, Image, DraggingArea)
+ enableDrag() :void
+ getLocation() :Point
+ getMinimumSize() :Dimension
+ getPreferredSize() :Dimension
+ getSize() :Dimension
+ getSlot() :DraggingSlot
+ isDraggable() :boolean
+ isSettled() :boolean
+ paint(Graphics) :void
+ setLocation(int, int) :void
+ setSize(int, int) :void
+ settle(DraggingSlot) :void
+ unsettle() :void

DraggingSlot

~ CARD_SLOT :int = 0 {readOnly}
~ emptyColor :Color = Color.cyan {readOnly}
~ fi l lColor :Color = Color.red {readOnly}
~ height :int
~ holdenImage :DraggingImage = null
~ OPERATOR_SLOT :int = 1 {readOnly}
+ type :int
~ width :int
~ x :int
~ y :int

+ contains(int, int) :boolean
+ DraggingSlot()
+ DraggingSlot(int, int, int, int)
+ empty() :void
+ fi l lWith(DraggingImage) :void
+ getHoldenImage() :DraggingImage
+ getLocation() :Point
+ getSize() :Dimension
+ holds(DraggingImage) :boolean
+ isEmpty() :boolean
+ kickOff(DraggingImage) :void
+ paint(Graphics) :void
+ remove() :void
+ setLocation(int, int) :void
+ setSize(int, int) :void
+ underneath(DraggingImage) :boolean

Expression

- CPAREN :int = 3 {readOnly}
- currentValue :double
- DIV :int = 5 {readOnly}
- EOL :int = 0 {readOnly}
- INPUT_PRECEDENCE :int ([]) = { 0, 0, 100, 0,... {readOnly}
inputExpression :String
- lastToken :int
- MINUS :int = 7 {readOnly}
- MULT :int = 4 {readOnly}
- OPAREN :int = 2 {readOnly}
- operatorStack :Stack
- PLUS :int = 6 {readOnly}
- postFixStack :Stack
- STACK_PRECEDENCE :int ([]) = { -1, 0, 0, 99,... {readOnly}
- theResult :double
- VALUE :int = 1 {readOnly}

- applyOperation(int) :void
+ Expression()
+ Expression(String)
+ Expression(Vector)
- getPostStackTop() :double
+ getValue() :double
- isOperator(char) :boolean
- processToken() :void
+ setExpression(String) :void

Exception

IllegalExpressionException

+ Il legalExpressionException()
+ Il legalExpressionException(String)

Observable

Observ ableInteger

value :int

+ ObservableInteger(int)
+ set(int) :void

Operator

~ ADD :int = 0 {readOnly}
~ CPAREN :int = 5 {readOnly}
~ DIV :int = 3 {readOnly}
~ MINUS :int = 1 {readOnly}
~ MULTI :int = 2 {readOnly}
~ OP_NAMES :String ([]) = { �� ... {readOnly}
~ OP_NUMBER :int = 6 {readOnly}
~ OP_SYMBOLS :char ([]) = { '+', '-', '*'... {readOnly}
~ OPAREN :int = 4 {readOnly}
~ opId :int
~ opSymbol :char

+ getOpSymbol() :char
+ getType() :int
+ getValue() :Character
+ Operator(int, Image, DraggingArea)
+ Operator(int, int, int, Image, DraggingArea)
+ Operator(char, Image, DraggingArea)

OperatorSlot

~ HEIGHT :int = 40 {readOnly}
~ WIDTH :int = 27 {readOnly}

+ getType() :int
+ OperatorSlot(int, int)

PlayingStatus

~ DEALED :int = 1 {readOnly}
~ ROUND_OVER :int = 2 {readOnly}
~ WAITING :int = 0 {readOnly}

+ PlayingStatus()
+ PlayingStatus(int)

Label

ScoreKeeper

~ BEGINNER :double = 1 {readOnly}
~ EXPERT :double = 2 {readOnly}
~ HAS_NO :int = -1 {readOnly}
~ HAS_RIGHT :int = 2 {readOnly}
~ HAS_WRONG :int = -2 {readOnly}
~ increase :int
~ INTERMEDIATE :double = 1.5 {readOnly}
~ levelWeight :double
~ NO_HAS :int = -2 {readOnly}
~ NO_NO :int = 1 {readOnly}
~ score :int
~ TIME_OUT :int = -1 {readOnly}

+ getScore() :int
+ resetScore() :void
+ ScoreKeeper()
+ setLevelWeight(double) :void
+ updateScore(int, double) :void

Solution

~ hasSolution :boolean
~ NUM_POSITION :int ([]) = { 1, 4, 8, 11 } {readOnly}
~ numbers :Vector
~ numCombin :Integer ([][])
~ OP_POSITION :int ([]) = { 2, 6, 10 } {readOnly}
~ opCombin :int ([][])
~ PAREN_COMBIN :int ([][]) = { �� { 0, ... {readOnly}
~ PAREN_POSITION :int ([]) = { 0, 3, 5, 7, 9... {readOnly}
~ theResult :double
~ theSolution :Vector = null
~ TOTAL_POSITION :int = 13 {readOnly}

+ getSolution() :Vector
+ hasSolution() :boolean
- numberCombination() :void
- operatorCombination() :void
- searchSolution() :void
+ Solution(int, int, int, int)

java.util .Hashtable

SoundList

~ applet :Applet
~ baseURL :URL

+ getClip(String) :AudioClip
+ playClip(String) :void
+ putClip(AudioClip, String) :void
+ SoundList(Applet, URL)
+ startLoading(String) :void

Thread

SoundLoader

~ applet :Applet
~ baseURL :URL
~ relativeURL :String
~ soundList :SoundList

+ run() :void
+ SoundLoader(Applet, SoundList, URL, String)

SynchronizedVector

- available :boolean
- vector :Vector

+ get() :Vector
+ put(Vector) :void
+ SynchronizedVector()

«interface»
Type

+ CARD :int = 0
+ OPERATOR :int = 1

+ getType() :int

~currentCards

~clock

~playingBoard

~score

~soundList

~container

~solutions~cardDeck

~soundList

~draggingSlots

~operators

~status

~theMoving

~container

~slot

~holdenImage

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 69

Tools No. of

Classes

No. of

Associations

No. of

Roll

Name

No. of

Interfaces

No. of

Generalizations

No. of realizations

Rose 19 12 14 1 6 4

ArgoUML 19 0 0 0 6 0

Reverse 17 18 0 0 6 0

EA 19 12 15 1 6 4

Table 3.1: Elements found by CASE Tools

Figure 3.5: CASE Tools Analysis Chart

Analysis:

In the present study we have assessed capabilities of four reverse engineering software

tools that generate class diagram from java source code. We have found that, most of the

classes are identified with simpler relationships. In the present study, four tools have been

compared with regards to their reverse engineering capabilities. We have carried out

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 70

manual comparisons. The manual comparison is needed to understand the interpretations

and mappings used to generate a class diagram.

We observed that most of the classes are extracted by all the four tools but all the

relationships have not been extracted properly. The simpler inheritance, associations and

realization relationships were extracted. Few of the classes remained unrelated to any of

the classes in the diagram; even if source code shows the classes are related. ArgoUML

and Reverse were unable to extract interfaces and realization relationships.

All the above tools, except ‘Reverse’ need to drag and drop the classes to complete class

diagram, once reverse engineering is complete. Reverse automatically generates the class

diagram but all classes are not extracted. We conclude that Rational rose and Enterprise

Architecture extracts maximum required static information. So any one available tool can

be used to generate class diagram.

3.2 Study of Existing OSGi Framework for Implementing Components Created

Once the object oriented application is restructured into a component-based application,

we need to reorganize it according to a concrete component model to make it operational.

To illustrate this, we choose to use the OSGi component model.

3.2.1 OSGi Model:

Andre L. C [6] presented introduction of OSGi, the Open Services Gateway Initiative

(OSGi) is a framework that supports the implementation of component-based, service-

oriented applications in Java. The framework manages the life-cycle of modules (called

bundles in OSGi) and provides means to publish and search for services. It supports the

dynamic install and uninstall of bundles. Nowadays, OSGi is used in many application

domains, including mobile phones, embedded devices, and application servers. Basically,

bundles are regular Java JAR files containing class files, other resources (images, icons,

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 71

required APIs etc), and also a manifest, which is used to declare static information about

the bundle, such as the packages the bundle import and export. Furthermore, bundles may

provide services to other bundles. In the OSGi architecture, a service is a standard Java

object that is registered using one or more interface types and properties (that are used to

locate the service). Another key component of the OSGi run-time is the Service Registry,

which keeps track of the services registered within the framework. Following section

provides guideline for bundle creation.

3.2.2 Creating Bundle using OSGI Framework: In the OSGi framework, a component

(called bundle) is a set of classes organized into packages, which are by default not

visible to outside the bundle. With the help of manifest it is possible to export packages.

Classes and interfaces in these exported packages become visible to outside bundle. Thus

they act as provided interface. Similarly it is possible to indicate packages that the

component requires to operate. Consequently, classes and interfaces of these packages

play the role of required and provided interfaces.

In order to export the provided interfaces of our components, through the manifest, we

place them in specific packages. Similarly the required interfaces are specified in

manifest by importing the packages containing them. Indeed, then these are necessarily

exported by other components.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 72

Figure 3.6: Example of OSGi Bundle

interface_comp_2

Interface C

getNewB()
opname2()

Class C

Class F

A
<<facade>>

E
<< facade>>

Component 1Activator

start()
stop()

interface_comp_1

 A
<< interface>>

 E
<< interface>>

manifest:
Bundle-Activator:Component1Activator
Import- Package: interface_comp_1
Export-package: interface_comp_2

Component 1

Adapt C
<< facade>>

For example, suppose in figure3.5, interface_comp_2 is bundle1, which is package

interface_comp_2 contains provided interface, Interface C and bundle 2 i.e.

interface_comp_1 contains required interfaces, Interface A & interface E. All this is

specified in the manifest as follows:

Import package: interface_comp_1

Export package: interface_comp_2

3.2.3 Activators Management in OSGi Framework

Once the object oriented application is restructured accruing to the concrete component

model, its launch must conform to the framework of this model. The OSGi framework

allows the specification of actions to be performed during the different phases of bundle’s

lifecycle using the class BundleActivator. Thus, using this mechanism to launch

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 73

restructured application, for each class containing an entry point (i.e. main () method in

Java), we create in its corresponding bundle a subclass of the class BundleActivatorthat

redefines the method start (BundleContext). These subclasses are potential activators of

the bundle. The redefined method is only used to call the original entry point (i.e. main ()

method in Java) of the application. Its parameter (BundleContext) contains, among others,

the parameter of the main () method. Among all the potential activators of the bundle, the

designer should designate the actual one. It is identified in the manifest as follows:

BundleActivator:

 Activator.Component1Activator

Finally, to build an OSGi bundle, the classes, interfaces of a component, its activators (if

any) and its manifest are archived in a jar file. For example Figure 4.7 shows

component1structured as a bundle (bundle 1). This bundle consists of Classes C and F, its

unique provided and its interface (Interface C, its adapt C), and its facade classes (A and

E). Suppose, this component has entry point (main () method of C), then the class

Component1Activator was created and added to the bundle.

3.2.4 Guidelines for Implementing Components in OSGi Framework

The Open Services Gateway Initiative (OSGi) is a framework that supports the

implementation of component-based, service-oriented applications in Java. Following are

some steps for implementation.

Steps:

- Let C be component based system consisting of components c1, c2,…..cn.

- For each component ci in C create separate bundle in the form of package consisting

of classes of component ci.

- Add of interfaces of the component ci in the bundle. These interfaces plays role of

required interfaces for component cj in C provided interface for ci.

- Add component activator class for component ci as a BundleActivator

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 74

- Finally the classes of component ci, interfaces of a component ci, its activators (if

any) and its manifest are archived in a jar file.

Example: Suppose for ‘Arithmetic 24’ game application described in section 3.6.3 four

components are created namely Component0, Component1, Component2 and

component3. These components can be packed into bundles along with their interfaces

and manifest for implementing it into OSGi framework. Following figure 3.6 shows

representation of bundles for ‘Arithmetic24’ game application.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 75

Figure 3.7: Representation of bundles for ‘Arithmetic24’ game application.

Comp_0

Arithmetic24

DraggingArea

DraggingImage

Interface_Comp_0
<< interface>>

ObservableInteger

PlayingStatus

ScoreKeeper

SynchronizedVector

type

Component 0

Componet0Activator

start()
stop()

manifest:
BundleActivator:Component0Activator
Importpackage:interface_comp_1
ExportPackage:interface_comp_0

Comp_2

interface_Comp_2
<< interface>>

SoundList

Component 2

Component2Activator

start()
stop()

manifest:
BundleActivator:Component2Activator
Import package:interface_comp_0
Export Package:interface_comp_2

Comp_1

Comp_3

Interface_Comp_1

CardSlot

DraggingSlot

SoundLoader

Component1 Component1Activator

start()
stop()

manifest:
BundleActivator:Component1Activator
Importpackage:interface_comp_0
ExportPackage:interface_comp_1

Interface_Comp_3

Card

CardDeck

Clock

Expression

IllegalExpressionException

Operator

OperatorSlot

Solution

Component3

Component3Activator

start()
stop()

manifest:
BundleActivator:Component3Activator
Importpackage:interface_comp_0
 interface_comp_1
ExportPackage:interface_comp_3

In this way created components through the proposed tool can be implemented in

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 76

Component based framework.

3.3 Selection of Clustering Process for the Methodology

The clustering techniques can be used effectively to facilitate software Architecture

recovery. The clustering concepts required for the proposed methodology are presented in

appendix II-(b). In this section we present selection of clustering process for the

methodology.

With the objective of taking advantage of the features of the hierarchical clustering, in

this study, Hierarchal clustering based approach is used to economically determining

reusability of software components in existing object oriented systems.

3.3.1. Identification of Features and Entities in the System

The present study works on object oriented system, hence object or classes are the

entities for our approach, as object are basic units for object oriented system.

3.3.2. Selection of Similarity Measure

The similarity measures and linkage method are the most important factors in

agglomerative hierarchical clustering algorithm. The choice of a proper similarity

measure and linkage method has even more influence on the clustering results. The

quantitative computations of the similarities between classes can differ according to the

measure. We will adapt the generic cohesion measure introduced by Frank [19] that is

connected with theory of similarity and dissimilarity. A generic cohesion concept is

applicable to different abstraction levels of software. It can be applicable to object

oriented systems also. “Cohesion refers to the degree to which module components

belong together”[19]. The distance measure supports the measurement of cohesion.

Hence, cohesion measure is appropriate for our approach. The distance function d can be

calculated for similarity measure. Most commonly used distances in object oriented

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 77

system are distance measured through method coupling i.e. usage relationship, distance

measured through composition coupling and distance measured through inheritance

coupling. We have proposed integrated coupling of these three couplings and used as

distance measure, for agglomerative clustering algorithm.

3.3.3 Selection of Clustering Algorithm

The common process of clustering starts by parsing the source code of legacy system and

then organizing the source code into cohesive sub systems that are loosely connected by

particular algorithm. In the proposed approach, parsing source code of java applications

for software architecture recovery takes place, as in terms of object oriented system

terms, a component consists of a set of member classes and interfaces which specify their

services.

The algorithm chosen here is agglomerative hierarchical clustering algorithm (AHCA)

for component identification because it has following are advantages.

- A multi-level architectural view produced by agglomerative hierarchical clustering

algorithms facilitates architectural understanding [60].

- They are non-supervised. They do not need extra information such as the number of

expected clusters and candidate regions of search space for locating cluster.

- AHCA provides a view for software clustering; the earlier iterations presents the

detailed view of the software architecture and the later ones presents a high-level

view.

- For AHCA it requires entities to be clustered. We are using source code of java

application as input; it is easy to treat classes as entities to be clustered.

- AHCA can produce a hierarchical decomposition for software system without

defining the number of components in advance.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 78

Selection of Linkage Method

Jain A.M. [40] suggested that during clustering the similarity between the newly formed

and existing components should be iteratively recalculated. There are various linkage

methods like single linkage, complete linkage, and average linkage. Most popular

hierarchical clustering algorithms are variants of single linkage or complete linkage.

These two algorithms differ in the way they characterize the similarity between a pair of

clusters. In the single-link method, the distance between two clusters is the minimum of

the distances between all pairs of patterns drawn from the two clusters (one pattern from

the first cluster, the other from the second).In the complete-link algorithm, the distance

between two clusters is the maximum of all pair wise distances between patterns in the

two clusters. In either case, two clusters are merged to form a larger cluster based on

minimum distance criteria. The complete-link algorithm produces tightly bound or

compact clusters. The single-link algorithm, by contrast, suffers from a chaining effect. It

has a tendency to produce clusters that are straggly or elongated. The clusters obtained by

the complete link algorithm are more compact than those obtained by the single-link

algorithm. The single-link algorithm is more versatile than the complete-link algorithm,

otherwise. For example, the single-link algorithm can extract the concentric clusters but

the complete-link algorithm cannot [40]. So we have decided to use single linkage in our

approach.

3.3.4 Selection of Evaluation Criteria for Assessment of Components

In present study, we will focus on internal assessment and use evaluation metrics for

components based on size of component and coupling between components. The

approach will propose metric for cohesion within component. Using these metrics quality

of components created through proposed method will be evaluated.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 79

Chapter 4

Proposed Component Based Software Architecture Recovery

4.1 The Proposed Component Based Software Architecture Recovery Approach

Components are regarded as being more course-grained compared to traditional reusable

artifacts such as objects and provide high level representation of the domain. Components

can be used more effectively and are better suited for reuse than using objects. Creating

reusable components from object oriented system is major task in migrating to

component based system and it is one of the most prominent maintenance objectives to

migrate systems to distributed computing environments using components. The objective

of this research is to develop automatic approach which requires less human intervention

to recover components and interfaces from object oriented system. To prove that existing

legacy object oriented code can be reusable when industry migrates into new technology

like component based. This obviously reduces the cost to company who wants to migrate

to new technology.

The proposed work is aimed at a legacy object oriented system where the design

documents are not available. We also aim to demonstrate how the proposed approach will

help in identifying components and connectors from legacy object oriented system. This

work proposes agglomerative clustering algorithm and uses size and coupling of

component quality metrics to evaluate the quality of identified components and proposes

component cohesion metric. The work also provides interface details using which

interface packages or connectors can be prepared. This work does not propose creation

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 80

of reusable library for component and connector storage, as identified components and

connectors can be stored in the library according to the component based framework the

company uses. Instead, we provide guidelines for implementing components and

interfaces in OSGi component based framework. The user should be familiar with

component based Architecture. It is assumed that user knows java technology and wants

to migrate from java classes to java components.

The user here is assumed as software maintainer or software engineers, who want to

develop component based application using existing object oriented system. The goal is

to achieve migration to component based software from existing object oriented system

with minimum cost by reuse existing application. The user knows how to import existing

java code into tool and use the results from the tool to create components and connectors.

The user also must know dependency files of legacy source code and where to load that

in the tool. For example if object oriented application contains servlet pages the

servlet.jar file must be loaded while executing in the tool.

Present study shows the components and interface details retrieval by doing the

following:

- Component Based Architecture Recovery from Object Oriented System from

Existing Dependencies among Classes-

The proposed process is based on the identification of source code entities and the

relationship between them. The list of possible relationships between object

oriented systems includes inheritance, composition, invocation relationship etc.

- Component Identification from Existing Object Oriented System using

Hierarchical Clustering-

A component is group of classes collaborating to provide a function of

application. We need to group the classes based on similarity to generate

component based system from existing object oriented system. Each of the group

becomes component. A clustering algorithm allows grouping of classes of the

application.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 81

- Component Evaluation and Component Interface Identification from Object

Oriented System-

Identified group of classes working together will form components. We also need

to identify required and provided interfaces to describe how they bind together.

4.2 Rationale for Component Based Software Architecture Recovery

Software Architecture modeling and representation is very important in software

development process. Software Architecture provides high level view which is very

useful in all phases of software life cycle like coding, maintenance, testing, etc.

Component based software architecture is beneficial as it is useful for reusing system

parts represented as components. Most of the existing object oriented systems do not

have reliable software architecture and some legacy systems are designed without

software architecture design phase. So by developing tool we can retrieve component

based software architecture. The software architecture of the system is described as a

collection of components along with the interaction among these components, where as

the main system functional block are components, strongly dependent on connectors –

which is abstraction capturing nature of these interactions. Therefore, the proposed work

will focus on extracting component and interface details in component based architecture

from existing object oriented system. As object-oriented development had not provided

extensive reuse and computing infrastructures are evolving from mainframe to distributed

environments, where objects technology has not led to massive development of

distributed systems. However, component-based technology is considered to be more

suited for distributed system development due to its granularity and reusability.

 Using Component based software architecture is beneficial because-

- Exchange between software architects & programmers easily.

- Useful for reusing system parts represented as components.

- Clear separation between components & connectors.

- Localizing software defects & reducing risk of misplacing new functionalities

during maintenance & evolution phases.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 82

Software architecture has put forward connectors as first-class entities to express

complex relationships between system components. Although components have always

been considered fundamental building blocks of software systems, the way the

components of the system interact may also be a determinant on the system properties.

Component interactions were also recognized to be first class entities & architectural

connectors have emerged as a powerful tool for supporting the description of these

interactions. Components address only one aspect of large-scale development. Another

important aspect is interaction among components.

Component contains only the business logic and communicates with one another only via

well-defined interfaces the communication paths among the components are in modern

component systems realized by software connectors, which allows explicit modeling of

communication and also its implementations at runtime.

Major works have been proposed in the literature to recover component based

Architecture, most of them are manual or semiautomatic, which requires other guidelines

like design documents, human domain experts etc. Most of the approaches focus on

component retrieval only and not about interface details i.e. connector classes.

To deal with this problem we have proposed approach of component based architecture

recovery which aims to extract component based architecture from existing object

oriented system using existing dependencies among classes and agglomerative

hierarchical clustering algorithm. This approach is useful when no documentation of an

application is available, and it requires very less human intervention.

4.3 The Proposed Framework and Tool

The framework is divided into three modules. We develop a tool consisting of these three

modules for component identification and interface details generation. Following sections

gives details of overall process and proposed tool.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 83

We have identified three steps to produce a component based architectural view from an

object-oriented application in proposed approach

- Identify Dependencies in Existing Object Oriented System

- Identify Components

- Component Evaluation and Interface Identification.

Figure 4.1 shows proposed approach for producing component based architecture.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 84

4.3.1 Identify Dependencies in Existing Object Oriented System

We examine existing object oriented system to identify dependency among the classes

using method coupling, inheritance coupling and composition coupling. We have

evaluated the feasibility on Java software. Component-based software architecture is a

high level abstraction of a system using the architectural elements: components which

describe functional computing, connectors which describe interactions and configuration

which represents the topology of connections between components.

Figure 4.1: Proposed Framework and Tool

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 85

Frank Simon et al [19] described, while recovering software Architecture from object

oriented system different abstraction levels can be considered e.g. method level, variable

level, object level and system level. Extensive literature research has justified these

abstraction levels for software measures. Alae-Eddine et al [3] described the definition of

metrics on Object Oriented system elements are obtained by identification of different

types of relationship between different classes and computation of their strengths. Class

coupling is one of the Object Oriented metric. Coupling is an indication of the

connections between elements of the object oriented Design and indicates dependencies

among classes. It is important to identify coupling for creating components. We need to

determine precisely the dependency among classes and how to measure their strengths.

The possible dependencies among Object Oriented system entities include inheritance,

composition, aggregation and method invocations. So identifying these dependencies

become the first step to recover software Architecture.

Jong kook Lee et al [45] described, well defined components designs are driven by a

variety of factors e.g. the principles of cohesion and coupling are important factors for

well-defined component design. Therefore in this study we are focusing on class coupling

to identify well defined components.

Coupling is qualitative measure of the degree to which classes are connected to one

another. Coupling is an indication of the connections between elements of the object

oriented Design. It has been defined as a measure of the degree of interdependence

between modules and the degree of interaction between modules. C. Rajaraman et al

presented definition as "Coupling is a measure of the association, whether by inheritance

or otherwise, between classes in a soft-ware product". Though coupling is a notion from

structured design; it is still applicable to object-oriented design at the levels of modules,

classes and objects. We are concerned only with coupling between classes. Thus,

coupling indicates dependencies among classes. The possible dependencies between

classes of object oriented system include inheritance, composition, method invocations

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 86

etc. Here, we are considering following important coupling dependencies as they are

basis for identifying components from object oriented system.

Inheritance Coupling- Inheritance coupling is coupling between generalized class

(Super class) and its specialized classes (Sub classes).

Composition Coupling-When instance of one class is referred in another class, then we

have composition coupling.

Method Coupling - When methods of one class use methods of another class hierarchy,

then we have method coupling between the classes.

Integrated Coupling- It is a class’s all three couplings inheritance coupling, composition

coupling, and method coupling.

The proposed approach of extracting component based architecture from object oriented

system is based on the identification of source code entities and the relation between

them. The entities and relations have to be extracted by source code analysis and identify

dependencies between the classes.

Figure -4.2 summarizes the process for identifying and displaying dependencies.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 87

Figure 4.2: Process for Identifying Dependencies

Integration coupling identified in this step is given as inputs to the next step i.e.

identify components, which uses agglomerative hierarchical clustering algorithm to

create components.

4.3.2 Identify Components

In this step we are generating input required for proposed algorithm; from integration

coupling (step (i) above) i.e. similarity measure and distance function, d(Si, Sj) for

proposed agglomerative clustering algorithm. The agglomerative hierarchical

clustering algorithm identifies components from object oriented application.

Cohesion measure distance function d(Si, Sj)gives distance between two classes Si

and Sj of object oriented system S.

The process for identifying components is shown in figure 4.3 below.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 88

Fig. 4.3: Process for Identifying Components

Following sub sections show how this distance function d (Si, Sj) is generated and

the proposed algorithm.

Similarity Measure and Distance Function:

The most important factor in clustering process is similarity measure. Similarity

measures determine how similar a pair of classes is. Similarity of classes can be

calculated by variety of ways and choosing similarity measure is influence the result

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 89

than the algorithm. Theory of distance measure tells that the similarity between two

things is the collection of their shared properties. If Si and Sj are two entities, then the

distance measure holds the following statements.

1. d(Si, Sj) >= 0

2. d(Si, Si) = 0

3. d(Si, Sj) = d(Sj, Si)

We will adapt the generic cohesion measure introduced by Frank Simon [19] that is

connected with theory of similarity and dissimilarity. Hence cohesion measure is

appropriate for proposed approach. We consider distance d(Si, Sj) between two

classes Si and Sj from S is expressed in the following expression (1) where S=

{s1,s2,……..,Sn} be the set of objects to be clustered. Objective here is to group

similar classes from S in order to obtain high cohesive groups (clusters).

Where,

With b (Si):= {Pi ЄB| Si possess Pi},Pi – set of relevant properties of Si .So, distance

measure focuses on the similarity measure of two entities with respect to a property

subset B shown above. The distance function d(Si, Sj) is normalized between 0 and 1.

The distance between two entities is larger the less similar they are, or vice versa. The

two distinct entities can have a distance of 0.We have chosen distance between two

classes as expressed in equation (1) because it emphasizes idea of cohesion.

“Cohesion refers to the degree to which module components belong together”

described Frank Simon [19]. So the equation (1) highlights concepts of cohesion. d is

a semi-metric function so hierarchical clustering algorithm can be applied.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 90

Distances in Object Oriented System:

With respect to measurement theory and distance measurement distances can be

calculated for pair of entities [19].In object oriented system several entity families can

be detected based on abstraction levels. The abstraction levels can be variable level

i.e. attributes of system, method level i.e. methods of system, object level i.e. classes

of system and system level i.e. whole system. We are focusing on class level, because

basic unit for object oriented system is class and we work on source code of object

oriented system. We calculate here distance between two classes based on the

relationship between classes Most commonly used distances in object oriented system

are distance measured through method coupling i.e. usage relationship, distance

measured through composition coupling and distance measured through inheritance

coupling. We have proposed integrated coupling of these three couplings and used as

distance measure, for Agglomerative clustering algorithm.

Distance through Method Coupling:

Method coupling - When methods of one class use methods of another class

hierarchy, then we have method coupling between the classes.

Consider following example to illustrate calculation of the distance between source

and destination class using method coupling.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 91

Figure 4.4: Class Diagram with Method Coupling

-M1()

#M2()

+M3()

Class A

In the above figure 4.4, private methodM1 () and protected method M2 () of class A,

accesses public method M6 () of class B. Private method M7 () and protected method

M8 () of class C, accesses public method M3 () of class A.

Thus, distance between two classes using method coupling can be calculated in

following table.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 92

Class Properties

(Methods

in the class

& accessed

method by

class)

Dist (A, $) =

1-(Intersection

of properties

of A

&$)/(union of

properties of A

& $)

Dist (B, $) =

1-(Intersection

of properties

of B & $) /

(union of

properties of B

& $)

Dist (C, $) =

1-(Intersection

of properties

of C

&$)/(union of

properties of C

& $)

Dist (D, $) =

1-(Intersection

of properties

of D

&$)/(union of

properties of D

& $)

A M1, M2,

M3, M6

1-4/4 = 0 1-1/6=0.833 1-1/6=0.833 1-0/6=1

B M4, M5,

M6

1-1/6=0.833 1-3/3=0 1-0/6=1 1-0/5=1

C M3, M7,

M8

1-1/6=0.833 1-0/6=1 1-3/3=0 1-0/5=1

D M9, M10 1-0/6=1 1-0/5=1 1-0/5=1 1-2/2 = 0

Table 4.1 Distance Calculation using Method Coupling

Thus, we have prepared distance matrix using method coupling of classes in object

oriented system.

Distance through Inheritance Relationship:

Coad Yourdan [15] defined inheritance coupling which is coupling between generalized

class (Super class) and its specialized classes (Sub classes) .The subclass has at least the

same behavior as the super class. When looking at implementation level, the functionality

of one class might be distributed over several classes from which it inherits. This is valid

for all three kinds of inheritance. The entities of interest in this case are classes.

Additionally for every class we are interested in its sub-classes and its super classes.

Consider following class diagram to illustrate calculation of the distance between source

and destination class using inheritance coupling.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 93

Figure 4.5: Class Diagram with Inheritance Coupling

In the given example this would be (extract):

{ (class A, class B, {class A →class A, class B →class B, class B →class A},

(class A, class D, {class A →class A, class D →class D, class D →class C, class D

→class B,

class D →class A},

(class D, class E, {class D →class D, class D →class C, class D →class B, class D →A,

class E →class E, class E →class C, class E →class A},

(class A, class F, {class A →class A, class F →class F}

.... }

Thus, distance between two classes using inheritance coupling can be calculated in

following table.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 94

Class Properti

es (Class

& its

parent

class)

Dist

(A, $)

Dist

(B,$)

Dist

(C,$)

Dist

(D,$)

Dist

(E, $)

Dist

(F, $)

Dist

(G,$)

A A 1-1/1=0 1-

1/2=0.5

1-

1/2=0.5

1-

1/4=0.7

5

1-

1/3=0.

66

1-

0/2=1

1-

0/3=

1

B B, A 1-

1/2=0.5

1-2/2=0 1-

1/3=0.6

6

1-

2/4=0.5

1-

1/4=0.

75

1-

0/3=1

1-

0/4=

1

C C, A 1-

1/2=0.5

1-

1/3=0.6

6

1-2/2=0 1-

2/4=0.5

1-

2/3=0.

33

1-

0/3=1

1-

0/4=

1

D D, B, C,

A

1-

1/4=0.7

5

1-

2/4=0.5

1-

2/4=0.5

1-4/4=0 1-

2/5=0.

6

1-

0/5=1

1-

0/6=

1

E E, C, A 1-

1/3=0.6

6

1-

1/4=0.7

5

1-

2/3=0.3

3

1-

2/5=0.6

1-

3/3=0

1-

0/4=1

1-

0/5=

1

F F 1-0/2=1 1-0/3=1 1-0/3=1 1-0/5=1 1-

0/4=1

1-

1/1=0

1-

1/2=

0.5

G G, F 1-0/3=1 1-0/4=1 1-0/4=1 1-0/6=1 1-

0/5=1

1-

1/2=0

.5

1-

2/2=

0

Table 4.2 Distance Calculation using Inheritance Coupling.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 95

Where,

Dist (A, $) = 1-(Intersection of properties of A & $)/(union of properties of A & $)

Dist (B, $) = 1-(Intersection of properties of B & $)/(union of properties of B & $)

Dist (C, $) = 1-(Intersection of properties of C & $)/(union of properties of C & $)

Dist (D, $) = 1-(Intersection of properties of D & $)/(union of properties of D & $)

Dist (E, $) = 1-(Intersection of properties of E & $)/(union of properties of E & $)

Dist (F, $) = 1-(Intersection of properties of F & $)/(union of properties of F & $)

Dist (G, $) = 1-(Intersection of properties of G & $)/(union of properties of G & $)

Thus, we have prepared distance matrix using inheritance coupling of classes in

object oriented system.

In the same way we can prepare distance matrix for composition coupling, where

properties would be the class (part class) and other class (whole class) whose attribute

is used by the class. When instance of one class is referred in another class, then we

have composition coupling, i.e. properties considered here for distance calculation are

part class and whole class.

Similarly for integration coupling, we consider all the coupling with the class and

prepare distance matrix using above technique. Thus equation (1) defined above

evaluates all pair-wise distances between clusters, which is the most important

cohesion metric (d (Si, Sj)), that will be used in proposed agglomerative hierarchical

clustering algorithm. Thus, Construct distance matrix using distance value (using

entity e Є S, p(e)- a set of relevant properties of e)

Propose Agglomerative Hierarchical Clustering Algorithm (AHCA):

Software system is composed of set of classes and dependencies among the classes.

The semi metric function d(Si, Sj) is calculated using existing dependencies in object

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 96

oriented system, which is one of the important input to the clustering process. The

clustering algorithm is written in chapter 5.

Finally using cluster levels components are created which can be used for creating

interfaces of the components. Final cluster level-1 is used for creating components.

In this step Cluster levels created are used in creating components, are used as input

to next step i.e. identify interfaces.

4.3.3 Component Evaluation and Interface Identification.

In this step, we will demonstrate how to extract interfaces among components and

component evaluation while recovering component based architecture. Using the

components generated in previous step, interface details are identified. Identified

components are evaluated using component cohesion, component coupling, and

component size metrics for quality of components. This step is further divided into

two sub steps as Identify interfaces and component evaluation.

- Identify Interfaces:

Component based system consists of components and interfaces. Component

interfaces are the means by which components connect with each other. A component

interface specifies the service that the component provides and requires. Among all of

the methods in the component, only public methods used from outside provide

services to other components or classes. Therefore we create a provide interface that

includes the public methods that exists in any of the component’s classes and which

are used by the outside of that component. Require-interface is the union set of every

method in other components that is called by the component. To reduce cyclic

dependency among components, we group these interfaces as packages. The process

of identifying interfaces and component evaluation is shown in below figure. 4.6.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 97

Fig. 4.6: Process for Identification of Interfaces and Component Evaluation

- Component Evaluation:

The component evaluation step above accepts the results produced through clustering

i.e. components created, interfaces details created as input and evaluates the quality of

identified components. There is several evaluation criterions proposed to qualify

clustering results. The basic quality metrics to evaluate software system are coupling

and cohesion, which can cause serious impact on maintenance, evolution, and reuse.

Criteria for components used by us are size, coupling and cohesion. There should also

be appropriate number of implementation classes in well-organized components.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 98

Size:

Jian Feng Cui [42] proposed size as evaluation criteria to show well organized

components with appropriate number of implementation classes. So using size we

evaluate clustering results. According to them sum of ratios of single class

component, classes in largest component and other intermediate components should

be 100%.

- Ratio of Single class component=Number of Single class component/Total

number of classes

- Ratio of classes in largest component=Number of classes in the largest

component/Total number of classes

- Ratio of other intermediate components = Number of classes in intermediate

components /Total number of classes

Coupling:

In component based system coupling shows how tightly one component is interacting

with other components in the system. Coupled Component Ratio (CCR) is one of the

metric for evaluating component coupling proposed by Jian Feng Cui [42]. According

to them two components are said to be coupled if there is connection between them

and CCR is defined as Number of components coupled with particular

component/(Total no. of components in system – 1). The CCR value of component

lies between 0 and 1.Smaller the CCR value better the component is.CCR value 1

indicates that component is coupled with all other components in system.CCR value 0

indicates that component is entirely independent.

Cohesion:

Cohesion in component based system is how tightly classes are coupled within the

component. Cohesion metric is used to measure quality of components for reusability

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 99

and maintainability. We propose Component Cohesion Metric (CCM) as Number of

component’s self-couplings/Total number of couplings of that component. Where

total number of couplings of component = self-coupling + coupling with other

components within system. The value of CCM lies between 0 and 1. A higher CCM

value indicates more similar behavior is grouped together i.e. more tightly coupled

classes are grouped together.CCM value 1 indicates high cohesion within component.

Thus the tool identifies different kinds of dependencies among the classes then uses

clustering algorithm to identify components. Interface details of the extracted

components are identified by tool using which interface packages can be defined and

components are evaluated based on component quality metrics size, component

coupling and component cohesion.

We will evaluate the tool on java application as a case study to verify the results.

4.4 Summary

This chapter elaborates on the proposed framework of component based software

architecture recovery. It describes in detail three steps of entire tool development

process consisting of three modules. Module 1 for identifying dependencies in object

oriented system. Module 2 for identifying components and finally Module 3 for

component assessment for quality and interface identification. The chapter talks about

calculation of similarity measure for clusters and distance calculation. It describes

various types of distances in object oriented system like distance through usage

relationship, distance through inheritance relationship, distance through composition

relationship. These distances are used to calculate similarity measure for proposed

Agglomerative Hierarchical Clustering Algorithm. The algorithm is used for

component creation. It also describes about various quality metrics that will be used

for component evaluation. Detail implementation of the proposed tool is presented in

chapter5.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 100

Chapter 5

Implementation of Proposed Component Based Software Architecture

Recovery Framework

Introduction

Architecture recovery is a part of reverse engineering concerned with identifying

architectural components such as subsystems, modules, objects as well as their

interrelationships called connectors. Component based architecture recovery consists of

identifying components and connector i.e. interfaces among the components.

Architecture recovery consists of detection of components and detection of connectors.

Thus, the elements of Software Architecture are components and connectors.

Since industry is migrating from object oriented system to component based system as

components more reusable and beneficial than objects, it is important to recover

component based software architecture from object oriented system. It will help software

developer or software maintenance person to create components and interface among

these components, as a part of component based system.

In this chapter we will implement the proposed framework with an objective to help

software developers to migrate the software in new working environments.

5.1 Implementation of the Proposed Framework and the Tool.

We are implementing proposed framework by developing a tool. We have developed this

tool using Java platform under eclipse Galileo version with windows as operating system.

The tool takes input as java source files with .java extension. The tool is developed in

three modules.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 101

5.1.1 Module 1:Identify Dependencies in Existing Object Oriented System

The first module identifies dependencies in existing object oriented system and displays

result as Method coupling table, composition coupling table , inheritance coupling table,

and integrated coupling table. These tables are nothing but the existing dependencies

among the classes of object oriented source code given as input to tool. Let us assume

that S is a object oriented system, consisting of n different classes s1,s2,s3,….sn. In this

case S is legacy source code of java application, whose component based architecture

needs to be identified.

Algorithm: 5.2.1 lists the pseudo algorithm for identifying dependency in existing object

oriented system.

Algorithm: 5.2.1 Identifying dependency

Input: The object oriented software system S= {s1, s2, s3…sn} where s1, s2,…sn are

classes of object oriented System and n is number of classes

Output: Tables showing source class and its coupling classes list

Method:

1. For each class s1 to Sn from S Do

2. Find method coupling with remaining S-s1 classes. If found return true,

otherwise

false.

3. Find composition relationship i.e. whole-part relationship, with remaining S-s1

classes. If found return true, otherwise false.

4. Find inheritance relationship i.e. parent-child, with remaining S-s1 classes. If

Found return true, otherwise false.

5. Find integration coupling. If found return true, otherwise false.

End for

6. Save these different couplings.

7. Display it in tabular format.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 102

5.1.2 Module 2: Identify components

The second module is developed to identify components using these coupling tables. In

this module, we are implementing agglomerative hierarchical clustering algorithm. The

module calculates the distance function using coupling tables generated in module one.

The distance calculation is required for agglomerative hierarchical clustering algorithm.

Using the integrated coupling table generated in module 1, we calculated semi- metric

function d(si,sj) for software system S. The function d is normalized between 0 and 1. So

the threshold chosen is 0.7 for similarity. Using these inputs to proposed clustering

algorithm cluster levels are generated. Cluster level before final cluster level is used to

create components.

The distance function equation (1) below, calculated in algorithm using integrated

coupling is shown in Algorithm 5.2.2.

Where,

sim (si, sj) = (Intersection of properties of si & sj)/(union of properties of si & sj)

Here, si and sj are classes from object oriented system S.

Properties in this case are:

- Methods in the class si& accessed method of sj by class si

- Class si & its parent class

- Class si (part class) and other class sj (whole class)

- Class si’s method & methods of other classes sj accessed by si + Class si & its parent

class + Class si (part class) and other class sj (whole class)

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 103

Algorithm: 5.2.2 Distance calculation

Input: Integration coupling from object oriented system S

Output: distance matrix (distance d(si,sj) = 1-sim(si,sj)), which displays source class,

destination class, intersection count, union count of relevant properties and distance.

Method:

1. For each source class si and destination class sj in S do

2. Find union count using set of relevant properties of si

3. Find intersection count set of relevant properties of si

If union count =0 or intersection count =0 then

distance d(si,sj) =1.

Else

distance d(si,sj)= 1-(intersection count)/(union count)

end for

4. Display distance matrix in tabular format.

Algorithm: 5.2.3 lists the pseudo algorithm for agglomerative hierarchical clustering

algorithm, which takes input classes from object oriented system S consisting of n

number of classes, semi metric function d(si,sj) calculated in Algorithm 5.2.2 and

threshold value for clustering which is chosen as 0.7, as distance function is normalized

between 0 and 1.Let us assume that P is number of clusters. Initially number of clusters is

equal to number of classes n in the object oriented system S. Each cluster contains

corresponding class. i.e. each cluster contains single class initially. Thus c1,c2,c3…cp be

clusters in the system C. We evaluate all pair wise distances between clusters and

construct distance matrix using relevant properties P of each class si in system S

mentioned above. Then look for the pair of clusters with shortest distance and remove the

pair from the matrix and merge them. We evaluate all distances from this new cluster to

all other clusters and update the distance matrix. We continue with this process until we

get the distance matrix reduced to a single element.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 104

Algorithm: 5.2.3 Agglomerative hierarchical clustering algorithm (AHCA)

Inputs: - The object oriented software system S= {s1, s2, s3…sn} where s1, s2,…sn are
classes of object oriented System and n is number of classes, the threshold chosen is 0.7
and the semi- metric function d between entities.
Output :-clusters at different level
Algorithm:

P=n; //initial number of clusters
For i=1 to n
Ci = {si}
End for
C = {c1, c2…cp} // clusters in the system
Repeat

- d(ci,cj)=1-sim(ci,cj) // Evaluate all pair wise distances between
clusters

- Construct distance matrix using distance value (using entity e Є S,
p(e)- a set of relevant properties of e)

- Look for the pair of clusters with shortest distance.
- Remove the pair from the matrix and merge them.
- Evaluate all distances from this new cluster to all other clusters and

update the matrix.
 Until the distance matrix is reduced to a single element.

Thus, cluster levels are created using agglomerative clustering algorithm and using one

level before final level of clusters components are created.

5.1.3 Module 3: Component Evaluation and Interface Identification.

The third module is developed for Component evaluation and interface identification.

Components created by module two are evaluated for quality. We are implementing

proposed quality metrics in the tool. The tool displays coupling among components and

cohesion within the component. Here C is the component based system consisting of n

components. Let us say C={c1,c2,c3,…….,cn}. After Algorithm 5.2.3 we get these

components, c1,c2,…etc. The quality metric size says that sum of all the ratios should be

1 to show that all the components are well created with appropriate number of classes.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 105

All these component ratios contain ratio of Single class component, ratio of classes in

largest component and ratio of other intermediate components.

Algorithm: 5.2.4 lists the pseudo algorithm for evaluating size metric of component.

Algorithm:5.2.4 Component evaluation using size metric

Input: component based system C={c1,c2….cn},migrated from object oriented system S

Output: Ratio of Single class component, Ratio of classes in largest component, Ratio of

other intermediate components

Method:

1. For each component ci from C

Find Total number of classes in ci

end for

2. Find Number of Single class component from C

3. Find Number of classes in the largest component

4. Find Number of classes in intermediate components

5. Calculate Ratio of Single class component=Number of Single class

component/Total number of classes

6. Calculate Ratio of classes in largest component=Number of classes in the largest

component/Total number of classes

7. Calculate Ratio of other intermediate components = Number of classes in

intermediate components /Total number of classes

8. Calculate Ratio of all components = (Ratio of Single class component + Ratio of

classes in largest component + Ratio of other intermediate components)

9. If Ratio of all component = 1 then

components are well organized with appropriate number of implementation

classes.

Else

Components are not well organized.

10. Display ratio of all components.

The second metric we used here is component coupling metric. We evaluate component

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 106

coupling values for each component in the component based system C. We calculate

Coupled Component Ratio (CCR), which shows how tightly component ci from C is

coupled with other components cj in the system C. Smaller the CCR value lower

coupling and higher the CCR value tight coupling.Algorithm:5.2.5 lists the pseudo

algorithm for evaluating component coupling metric.

Algorithm:5.2.5 Component evaluation using Coupling metric

Input: component based system C={c1,c2….cn} ,migrated from object oriented system S

Output: coupling value of all components

Method:

1. For each component ci from C check if ci is connected to cj

2. If true, then

Find Number of components coupled with component ci

 Find Total no. of components in system C.

3. Calculate Coupled Component Ratio (CCR) // CCR value lies between 0 and 1

CCR = Number of components coupled with component ci /(Total no. of

components in C system – 1)

4. If CCR value is smaller then lower coupling

Else

Higher coupling between components.

5. Using CCR display coupling among the components in system C.

Before implementing our third evaluation metric cohesion, we need to identify interface

details among the components, because these details are used for evaluating cohesion

metric of component. Algorithm: 5.2.6 lists the pseudo algorithm for identifying

interface details among the components created using Algorithm 5.2.2 and Algorithm

5.2.3. Here we identify method coupling of each component ci with remaining C-ci

components and coupling with ci itself, composition coupling of component ci , with

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 107

remaining C-ci components and coupling with ci itself also inheritance coupling of

component ci with remaining C-ci components and with itself. Coupling with itself

means how classes in each component interact with each other. Coupling with other

classes means how classes from component ci interact with classes from component cj.

These couplings are nothing but interfaces among all the components from c1 to cn,

which are used to evaluate cohesion within each component ci of C, as well as it will

work as required and provided interfaces of each components in system C. These

required and provided interfaces are nothing but the connectors of components.

Algorithm:5.2.6 interface details identification

Input: component based system C={c1, c2….cn} ,migrated from object oriented system S

Output: Displays components along with their interaction coupling and coupling type

Method:

1. For each component ci in C

2. Find method coupling of component ci with remaining C-ci components and with

ci itself.

3. If found return true, otherwise false. end if

4. Find composition coupling of component ci , with remaining C-ci components and

With ci itself.

5. If found return true, otherwise false. end if

6. Find inheritance coupling of component ci with remaining C-ci components and

with itself.

7. If found return true, otherwise false. endif

8. End for

9. Save these interface details of all components within system C

10. Display interface details in tabular format.

The third evaluation metric we have proposed in chapter 4 is Component cohesion metric

(CCM) for evaluation of component. We take coupling details of component from

Algorithm 5.2.6 and components from C created in Algorithm 5.2.2 and Algorithm

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 108

5.2.3 as input to Algorithm 5.2.7.The value of CCM lies between 0 and 1.If CCM value

is larger higher is cohesion. i.e. more tightly coupled classes are grouped together and if

CCM value is lesser, lower cohesion within the component. The component is said to be

better component if it has maximum cohesion and less coupling with other components in

the system.

Algorithm:5.2.7 Component evaluation using cohesion metric

Input: component based system C={c1,c2….cn} ,migrated from object oriented system S.

Interface detail table generated, which shows component ci connected with cj by which

coupling type in system C.

Output: Cohesion within component.

Method:

1. Find each component ci’s self-coupling count in system C

2. Find count of component ci’s coupling with cj, …cn.

3. Calculate total number of couplings of component ci = self-coupling of ci + coupling

with other components within system C.

4. Calculate Component Cohesion Metric (CCM) // CCM value lies between 0 and 1

CCM = Number of component ci’s self-couplings/Total number of couplings of that

component ci.

5. If CCM is higher then

Higher cohesion within component

Else

Lower cohesion within component

6. Using CCM display cohesion within component

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 109

5.2 Summary

The main objective of conducting the research study at this juncture was to present

various algorithms such as identifying dependency among classes, distance calculation

for similarity among classes, agglomerative hierarchical clustering algorithm, component

evaluation using size metric algorithm, using coupling metric algorithm, interface details

identification algorithm and component evaluation using cohesion metric algorithm.

These algorithms are implemented successfully and results obtained are presented in

chapter 6. In this way proposed framework of three modules are implemented

successfully.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 110

Chapter 6

Results and Analysis

The research study “Extraction of connector classes from object oriented system while

recovering software architecture” comprises of three modules. Before starting the first

module, we need to identify static structure of object oriented system. This can be done

by retrieving class diagram of the object oriented system. For retrieving class diagram,

we have examined four existing reverse engineering tools - IBM Rational Rose,

Enterprise Architecture, Reverse and ArgoUML. Post this we have compared results

from them and selected a tool which retrieves maximum static information. Chapter 3

elaborates more details on these reverse engineering tools. Since we are recovering

software architecture of a system whose design documentation is not available, this static

information retrieved from reverse engineering tool is used to compare the results from

module-1 of proposed approach.

Module-1 constitutes identifying existing dependencies in the object oriented system.

Existing relationships in the object oriented code helps to group the related classes

together in the form of components hence this module is designed and implemented. Here

we have considered important relationships in any object oriented systems i.e.

inheritance relationship, composition relationship and method calls from one class to

other classes in the system.

Module-2 constitutes of identifying components from object oriented system. We have

implemented similarity distance calculation algorithm and agglomerative clustering

algorithm to group similar classes into one component. We have used 6 small and

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 111

medium size object oriented applications to test , how proposed tool creates components

based on the existing relationships in the object oriented application.

Module-3 constitutes identifying interface details of component identified on module-

2.These interface details are used to create connectors of components i.e. required and

provided interface of components. These required and provided interfaces help to

components to communicate with each other. The result and analysis chapter talks about

all the three modules of proposed and implemented approach. It also talks about the

static information retrieved from existing reverse engineering tool. This research work

has been published in various International Journals and Conferences. The proposed

approach focuses more on the small and medium size applications. The next section

elaborates on the results derived during the various phases of the research.

Case study: We have chosen small java software. ‘Arithmetic24 Game’. This is a

software game application developed in Java by Huahai Yang. It is a simulation of

popular traditional card game. It consists of 19 classes and 1 interface.

Following sections presents the results using the same case study.

6.1 Module 1: Identify Dependencies in Existing Object Oriented System

Objective:

To find inheritance coupling, composition coupling and method coupling and integrated

coupling of these three couplings. We consider these important coupling dependencies as

they are basis for identifying components from object oriented system. Components are

required to create meaningful connectors.

Strategy :

The proposed approach of extracting component based architecture from object oriented

system is based on the identification of source code entities and the relation between

them. The classes and relations have to be extracted by source code analysis and identify

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 112

dependencies between the classes. Input all .java files of Arithmetic 24’ game to the

proper directory in the tool and execute main program of the tool.

Algorithms implemented: Algorithm: 5.2.1 Identifying dependency described in chapter

5 was implemented. Also some supporting programs are written and executed to identify

different dependencies among classes.

Results from Module 1

When ‘Arithmetic 24’ game’s source code is given as input to the first module, output

shows that all the classes are extracted by module1 of proposed approach along with

different coupling tables. Results from module 1 are shown in figure 6.1 and figure 6.2.

Figure 6.1: Method, Composition, Inheritance Dependency identified from Proposed

Approach & Tool of ‘Arithmetic24’ Game software

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 113

Figure 6.2: Integrated Coupling identified from Proposed Approach & Tool of Arithmetic24

Game software

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 114

6.2 Module 2: Identify Components

Objective:

To group the similar classes together to form the components using existing dependencies

among classes.

Strategy :

Using the existing dependencies among the classes i.e. output generated in Module-1

shown in figure 6.1 - 6.2 and apply similarity distance algorithm, Algorithm 5.2.2 and

Agglomerative clustering algorithm, Algorithm 5.2.3and create cluster levels. Using

final cluster level – 1,create components.

Algorithms implemented: Algorithm: 5.2.2 Distance calculation and Algorithm: 5.2.3

Agglomerative hierarchical clustering algorithm (AHCA)described in chapter 5 were

implemented. We have also written and executed some supporting programs to identify

components.

Results from module 2:

Using the integrated coupling table shown in figure 6.6we calculated semi- metric

function d(si,sj) for software system S. The function d is normalized between 0 and 1. So

the threshold chosen is 0.7 for similarity. Using these inputs to proposed clustering

algorithm, we got cluster levels from 0 to 4 which are figures 6.8, figure 6.9 and figure

6.10 shows components created from the module 2.Distance tables created using

integrated coupling is shown in figure 6.7 below.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 115

Figure 6. 3: Distance table created using integrated coupling

For cluster level 1

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 116

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 117

Figure 6.3 continued……..

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 118

Figure 6.3 continued……

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 119

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 120

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 121

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 122

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 123

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 124

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 125

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 126

Figure 6.3 continued…….

Cluster level 3

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 127

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 128

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 129

Figure 6.3 continued…….

Cluster level 4

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 130

Figure 6.3 continued…….

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 131

Figure 6.4 : Cluster levels created for ‘Arithmetic24’ game

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 132

Figure 6.5: Remaining cluster levels created for ‘Arithmetic24’ game

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 133

Figure 6.6: Components created for ‘Arithmetic24’ game

6.3 Module 3: Component evaluation and interface identification.

Objective:

To identify interface details among the components and to evaluate components quality

using metrics like size, coupling and cohesion.

Strategy: Using components created in module – 2, component dependency is identified

to show components are interacting with each other. These interfaces will work as

provided and required interface for the component, which are nothing but the connectors.

These interface details are used to access the quality of components using quality metrics.

Algorithms implemented: We have implemented the following algorithms –

Algorithm: 5.2.4 Component evaluation using size metric

Algorithm: 5.2.5 Component evaluation using Coupling metric

Algorithm: 5.2.6 interface details identification

Algorithm: 5.2.7 Component evaluation using cohesion metric are implemented

to get the results from module-3.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 134

We have also written and executed some supporting programs to identify interface details

and component evaluation.

Results from module 3

The figure.6.7 shows interface details created for these components. Using these details,

interfaces among components can be created. “Table-6.1” show candidate components

created along with respective classes for used case study “Arithmetic24 Game”. Using

interface details component diagram with dependencies is shown in “fig.6.8 a”.

Components are evaluated for quality using metrics size, coupling among components

and cohesion within component and the results are shown in figure 6.7. The first

evaluation metric chosen is the size evaluation criteria to show well organized

components with appropriate number of implementation classes. So using size we

evaluate clustering results. For this metric, sum of ratios of single class component,

classes in largest component and other intermediate components should be 100%.i.e. sum

of these should be 1.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 135

Figure 6.7: Components created and interface details among components

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 136

Figure 6.7 continued……..

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 137

Figure 6.7 continued……..

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 138

Figure 6.7 continued……..

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 139

Figure 6.8 a) UML Component Diagram for Arithmetic24 game

Candidate

components

Classes

Component0 Arithmetic24,DraggingArea,DraggingImage,ObservableInteger,PlayingStatus,

ScoreKeeper,SynchronizedVector,Type

Component1 CardSlot, DraggingSlot,SoundLoader

Component2 SoundList

Component3 Card, CardDeck, Clock, Expression, IllegalExpressionException,

Operator, OperatorSlot, Solution

Table 6.1: Candidate components recovered from Proposed approach & tool for
“Arithmetic24” game

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 140

Figure 6.8 b) UML Components with interfaces as packages for Arithmetic24 game

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 141

Figure 6.9: Component Evaluation by using Component Size, Component Coupling and

Component Cohesion Metrics

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 142

Result Analysis

Figure 6.1 and figure 6.2 shows all the classes are extracted and different coupling tables

are displayed. Result shows most of the classes are placed in proper coupling tables. We

have identifies 20 classes(19 classes & 1 interface) from the given input. We have

compared the result with the class diagram generated with the tool Enterprise

Architecture. Initial experimental results from a case study were encouraging. The tool

successfully extracted the classes and identifies coupling dependencies and displayed it in

tabular format.

Using cluster levels, components are created for “Arithmetic24 Game�. We have

identified four components for the same, as shown in figure 6.6.We have also identified

20 classes of “Arithmetic24” game. We have compared the result with the class diagram

generated with the tool Enterprise Architecture. Figure 6.6 shows these 20 classes are

placed in four components by proposed approach.

So from figure 6.7 and “Table 6.1” largest components are component0 and component3

consisting of 8 classes each. So Ratio of classes in largest component0 =8/20 = 40% and

Ratio of classes in largest component3 =8/20 = 40%. There is a single class component,

component2, so Ratio of Single class component=1/20 = 5%.There is one intermediate

component, component1, so Ratio of other intermediate components = 3/20 = 15%. Thus

sum of these three ratios is 100%; it indicates all the classes in the software have been

considered by three ratios. Also Result screen “fig.6.9” shows evaluation of components

by coupling metric. Coupled component Ratio (CCR) for Component0 = 0.66, CCR for

Component1=0.33, CCR for Component2=0.66, CCR for Component3=0.66.Again from

result screen “fig.6.9” shows evaluation of components by Component Cohesion Metric

(CCM). CCM for Component0=0.6, CCM for Component1=0.25, CCM for

Component2=0, CCM for Component3=0.25. “Fig.6.8 a” shows dependencies among

components created through proposed tool. Component dependencies must be decreased.

We decrease dependency by managing interfaces into another package. So using interface

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 143

package, components with cyclic dependency can be removed, as shown in “Fig.6.8 b”.

We can create component packages and interface packages which will play role of

required interface and provided interface. Deployment of components and interfaces will

depend upon the framework you use.

6.4 Sample Case studies – Analysis Chart

To assess the results from proposed study, we used six different small and medium size

systems developed in java as input to the proposed tool. These experiments aimed to

evaluate the tool for producing components of good quality. In this section we present

experimental results and extracted artifacts from proposed tool for these six systems.

Table 6.2 summarizes the result from the proposed tool for various system.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 144

System

Name

Arithmetic24 Shopping

Cart

Feedback

Analysis

MyTool CD

project

Satellite

Number of

classes&

interface

extracted

20 31 36 45 11 12

Number of

Method

coupling

identified

03 00 0 08 04 02

Number of

composition

coupling

identified

11 01 0 06 01 05

Number of

Inheritance

coupling

identified

03 00 0 00 00 00

Number of

integration

coupling

12 01 0 14 04 06

Number of

Cluster

levels

created

04 01 01 02 02 01

Number of

component

identified

04 01 01 01 01 01

Time 4.20 sec 6 min 7.15 sec 10 min 2.30 sec 2.48 sec

Table: 6.2 Sample Case studies – Analysis Chart

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 145

Figure 6.10 below shows various artifacts extracted by proposed tool for various systems.

All the classes and couplings like method coupling, composition coupling, inheritance

coupling and integrated coupling of classes are properly extracted. We can also see

appropriate cluster levels and components are created. Closely related classes are grouped

together to form component. For shopping cart and feedback analysis system almost all

the classes are unrelated. So the distance between any two classes is 1 or near to 1,hence

just single component is created for these system. For the systems MyTool, CD project

and satellite very few dependencies are there, hence it is obvious for cluster calculation

distance goes to near 1 and again single component is created. In case of Arithmetic24

system all the three basic dependencies are present, hence integrated coupling is

calculated properly and all 20 classes of the system are placed properly into four

components. We are using integrated coupling, hence at each cluster level, distance

calculation of class with every other class or clustered group is considered repetitively for

similarity measure. Hence, if number of classes are more it takes more time to form

components. We compare these results with our first phase of generating class diagram

with existing reverse engineering tool Rational Rose and EA. We found that all the

classes and dependencies have been extracted by proposed tool for all the systems tested.

Hence components are generated properly. Performance of the tool is shown in figure

6.11.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 146

Figure 6.10: Sample Case Studies Analysis Chart

Figure 6.11: Performance of Proposed Tool

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 147

6.5 Comparative Study of Proposed Tool verses Existing Approaches

Following table 6.3 shows comparison of proposed approach with other approaches. We

have considered manual approaches like FOCUS, CRUD method and object-z method.

We have also considered automatic methods like ROMANTIC, Lee method and RCA

method along with semiautomatic Hassan method. We have made comparison on the

basis of extraction of elements required for component based architecture and evaluating

components for quality using the most important metrics like cohesion, coupling and size

of component. The methods are described in detail in chapter 2. From the table 6.3 we

can see that all the methods are able to identify components. FOCUS method and Lee

method partially identifies connector details. ROMANTIC ,Hassan method and RCA do

not identify connectors but CRUD method, and object-z method identifies connectors.

But CRUD and object-z are manual methods. ROMANTIC , Lee and Hassan method

used clustering techniques for recovering artifacts. Lee method partially used cohesion

and coupling component evaluation.RCA method supports cohesion and coupling.

Component size metric is not used by any of these methods. The proposed tool supports

all the details required for component based system also the approach is automatic. It can

also be observed from table 6.3 that proposed tool gives all the circumstances required

for component based system.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 148

Approach Identify

components

Identify

connectors

Clustering

classes

Cohesion

evaluation

Coupling

evaluation

Component

size

evaluation

Auto-

mation

level

FOCUS

approach

S P N N N N manual

CRUD

method

S S N N N N manual

ROMANTI

C method

S N S N N N auto-

matic

Lee method S P S P P N auto-

matic

Object-Z

method

S S N N N N manual

Hassan

method

S N S N N N Semi-

auto

RCA

method

S N N S S N auto-

matic

Proposed

tool

S S S S S S auto-

matic

Table 6.3: Comparison of the proposed tool and other approaches

Here in the table 6.3,

S – Supports

P- Partially support

N – Not used

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 149

6.6 Research outcome

From the above experiments’ results and analysis we can infer that –

- The research study conducted will help providing assistance to software

maintenance for transforming existing object oriented system to component based

system.

- Through research study reuse of existing code and migrating to new environment

becomes easy and it saves cost, efforts of redesign and redeveloping the system

which suits to new evolving environment. This is what the software industry

always prefers.

- The powerful tool will assist to extract components and interface details from object

oriented system to form component based system.

- The research study gives maximum automation and less human intervention ,that

will reduce human efforts and cost of software development.

- The tool itself evaluate extracted components for quality.

- It also help management by reducing human efforts and cost saving.

The work in this chapter summarizes the results got from small and medium size software

application.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 150

Chapter 7

Summary and Conclusion

7.1 Summary

Software architecture gives high level of abstraction of system and plays very important

role in at least six aspects of software development: understanding, reuse, construction,

evolution, analysis and management. However, the original architecture of software

would deviate from actual system, due to software maintenance and software evolution.

Most of the times software architecture documents are not available.

Today, computing environments are evolving from mainframe systems to distributed

system. Standalone programs developed using object oriented technologies are not

suitable for these new computing environments. Instead programs developed using

component based technology has proven to be more suitable for new environments due to

their granularity and reusability. For this reason components can be used more effectively

and are better suited for reuse than the objects from a object oriented system. We can get

maintainability and reliability of software by reusing existing elements and classes in

legacy object oriented system. Therefore, we should derive reusable components from

classes in object oriented system and change the object oriented system into component

based system. Components within system interact with each other through required-

interfaces and provided-interfaces. These interfaces act as connectors between

components. This gave a direction to pursue research in the area of component based

software architecture recovery from object oriented system.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 151

Software architecture recovery methods are classified according to process input used,

approach and techniques used to extract architecture. Whichever is the input used or

approach used; manual techniques and semi- automatic techniques are time consuming

and require lot of human efforts. The research focused on quasi-automatic method and

implemented it into automatic tool. The proposed approach and tool extracted

components and interface details from object oriented system. Clustering has been

applied for gaining architectural understanding and recovering component based

architecture of object oriented software systems. Relationship among the classes played a

very important role during clustering, as they are used to determine similarity between

entities to be clustered.

Our research study is mainly divided into two phases:

- Extract the classes of given source code using existing tool available

- Develop tool for component identification and interface details generation.

First phase is a kind of analysis phase of a legacy object oriented system through existing

reverse engineering tool. The main objective here was to examine different existing

reverse engineering tools, access the capabilities of tools and choose best of them to

generate static structure of object oriented system. We have chosen here four reverse

engineering tools; commercial and non-commercial. This is required to generate UML

class diagram, which shows different classes and static relationship among the classes.

The research assumes that no documentation is available of legacy system. Hence, this

class diagram is useful to verify results from first module of proposed framework. Here

we observed that most of the classes are extracted by all the four tools (Rational Rose,

Enterprise Architecture, Reverse and Argo UML) but all the relationships have not been

extracted properly. We concluded that Rational rose and Enterprise Architecture extracts

maximum required static information. Hence, any one available tool can be used to

generate class diagram.

Second phase of the research is proposing framework, tool and implementation of it,

which is again divided into three modules. Objective of this phase was to automate the

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 152

approach of component creation, interface identification and component evaluation. The

three modules are listed below.

- Identify dependencies in existing object oriented system

The main objective here was to find inheritance coupling, composition coupling and

method coupling and integrated coupling of these three couplings. We considered

these important coupling dependencies as they are basis for identifying components

from object oriented system. Components are required to create meaningful

connectors.

- Identify components

The objective here was to group the similar classes together to form the components

using existing dependencies among classes and propose, implement agglomerative

hierarchical clustering algorithm.

- Component evaluation and interface identification.

The objective here was to identify interface details among the components and to

evaluate components quality using metrics like size, coupling and cohesion.

To evaluate the proposed approach and tool for producing components of good quality,

we used six different small and medium size systems developed in java as input to our

tool. The proposed tool identified existing dependencies among the classes of these

object oriented systems. The result showed that all the classes from object oriented

system are extracted and various dependencies are displayed by tool. We have compared

the result with the class diagram generated with the tool Enterprise Architecture.

Relationship among the classes are used to determine similarity between entities to be

clustered, hence module 1 is important and forms a basis for module 2. In module 2, we

created components based on relationships extracted using agglomerative clustering

algorithm. Results showed that appropriate cluster levels are created and based on that

components are created. These components are evaluated for quality by using cohesion,

coupling and size metric of component, in the module 3.Interface details of the identified

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 153

components are also displayed in the result. We have studied and provide guidelines for

implementing these components and interfaces in OSGi framework, which is one of the

popular frameworks for implementing component based system. We have written various

algorithms and implemented them in our tool. We have used different java applications to

evaluate our tool. Results of the tool are satisfactory and showed reduced time and human

efforts than other methods available. Results also showed various artifacts extracted from

various object oriented system and performance of our tool. We developed tool in java to

migrate java applications into component based system.

Summary of Results Obtained:

Primary objective of this research was to come up with a tool that will help software

maintenance person to migrate object oriented systems into a component based system.

This research will

- help software maintenance to migrate existing object oriented system to

component based system.

- reuse existing code while migrating to new environment

- save cost, efforts of redesign and redeveloping the system which suits to new

evolving environment.

- assist in extracting components and interface details from object oriented system

to form component based system.

- reduce human intervention by maximum automation.

- evaluate the extracted components for quality.

- help management in cost saving.

7.2 Conclusions

As stated earlier, components have more granularity and reusability than the classes and

are suitable for new distributed computing environment. Software industry is migrating to

component based technology. Component identification is a critical part of software

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 154

reengineering. In this research study, we have proposed and implemented Framework,

tool to recover component based architecture from an object oriented system. The

research study conducted on “Extraction of connector classes from object oriented system

while recovering software architecture” helped in migrating legacy object oriented

system into component based system. The research study comprises of three modules.

Before starting the first module, we need to identify static structure of object oriented

system. This can be done by retrieving class diagram of the object oriented system. For

retrieving class diagram, we have examined four existing reverse engineering tools - IBM

Rational Rose, Enterprise Architecture, Reverse and ArgoUML. Post this, we have

compared results gained from these tools and selected a tool which retrieves maximum

static information. Since we are recovering software architecture of a system whose

design documentation is not available, the static information retrieved from reverse

engineering tool is used to compare the results from module-1 of our tool.

Module-1 constitutes identifying existing dependencies in the object oriented system.

Existing relationships in the object oriented code helps to group the related classes

together in the form of components hence this module is designed and implemented. Here

we have considered important relationships in any object oriented systems i.e. inheritance

relationship, composition relationship and method calls from one class to other classes in

the system.

Module-2 constitutes of identifying components from object oriented system. We

proposed distance calculation function to find similarity between classes of object

oriented system. We have implemented similarity distance calculation algorithm and

agglomerative clustering algorithm to group similar classes into one component. We have

used 6 small and medium size object oriented applications developed in java to test, how

our tool creates components based on the existing relationships in the object oriented

application.

Module-3 constitutes identifying interface details of component identified on module-

2.These interface details are used to create connectors of components i.e. required and

provided interface of components. These required and provided interfaces help to

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 155

components to communicate with each other. Components created in Module-2 are

evaluated here for quality using quality metrics component coupling, component

cohesion and component size. The proposed approach shows these evaluations also.

Thus, these three modules are implemented in the tool by using java language. We have

studied and provided guidelines for deploying these components created and interface

details into OSGi framework. We have conducted experiments on six small and medium

size object oriented systems. Experimental results showed that our tool gave satisfactory

result in terms of clustering quality. It was effective for software architecture recovery.

Even though hierarchical clustering is time consuming, it is better than manual and semi-

automatic approaches which require much more time than hierarchical clustering.

7.3 Suggestions for Further Research

There are various avenues for further research in this research study. More specifically,

some of the areas which can be further investigated are listed below:

- The hierarchical clustering method is highly time consuming process, especially

when it is employed in large-scale software system. Improving the efficiency of

agglomerative hierarchical clustering algorithm will be considered in future

research.

- Identification of components and interfaces, by considering dynamic relationship

and dynamic interaction of classes, would be one of the future works.

- Identified components and connector storage and retrieval could also be

considered as future work.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 156

References

[1] Aline.P.V. Vasconcelos, and C.M.L. Werner, "Software Architecture Recovery based
on Dynamic Analysis", XVIII Brazilian Symposium on Software Engineering,
Workshop on Modern Software Maintenance, 2, Brasilia, DF, Brazil, October, 2004.

[2] Abdelkrim Amirat and Mourad Oussalah , “Enhanced Connectors to Support

Hierarchical Dependencies in Software Architecture”, ACM NOTERE 2008, June23-
27, Lyon, France. pp. 257-266, 2008

[3] Alae-Eddine El Hamdouni, A.Djamel Seriai1, and Marianne Huchard, ” Component

based architecture recovery from OO systems via relational Concept Analysis”,
CLA10 7th International Conference on Concept Lattices and Their Applications,
Sevilla : Spain (2010) pp. 259-270 ,2010

[4] Ali Shokoufandeh, Spiros Mancoridis, Trip Denton, Matthew Maycock, ” Spectral

and meta-heuristic algorithms for software clustering”, The Journal of Systems and
Software, vol 77,No.3 pp. 213-223,2004

[5] Andrey A.Terekhov, ” Dealing with Architectural Issues: a Case Study”, ACM

SIGSOFT Software Engineering Notes Volume 29 Number 2,pp. 1-4,2004

[6] Andre L. C. Tavares, Marco Tulio Valente,” A Gentle Introduction to OSGi”, ACM
SIGSOFT Software Engineering Notes, Volume 33 Number 5 pp 1-5, 2008

[7] Arie van Deursen, Christine Hofmeister, Rainer Koschke, Leon Moonen,and Claudio
Riva. Symphony, “View-driven software architecture reconstruction”, In WICSA, pp.
22–134, 2004.

[8] Bridget Spitznagel and David Garlan, “A Compositional Approach for Constructing

Connectors”, Proceedings of the Working IEEE/IFIP Conference on Software
Architecture ,WICSA 2001

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 157

[9] Brian S. Mitchell, Spiros Mancoridis and Martin Traverso , ” Search Based Reverse

Engineering” SEKE '02, Ischia, Italy pp. 431-438 July 15-19, 2002

[10] Brian S. Mitchell and Spiros Mancoridis , “On the Automatic Modularization of

Software Systems Using the Bunch Tool”, IEEE Trcactionsans On Software
Engineering, VOL. 32, NO. 3, pp. 193-208 MARCH 2006

[11] Brian S. Mitchell and Spiros Mancoridis, “On the evaluation of the bunch search-

based software modularization algorithm”, Soft Comput., 12(1) pp. 77–93, 2008.

[12] Chandrashekar Rajaraman, Michael R. Lyu, “Some Coupling Measures for C++

Programs”.

[13] Chung-Horng Lung, Marzia Zaman, Amit Nandi, “Applications of Clustering

Techniques to Software Partitioning, Recovery and Restructuring”, Journal of
Systems and Software - Special issue: Applications of statistics in software
engineering, Volume 73 Issue 2, pp. 227 - 244 Elsevier Science Inc. New York, NY,
USA October 2004

[14] Chung-Horng Lung, “Software Architecture Recovery and Restructuring through

Clustering Techniques”, Proceedings of the 3rd International Software 1 Architecture
Workshop (ISAW), pp.101-104, 1998

[15] Coad P., Yourdan E. (1991) “Object oriented Design,”. Prince-hall, Englewood cliffs,

NJ.

[16] D.H.Hutchens and V.R. Basili, ”System structure Analysis: clustering with Data

Bindings,”. IEEE transactions software Engineering Vol 11 No 8, pp 749-757,
August 1985

[17] Danny Lange and Yuichi Nakamura “Interactive visualization of design patterns can

help in framework understanding”. In OOPSLA, pp. 342–357, 1995.

[18] Eunjoo Lee Byungjeong Lee Woochang Shin Chisu Wu , “A Reengineering Process

for Migrating from an Object-oriented Legacy System to a Component-based
System”, Proceedings of the 27th Annual International Computer Software and
Applications Conference , COMPSAC’03,2003

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 158

[19] Frank Simon ,Silvio Loffler, Claus Lewerentz. Al, “Distance based cohesion
measuring”. Accepted for FESMA99, Amsterdam 4. –8. October ,1999.

[20] G. Murphy, D. Notkin, and K. Sullivan. “Software reflexion models:Bridging the gap

between source and high-level models”. In SIGSOFT, pp. 18–28. ACM Press, 1995.

[21] Gabriela Ar´evalo, St´ephane Ducasse and Oscar Nierstrasz, “Lessons Learned in

Applying Formal Concept Analysis to Reverse Engineering”, ICFCA'05 Proceedings
of the Third international conference on Formal Concept Analysis, pp. 95-112 ,2005.

[22] Gabriela Ar´evalo and Tom Mens, “Analysing Object Oriented Framework Reuse

using Concept Analysis”, In ECOOP 2002: Proceedings of the Inheritance
Workshop, A.Black, E.Ernst, P.Grogono and M. Sakkinen (Eds.), pp. 3-9, 2002.

[23] Gall H., Jazayeri M, Klosch R, Lugmayr W., Trausmuth G., “Architecture Recovery

in ARES”. In Proc. of the 2nd International Software, Architecture Workshop
(ISAW-2), San Francisco, 1996.

[24] Ganter, B., Wille, R., “Formal Concept Analysis — Mathematical Foundations”,

Springer, 1999.

[25] Garlan, “Software Architecture : a roadmap”, In ICSE- Future of SE track, pp. 91-

101,2000.

[26] George Yanbing Guo, Atlee, and Kazman, “A software architecture reconstruction

method” In WICSA, pp. 15–34, 1999.

[27] Ghulam Rasool, and Nadim Asif ,“ Software Architecture Recovery”, International

Journal of Computer, Information, and Systems Science, and Engineering 1;3 pp.
206-211 , 2007

[28] Hassan Gomaa, Daniel A. Menascé and Michael E. Shin, “Reusable Component

Interconnection Patterns for Distributed Software Architectures”, SSR’01, May 18-
20, Toronto, Ontario, Canada pp. 69-77, 2001.

[29] Hassan Mathkour, Ameur Touir, Hind Hakami, Ghazy Assassa , “On the

transformation of object oriented-based systems to Component based Systems”, IEEE
International Conference on Signal Image Technology and Internet Based Systems
’08, pp. 11-15, 2008.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 159

[30] Hausi A. Müller, Kenny Wong, and Scott R. Tilley, “Understanding software systems

using reverse engineering technology”, In OO Tech. for Database and Soft. Sys.,
pp.240–252. World Scientific, 1995.

[31] Helgo M. Ohlenbusch and George T. Heineman, “Composition and interfaces within

software architecture”, Proceedings of the 1998 conference of the Centre for
Advanced Studies on Collaborative research, CASCON’98.pp 17, 1998.

[32] Hemant Jain, Naresh Chalimeda, Navin Ivaturi ,Balarama Reddy, “Business

Component Identification- A Formal Approach”, Proceedings of the Fifth
International Enterprise Distributed Object Computing Conference (EDOC’01)
pp.183-187,2001.

[33] Hironori Washizaki and Yoshiaki Fukazawa, “A technique for automatic component

extraction from object-oriented programs by refactoring”. Sci. Comput. Program.,
56(1-2) pp. 99–116, 2005

[34] Houari A. Sahraoui, Hakim Lounis, Walcelio Melo, and Hafedh Mili, “A concept
formation based approach to object identification in procedural code”, In Automated
Software Engineering Journal, Volume 6 No 4, Kluwer Academic Publishers, 1999,
pp. 387-410.

[35] IBM Rational Rose Enterprise Edition software.

[36] Igor Ivkovic and Michael W. Godfred, “Architecture recovery of Dynamically Linked

Applications: A case study”, Proceedings of the 10 th International Workshop on
Program Comprehension (IWPC’02),2002

[37] Ivkovic and Godfrey, “Enhancing domain-specific software architecture recovery”, In
the proceedings of IWPC, pp 266–276, 2003

[38] Istvan Gergely Czibula and Gabriela¸Serban,“ Hierarchical Clustering for Software

Systems Restructuring”, 2007

[39] Ivan T. Bowman and Richard C. Holt,“ Software architecture recovery using

Conway's law”, in the proceedings of the 1998 conference of the Centre for
Advanced Studies on Collaborative Research CASCON '98 ,pp 1-11,1998.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 160

[40] Jain A.M,Murthy M.N and Flynn P.J. Dam,“ Clustering: A review”, ACM
Computing surveys,31(3); pp. 264-323,1999.

[41] James Sasitorn and Robert Cartwright, “Deriving Components from Genericity”,

SAC’07 March 11-15, Seoul, Korea, ACM, pp. 1109- 1116, 2007.

[42] Jian Feng Cui,Heung Seok Chae, “Applying agglomerative hierarchical clustering

algorithms to component identification for legacy systems”, Information and
Software technology, 53, pp. 601-614 , 2011.

[43] Jiawei Han and Micheline Kamber, “Data Mining Concepts and Techniques”, second

edition, Elsevier publisher,2006.

[44] Jonas Lundberg and Welf L¨owe, “Architecture Recovery by Semi-Automatic

Component Identification”, Electronic Notes in Theoretical Computer Science 82 No.
5, Published by Elsevier Science B. V., 2003.

[45] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun Jang, Dong Han Ham,

“Component Identification method with coupling and cohesion” In the proceedings of
the Eight Asia Pacific Software Engineering Conference,APSEC’01, IEEE, 2001.

[46] Kamran Sartipi and Kostas Kontogiannis,“ Component Clustering Based on Maximal

Association” Proceedings of the Eighth Working Conference On Reverse
Engineering , pp. 1-12 (WCRE.01),2001.

[47] Lee E., B. Lee ,W. Shin and C.Wu, “A reengineering process for Migrating from an

object oriented Legacy system to Component based system”, In proceedings of the
27th International Computer Software and Aplication
Conference(COMPSAC),Dallas,TX, USA, Nov 3-6 IEEE Computer Science press,
pp.336-341,2003.

[48] Lei Ding and, Nenad Medvidovic “Focus: A Light-Weight, Incremental Approach to

Software Architecture Recovery and Evolution”, Proceedings of the Working
IEEE/IFIP Conference on Software Architecture , WICSA '01 pp. 191-200, 2001.

[49] Maher Salah and Spiros Mancoridis, “A hierarchy of dynamic software views: from

object-interactions to feature-interacions”. In ICSM, pp. 72–81, IEEE Press, 2004.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 161

[50] Marie Chavent, “A monothetic clustering method”, Pattern Recognition Letters,
Volume 19, Issue 11, pp. 989–996 September 1998.

[51] Mircea Lungu and Michele Lanza, Tudor Gˆırba,,“ Package Patterns for Visual

Architecture Recovery”, In Proceedings of European Conference on Software
Maintenance and Reengineering (CSMR 06),2006.

[52] Nadim Asif, “Architecture Recovery”, In the Proc. of International Conference of

Information and Knowledge Engineering (IKE’02), Las Vegas, 2002.

[53] Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev, andYann-Ga¨el

Gu´eh´eneuc, “Refactorings of Design Defects using Relational Concept Analysis”,
ICFCA'08 Proceedings of the 6th international conference on Formal concept
analysis, pp. 289-304,2008.

[54] Nenad Medvidovic , Alexander Egyed and Paul Gruenbacher, “Stemming

Architectural Erosion by Coupling Architectural Discovery and Recovery”,
Proceedings of 2nd Second International Workshop from Software Requirements to
Architectures(STRAW), collocated with ICSE 2003, Portland,Oregon,May2003.

[55] Nenad Medvidovic and Vladimir Jakobac, “Using Software Evolution to Focus

Architectural Recovery”, Journal Automated Software Engineering, volume 13, Issue
2, pp. 225-256 April 2006 .

[56] Nicolas Anquetil and Timothy C. Lethbridge, “Recovering software architecture from

the names of source files”, Journal of Software Maintenance, 11 pp. 201–221, 1999.

[57] O’Brien, L., “Dali: A Software Architecture Reconstruction Workbench”, Software

Engineering Institute, Carnegie Mellon University, May 2001.

[58] Oleksandr Grygorash, Yan Zhou, Zach Jorgensen, “Minimum Spanning Tree Based

Clustering Algorithms”, ICTAI '06 Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence, pp. 73-81, 2006.

[59] O. Maqbool, H.A. Babri,“ The Weighted Combined Algorithm: A Linkage Algorithm

for Software Clustering”, Proceedings of the Eighth European Conference on
Software Maintenance and Reengineering, CSMR’04, IEEE, 2004.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 162

[60] Onaiza Maqbool and Haroon A. Babri, “Hierarchical Clustering for Software
Architecture Recovery”, IEEE Transactions On Software Engineering, Vol. 33, No.
11, pp. 759 - 780 November 2007.

[61] Ondrej Galik and Tomas Bures“Generating Connectors for Heterogeneous

Deployment”, Proceedings of the 5th International workshop on Software
Engineering and middleware (SEM '05) September Lisbon, Portugal pp.54-61,2005.

[62] Pang- Ning Tan, Michael Steinbach, Vipin Kumar,“ Introduction to Data Mining”,

Published by Pearson Education Inc.,2006.

[63] Pascal Andr´e, Nicolas Anquetil, Gilles Ardourel, Jean-Claude Royer,“ Component

types and communication channels recovery from Java source code”, WCRE, Lille:
France, 2009.

[64] Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Cimpan, S., Verjus, H.,“ Towards a

process oriented software architecture reconstruction taxonomy”, In: CSMR ’07:
Proceedings of the 11th European Conference on Software Maintenance and
Reengineering. pp. 137–148. IEEE Computer Society, Washington, DC, USA, 2007.

[65] Prasanta K. Jana and Azad Naik,“ An Efficient Minimum Spanning Tree based

Clustering Algorithm”, Methods and models in computer science, ICM2CS ,pp. .1-5,
2009.

[66] Qifeng Zhang, Dehong, Qiu, Qubo Tian, Lei Sun,“ Object Oriented Software

Architecture Recovery using New Hybrid Clustering Algorithm”, Seventh
Internationl conference on Fuzzy systems and Knowledge Discovery (FSKD 2010),
2010.

[67] Rainer Koschke, Daniel Simon,“ Hierarchical Reexion Models”, Proceedings of 10th

working conference on Reverse Enginnering, pp 36-45, 2003.

[68] Rick Kazman and S. Jeromy Carriere,“ View extraction and view fusion in

architectural understanding”, In International Conference on Software Reuse, 1998.

[69] Rick Kazman and S. J. Carriere, “Playing detective: Reconstructing software

architecture from available evidence”, Automated Soft. Engineer., 1999.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 163

[70] Rick Kazman, Liam O’Brien, and Chris Verhoef,“ Architecture reconstruction
guidelines. Technical report”, Carnegie Mellon Univ., SEI, 2001.

[71] Robert Allen and David Garlan,“Formalizing Architectural Connection”, 0270-

5257/94 IEEE, pp. 71- 80, 1994.

[72] Robert Allen and David Garlan,“ A Formal Basis for Architectural Connection”
Journal ACM transactions on Software Engineering and Methodology, TOSEM ,
volume 6 issue 3, pp. 213-249 July 1997.

[73] Roger S. Pressman, “Software Engineering A practitioner’s Approach”, Sixth

Edition, McGraw Hill Publications.

[74] S.K.Mishra, Dr.D.S.Kushwaha, and Prof.A.K.Misra,“ Creating Reusable Software

Component from Object-Oriented Legacy System through Reverse Engineering”, in
Journal of Object Technology, pp. 133-152 Jan-Feb 2009.

[75] S. Mancoridis, B. S. Mitchell , Y. Chen, E. R. Gansner, Bunch: A Clustering Tool for

the Recovery and Maintenance of Software System Structures”, Proceedings of IEEE
International Conference on Software maintenance, pp. 50-59,1999.

[76] Shaheda Akthar, Sk.Md.Rafi,“ Improving The Software Architecture Through Fuzzy

Clustering Technique”, Indian Journal of Computer Science and Engineering ISSN :
0976-5166 Vol 1 No 1 pp. 54 – 57,2010.

[77] Shaheda Akthar and Sk.MD.Rafi, “Recovery of Software Architecture Using

Partitioning Approach by Fiedler Vector and Clustering”, Computer and Information
Science Vol.3, No.1, pp. 72-75, February 2010.

[78] Shivani Budhkar and Arpita Gopal,” Reverse Engineering Java Code to Class
Diagram: An Experience Report”, in International Journal of Computer Applications
(0975 – 8887) Volume 29– No.6, September 2011, pp. 36-43.

[79] Shivani Budhkar and Arpita Gopal,” Component based software architecture recovery
from object oriented system using existing dependencies among classes”, ,in
International Journal of Computational Intelligence Techniques ISSN: 0976-0466 &
E-ISSN: 0976-0474, Volume 3, Issue 1, 2012, pp.-56-59.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 164

[80] Component identification from existing object oriented system using Hierarchical
clustering,” in IOSR Journal of Engineering, ISSN: 2250-3021, May. 2012, Vol. 2(5)
pp: 1064-1068.

[81] Siff, M., Reps, T.W, “Identifying modules via concept analysis” IEEE Trans.

Software Eng. 25(6), pp. 749–768 ,1999.

[82] Siraj Muhammad, Onaiza Maqbool, Abdul Qudus Abbas ,“ Role of relationship

during clustering of object oriented software system”, 6th International conference on
Emerging technologies (ICET), 2010.

[83] Simon Allier, Salah Sadou, Houari Sahraoui and Regis Fleurquin “From Object

Oriented Applications to Component Oriented Application via Component Oriented
Architecture”, Ninth working IEEE/IFIP conference on Software Architecture, 2011.

[84] Simon Allier , Houari A. Sahraoui and Salah Sadou, “Identifying Components in

Object-Oriented Programs using Dynamic Analysis and Clustering”, in proceedings
of the 2009 conference of the Centre for Advanced studied on Collaborative
research,CASCON’09’, pp. 136-148.

[85] Smeda, A., Oussalah, M., and Khammaci, T, “Improving Component-Based

Software Architecture by Separating Computations from Interactions” In Proceedings
of the ECOOP Workshop on Coordination and Adaptation Techniques for Software
Entities (WCAT '04), Oslo, Norway, 2004.

[86] Soo Ho Chang, Man Jib Han, and Soo Dong Kim, “A Tool to Automate Component

Clustering and Identification”, M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 141 –
144,Springer-Verlag Berlin Heidelberg, 2005.

[87] Spiros Mancoridis and Brian S. Mitchell, “Using automatic clustering to produce

high-level system organizations of source codes”, In IWPC. IEEE Press, 1998.

[88] Spiros Xanthos, “Identification of Reusable Components within an Object- oriented

Software System using Algebraic Graph Theory”, OOPSLA’04, October 24-
28,Vancouver, British Columbia , Canada, pp. 322-323, 2004.

[89] Stéphane Ducasse, Tudor Gîrba, Michele Lanza, and Serge Demeyer, “Moose: a

collaborative and extensible reengineering environment”, In Tools for Software
Maintenance and Reengineering, RCOST/Software Technology, pp. 55–71, 2005.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 165

[90] Stephen Kell, “Rethinking Software Connectors”, SYANCO 07 September pp.- 1-12

, Dubrovnik, Croatia, 2007

[91] Suk Kyung Shin and Soo Dong Kim, “A Method to transform Object oriented Design

into Component based Design using Object-Z”, Proceedings of Third international
Conference on Software Engineering Research, Management and
Applications,SERA’05,IEEE,2005.

[92] Sylvain Chardigny, Abdelhak Seriai, Dalila Tamzalit, Mourad Oussalah, “Quality-

Driven Extraction of a Component-based Architecture from an Object-Oriented
System”, in the proceedings of the 2008 12th European Conference on Software
maintenance and Reengineering, CSMR ’08 pp. 269-273,2008.

[93] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, Dalila Tamzalit, “Extraction

of Component-Based Architecture From Object-Oriented Systems”, Seventh Working
IEEE/IFIP Conference on Software Architecture , pp. 285 – 288, 2008.

[94] T.A. Wiggerts, “Using clustering algorithms in Legacy system Remodularization”, In

the proceedings of the 4th working Conference on Reverse Engineering, WCRE’97,
IEEE,1997.

[95] Thomas Tilley, Richard Cole, Peter Becker, and Peter Eklund, A survey of formal

concept analysis support for software engineering activities”’In ICFCA. Springer-
Verlag, 2003.

[96] Trevor Parsons, Adrian Mos, Mircea Trofin, Thomas Gschwind, ” Extracting

Interactions in Component-Based Systems”, IEEE Transactions on Software
Engineering, vol. 34, No. 6, pp. 783- 799 November/December 2008.

[97] Tzerpos V. and Holt R. C, A Hybrid Process for Recovering Software Architecture.”,

In the proceedings of CASCON’96, Toronto, 1996.

[98] Van Deursen, A., Kuipers, T, “Identifying objects using cluster and concept

analysis”, In: ICSE. pp. 246–255, 1999.

[99] Vijayan Sugumaran, Veda C. Storey” A Semantic-Based Approach to Component

Retrieval”, The DATA BASE for Advances in Information Systems - Summer 2003
Vol. 34, No. 3,pp. 8-24,2003.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 166

[100] Wolfgang Eixelsberger, Lasse Warholm , Rene Klösch , Harald Gall and Berndt

Bellay,” A Framework for Software Architecture Recovery” Proceedings of
International Conference on Software Engineering (ICSE '97), Boston, USA, May
1997.

[101] Wolfgang Eixelsberger, Michaela Ogris, Harald Gall, Berndt Bellay, ” Software

Architecture Recovery of a Program Family”, pp. 508-511 IEEE, 1998.

[102] Woo-Jin Lee, Oh-Cheon Kwon, Min-Jung Kim, and Gyu-Sang Shin, ” A Method

and Tool for Identifying Domain Components Using Object Usage Information”,
ETRI Journal, Volume 25, Number 2, pp.- 121-132 ,April 2003.

[103] Xiaojin Zhu, ”Clustering”, CS769 Spring 2010 Advanced Natural Language

Processing, 2010.

[104] Xinyu Wang,Xiaohu Yang,Jianling Sun and Zhengong Cai, "A New Approach of

Component Identification Based on Weighted Connectivity Stength Metrics",
Information Technology Journal 7(1), pp. 56-62,2008.

[105] Yanbing Guo, Atlee, and Kazman, “A software architecture reconstruction method”.

In WICSA, pp. 15–34, 1999.

[106] Yuxin Wang, Ping Liu, He Guo , han Li, Xin Chen, ” Improved Hierarchical

Clustering algorithm for Software Architecture Recovery”, International Conference
on Intelligent Computing and Cognitive Informatics, 2010.

[107] Young Ran Yu, Soo Dong Kim ,Dong Kwan Kim, ”Connector Modeling Method

for Component Extraction”IEEE, pp. 46-53,1999.

[108] Zhongjie Wang, Xiaofei Xu, and Dechen Zhan, ” A Survey of Business Component

Identification Methods and Related Techniques” International Journal of Information
Technology Volume 2 Number 4, pp 229-238, 2005.

Reference Sites

[109] ArgoUML, http://argouml.tigris.org/ is a widely used open source tool for UML
modeling tool

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 167

[110] http://www.neiljohan.com/projects/reverse/ :- Reverse is non commercial tool to
convert java code to class diagram developed by Neil Johan.

[111] http://www.sparxsystems.com/products/ea/downloads.html:-Enterprise Architecture
(EA) is widely used commercial UML modeling tool

[112] http://en.wikipedia.org/wiki/Software_architecture_recovery

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 168

Appendix – I

Glossary of relevant terms

• Software Architecture: Software architectures are composed of components,

connectors and configurations, constraints on the arrangement and behavior of

components and connectors. The architecture of a software system is a model, or

abstraction of that system.

• Software architecture recovery: Software architecture recovery is a set of

methods for the extraction of architectural information from lower level

representations of a software system, such as source code. The abstraction process to

generate architectural elements frequently involves clustering source code entities

(such as files, classes, functions etc.) into subsystems according to a set of criteria

that can be application dependent or not.

• Class: In object-oriented programming, a class is a template definition of the method

s and variable s in a particular kind of object.

• Object: An object is a specific instance of a class; it contains real values instead of

variables.

• Cluster: A group of the same or similar elements gathered or occurring closely

together.

• Clustering: Clustering is the process of forming groups of items or such that entities

within a group are similar to one another and different from those in other groups.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 169

• Agglomerative: It is type of hierarchical clustering.This is a "bottom up" approach:

each observation starts in its own cluster, and pairs of clusters are merged as one

moves up the hierarchy.

• Component: a component is an identifiable part of a larger program or construction.

Usually, a component provides a particular function or group of related functions. In

programming design, a system is divided into components that in turn are made up of

modules. In short, a component is group of classes collaborating to provide a function

of application.

• Connectors: Connectors represents interaction among components. From the run

time perspective, connectors mediate the communication and coordination activities

among components.

• Interface: An interface defines the signature operations of an entity; it also sets the

communication boundary between two entities, in this case two pieces of software. It

generally refers to an abstraction that an asset provides of itself to the outside. The

main idea of an interface is to separate functions from implementations. Any request

that matches the signature or interface of an object may also be sent to that object,

regardless of its implementation. The concept of an interface is fundamental in most

object oriented programming languages.

• Reverse Engineering: It is the part of software engineering, which consists process

of recreating design by analyzing a final product.

• Reverse Engineer: A software engineer, who is responsible for performing reverse

engineering.

• Software maintenance: The software maintenance is modification of a software

product after delivery to correct faults, to improve performance or other attributes, or

to adapt the product to a modified environment.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 170

• Similarity: Similarity measures determine how similar a pair of entities is, in

clustering process.

• Dissimilarity: The dissimilarity between two objects is a numerical measure of the

degree to which the two objects are different. The common interval for dissimilarity

is [0, 1] but can range from 0 to ∞.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 171

Appendix – II (a)

Experimental Environment

All programs were written in Java (version 1.6) Language under Eclipse Galileo

version. The experiments were conducted on a 2-GHz Intel (R) Pentium(R) P6100

CPU with 4 GB bytes of RAM running Windows 7 ultimate version.

Sample Source code:

MatrixController.java

package com.src;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import com.datastructure.Properties;

import com.datastructure.UnionIntersectionMatrix;

import com.util.Intersection;

import com.util.Union;

public class MatrixController

{

 private Properties properties;

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 172

 private ArrayList<UnionIntersectionMatrix> unionIntersectionMatrixs;

 public MatrixController()

 {

 // TODO Auto-generated constructor stub

 unionIntersectionMatrixs = new
ArrayList<UnionIntersectionMatrix>();

 }

 public Properties getProperties() {

 return properties;

 }

public void setProperties(Properties properties) {

 this.properties = properties;

 }

 public ArrayList<UnionIntersectionMatrix> getUnionIntersectionMatrixs() {

 return unionIntersectionMatrixs;

 }

public void setUnionIntersectionMatrixs(ArrayList<UnionIntersectionMatrix>
unionIntersectionMatrixs) {

 this.unionIntersectionMatrixs = unionIntersectionMatrixs;

 }

 public MatrixController(Properties properties) {

 this();

 this.properties = properties;

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 173

 String [] classNameArray = properties.getKey();

 for (int i = 0; i < classNameArray.length; i++)

 {

 for (int j = i + 1; j < classNameArray.length; j++)

 {

 ArrayList<String> sourceList = properties.getValue(classNameArray[i]);

 ArrayList<String> destList = properties.getValue(classNameArray[j]);

 int unionCount = Union.calclualteUnion(sourceList, destList);

int intersectionCount = Intersection.calculateIntersection(sourceList, destList)
 this.unionIntersectionMatrixs.add(new
UnionIntersectionMatrix(classNameArray[i],classNameArray[j],unionCount,intersect
ionCount));

 }

}

} }

Cluster .java

package com.src;

import java.util.ArrayList;

import java.util.Iterator;

import com.datastructure.Properties;

import com.datastructure.UnionIntersectionMatrix;

import com.util.CompositePropertyMatrix;

public class Cluster

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 174

{

 private Properties compositeProperties;

 private ArrayList<UnionIntersectionMatrix> listUnionInterMatrix;

public
Cluster(CompositePropertyMatrixcompositePropertyMatrix,ArrayList<UnionIntersec
tionMatrix> listUnionInterMatrix)

 {

 super();

 if(compositePropertyMatrix != null && listUnionInterMatrix != null)

 {

 this.compositeProperties = compositePropertyMatrix.getProperties();

 this.listUnionInterMatrix = listUnionInterMatrix;

 }

 }

public Cluster(Properties compositeProperties,ArrayList<UnionIntersectionMatrix>
listUnionInterMatrix)

 {

 super();

 if(compositeProperties != null && listUnionInterMatrix != null)

 {

 this.compositeProperties = compositeProperties;

 this.listUnionInterMatrix = listUnionInterMatrix;

 }

 }

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 175

 public Properties createCluster()

 {

 Properties clusterProperties = null;

 try

 {

 if(this.compositeProperties != null && this.listUnionInterMatrix != null)

 {

 clusterProperties = new Properties();

 // create a one single cluster for each classes..

 String [] classArray = this.compositeProperties.getKey();

 for (int i = 0; i < classArray.length; i++)

 {

 // starting this list will be empty

 ArrayList<String> list = new ArrayList<String>();

 for (int j = i + 1; j < this.listUnionInterMatrix.size(); j++)

 {

 UnionIntersectionMatrix intersectionMatrix = this.listUnionInterMatrix.get(j);

if(intersectionMatrix.getSourceClassName().equalsIgnoreCase(classArray[i]))

 {

 // to get the distance

 // to get the destination class

 if(intersectionMatrix.distance() <= 0.70) {

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 176

 list.add(intersectionMatrix.getDestClassName());

 }

 }

 }

 clusterProperties.put("Cluster [" + classArray[i] + "]", list);

 }

 }

 }

 catch(Exception exception)

 {

 exception.printStackTrace();

 }

 return clusterProperties;

 }

}

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 177

Appendix – II (b)

Clustering Concepts

The clustering techniques can be used effectively to facilitate software Architecture
recovery. Clustering is identified as “quasi-automatic” technique for software architecture
reconstruction and recovery. We present here the clustering concepts used for software
Architecture Recovery followed by method adopted in this research, study of existing
reverse engineering tool and study of component based framework.

Overview of Clustering

Unsupervised classification or clustering is considered as most important unsupervised
learning problem. Clustering techniques have been used in many disciplines to support
grouping of similar objects of a system. This is one of the most fundamental techniques
adopted in science and engineering. The ability to form meaningful groups of objects is
one of the most fundamental modes of intelligence. Clustering is the process of grouping
objects into clusters such that the objects from the same clusters are similar and objects
from different clusters are dissimilar. Objects can be described in terms of measurements
(for example, attributes, features) or by relationships with other objects (for example pair
wise distance, similarity).The inputs required for clustering process are similarity
measures or data from which similarities can be computed. The primary objective of
clustering analysis is to facilitate better understanding of the observations and the
subsequent construction of complex knowledge structure from features and object
clusters. The key concept of clustering is to group similar things into clusters, such that
intra-cluster similarity or cohesion is high, and inter-cluster similar or coupling is low.
Coupling has great impact on many quality attributes, such as maintainability,
verifiability, flexibility, portability, reusability, interoperability, and expandability. Thus,
the main objective of clustering is similar to that of software partitioning described by
Chung-Horng Lung [13].

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 178

Cluster analysis is used in a number of applications such as data analysis, image
processing, market analysis, software architecture etc. Clustering helps in gaining, overall
distribution of patterns and correlation among data objects.

Jiawei Han [42] defined clustering as it is data mining activity for differentiating groups
(classes or clusters) inside given set of objects so that objects within clusters have high
similarity in comparison to one another but are very dissimilar to objects in other clusters.

Onaiza Maqbool and Haroon A. Babri [59] defined; Clustering is the process of forming
groups of items or such that entities within a group are similar to one another and
different from those in other groups. The similarity between entities is determined based
on their characteristics or features.

Many clustering algorithms have been presented in the literature, but they comprise of the
following three common key steps:

- Obtain the data set.

- Compute the resemblance coefficients for the data set.

- Execute the clustering method.

According to Chung-Horng Lung [13], an input data set is an object-attribute data matrix.
Objects are the entities that we want to group based on their similarities. Attributes are
the properties of the objects. A resemblance coefficient for a given pair of objects shows
the degree of similarity or dissimilarity between these two objects, depending on the way
the data represents.

Categories of Clustering

Most clustering algorithms for software architecture recovery are based on two popular
techniques known as partitional and hierarchical clustering.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 179

Partitional Clustering : Pang- Ning Tan [61] described, it is simply a division of the set
of data objects into non-overlapping subsets (clusters) such that each data object is in
exactly one subset. Partitional algorithms usually start with an initial partition consisting
of certain number of clusters. The partition is then modified at every step such that some
criterion is optimized while keeping the number of clusters constant. Sub categories of
partitional algorithms include graph-theoretic mixture, mixture resolving and mode-
seeking algorithms. Partitional algorithms require the number of clusters to be known in
advance, which is difficult, if we do not have prior knowledge about the data set. Onaiza
Maqbool described [59]; algorithms are computationally expensive because we seek to
partition n items into c clusters, which, even for moderate values of n and c, may result in
a very large number of partitions to choose from. According to Brian S [9] and Ali
Shokoufandeh [4], to reduce the computational complexity of partitional algorithms,
researchers have used heuristic-based approaches to facilitate software Architecture
recovery. If number of clusters can be reasonably determined in advance, partitional
algorithms can be used for producing clusters representing software systems.
D.H.Hutchens [15] described, partitional algorithms produce flat decompositions,
whereas the natural decomposition of a software system is usually presented as a nested
decomposition or hierarchy. Rainer Koschke and Daniel Simon [66] described, these
decompositions of modules into sub modules are especially useful for understanding
large systems. Following are the categories of partitional algorithms.

- Squared Error Algorithms -The most intuitive and frequently used criterion function
in partitional clustering techniques is the squared error criterion, which tends to work
well with isolated and compact clusters. The k-means is the simplest and most commonly
used algorithm employing a squared error criterion. It starts with a random initial
partition and keeps reassigning the patterns to clusters based on the similarity between
the pattern and the cluster centers until a convergence criterion is met (e.g., there is no
reassignment of any pattern from one cluster to another, or the squared error ceases to
decrease significantly after some number of iterations).The k-means algorithm is popular
because it is easy to implement, and its time complexity is O(n), where n is the number of
patterns. Several variants of the k-means algorithm have been reported in the literature.
Some of them attempt to select a good initial partition so that the algorithm is more likely
to find the global minimum value.

Simple k-means Algorithm

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 180

Xiaojin Zhu, [102] presented a widely used clustering algorithm. It assumes that we
know the number of clusters k. This is an iterative algorithm which keeps track of the
cluster centers (means). The centers are in the same feature space as x.

1. Randomly choose k centers µ1, . . . , µk.

2. Repeat

3. Assign x1 . . . xn to their nearest centers, respectively.

4. Update µi to the mean of the items assigned to it.

5. Until the clusters no longer change.

Step 3 is equivalent to creating a Voronoi diagram under the current centers. K-means
clustering is sensitive to the initial cluster centers. It is in fact an optimization problem
with a lot of local optima1. It is of course sensitive to k too. Both should be chosen with
care.

-Graph-Theoretic Clustering -The best-known graph-theoretic divisive clustering
algorithm is based on construction of the minimal spanning tree (MST) of the data, and
then deleting the MST edges with the largest lengths to generate clusters. The
hierarchical approaches are also related to graph-theoretic clustering. Single-link clusters
are sub graphs of the minimum spanning tree of the data which are also the connected
components. Complete-link clusters are maximal complete sub graphs, and are related to
the node color ability of graphs.

T.A. Wiggerts [93] described, graph theoretic algorithms work on graphs. The nodes of
such graphs represent entities and the edges represent relations. Graph algorithms do not
start from the individual nodes (entities), but try to find sub graphs which will form the
clusters. Special kinds of sub graphs like connected components, maximal complete sub
graphs or spanning trees are used to derive modules or are candidates themselves. The
algorithms used to find these special sub graphs are provided by or based on graph
theory. Often applied examples of algorithms which fit in this category are Minimal
Spanning Tree (MST) clustering and aggregate algorithms.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 181

Minimal Spanning Tree: Oleksandr Grygorash [57] described, the MST clustering
algorithm is known to be capable of detecting clusters with irregular boundaries. Once
the MST is built for a given input, there are two different ways to produce a group of
clusters. If the number of clusters k is given in advance, the simplest way to obtain k
clusters is to sort the edges of the MST in descending order of their weights, and remove
the edges with the first k − 1 heaviest weights. This approach is called the standard
EMST (Euclidean Minimal Spanning Tree) clustering algorithm or SEMST (Standard
Euclidean Minimal Spanning Tree). The second approach does not require a preset
cluster number. Edges, that satisfy a predefined inconsistency measure, are removed from
the tree. It is the inconsistency measure suggested by Zahn, and therefore it is called the
clustering algorithm Zahn’s EMST clustering algorithm or ZEMST.

The basic MST based clustering algorithm is as follows.

First construct MST using Kruskal algorithm and then set a threshold value and step size.
We then remove those edges from the MST, whose lengths are greater than the threshold
value. Then calculate the ratio between the intra-cluster distance and inter-cluster
distance and record the ratio as well as the threshold. We update the threshold value
by incrementing the step size. Every time we obtain the new (updated) threshold value,
we repeat the above procedure. We stop repeating, when we encounter a situation such
that the threshold value is maximum and as such no MST edges can be removed. In such
a situation, all the data points belong to a single cluster. Finally, we obtain the
minimum value of the recorded ratio and form the clusters corresponding to the
stored threshold value. The above algorithm has two extreme cases:

1) With the zero threshold value, each point remains within a single cluster.
2) With the maximum threshold value all the points lie within a single cluster.

Therefore, the proposed algorithm searches for that optimum value of the threshold for
which the Intra-Inter distance ratio is minimum. It need not be mentioned that this
optimum value of the threshold must lie between these two extreme values of the
threshold. However, in order to reduce the number of iterations, we never set the initial
threshold value to zero.MST gives comparatively better performance than k-means
algorithm. The disadvantage is Threshold value and step size needs to be defined apriori,
described by Prasanta K. Jana and Azad Naik [64].

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 182

Aggregation Algorithms- Aggregation Algorithms reduce the number of nodes
(representing entities) in a graph by merging them into aggregate nodes. The aggregate
nodes can be used as cluster or can be the input for new iteration resulting in higher level
aggregates.

T.A. Wiggerts [93] described; the graph reduction technique selects nodes (one at a time)
and makes a new aggregate node containing the selected node together with its
neighborhood set (the set of nodes no further than r edges away). For each node r is
determined so that the resulting aggregate node will contain R nodes. So, R is the degree
of reduction. Less supervised variants allow variable values for R.

Hierarchical Clustering: It permits clusters to have sub clusters. Hierarchical algorithms
produce nested decomposition or hierarchy. When purpose of clustering is architecture
recovery, a multiple level architecture view is important and facilitates architectural
understanding. Hierarchical algorithm provides a view with earlier iterations presenting a
detailed view of the architecture and later iterations presenting a high level view.
Moreover, hierarchical algorithms do not require the number of clusters to be known in
advance. The similarity between the entities is determined based on their characteristic or
features.

Features: It represents characteristics of entities, on the basis of which their similarity is
determined during clustering. The efficiency of clustering depends on careful selection of
features. For software architecture recovery, researchers have mostly utilized static
information of formal and non-formal features. Formal features includes functions called
by an entity, global variables, macros and user defined types referred to by an entity, files
included in an entity and classes in case of object oriented system. The non-formal
features include comments, identifiers, developer names, directory path, LOC, time of
last update.

General Hierarchical Clustering Process:

- Identify features and entities in the system and represent each entity as feature

vector.

- Select similarity measure and develop n×n similarity matrix representing the

similarity between every pair of entities within system.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 183

- Selection of clustering algorithm to form clusters such that entities within a

cluster are more similar to each other than to entities in other clusters, until the

required number of clusters is formed or only one cluster remains.

- Selection of evaluation method: Evaluation of clusters for quality assessment can

be performed by using internal assessment or external assessment. Internal

assessment refers to an intrinsic evaluation of clustering results like cohesion,

coupling of modules within decomposition. External assessment can be performed

by comparing clustering results with manual recovery by experts.

There are two types of hierarchical clustering algorithms: agglomerative (bottom-up) and
divisive (top-down).Both build a hierarchy of clustering in such a way that each level
contains the same clusters as the first lower level except for two clusters which are joined
to form one cluster. A hierarchical clustering is often displayed graphically using a tree-
like diagram called a dendrogram, which displays both the cluster-sub cluster relationship
and the order in which the clusters were merged(agglomerative view) or split (divisive
view).

According to Jiawei Han [42] and Jain A. M. [39], for agglomerative hierarchical
clustering, given a set of n objects, this algorithm begins with n singletons i.e. sets with
one element, merging them until a single cluster is reached. The agglomerative clustering
algorithms differ in the way two most similar clusters are calculated and the linkage
metric used. The linkage metric are single linkage, complete linkage, average linkage.
The single link algorithms merge the clusters whose distance between their closest
objects is the smallest. Complete linkage algorithms merge the clusters whose distance
between their most distant objects is the smallest. Average link algorithms merge the
clusters whose average distance i.e. the average of distances between the objects from the
clusters is smallest. One advantage of these algorithms is they are non- supervised. They
do not need any extra information such as number of expected clusters and candidate
regions of search space for locating each cluster.

General Agglomerative Method:

T.A. Wiggerts, [93] presented agglomerative hierarchical methods fit the following
scheme, known as Johnson’s algorithm.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 184

- Begin with N clusters each containing one entity, where N is number of entities

and compute the similarities between the entities (clusters).

- While there is more than 1 cluster

- Do

- Find the most similar pair of clusters

- Merge these clusters into a single cluster

- Update the similarities between the clusters

- End do

Often algorithms are presented in terms of dissimilarity. In this case the two clusters
which are least dissimilar are joined. The different algorithms all follow the scheme
above, however they use different parameters like similarity measures and updating rule.
Updating rules are nothing but different linkage methods used like single linkage,
complete linkage etc.

The Divisive (top-down) Methods start from one cluster containing all n objects and
split it until n clusters are obtained. In each step a cluster is split into two clusters. After
N-1 steps there are N clusters each containing one entity, N is the number of entities.
Feasible divisive hierarchical methods can be either monothetic or polythetic.

Monothetic Methods: According to Marie Chavent [49], monothetic divisive clustering
methods have first been proposed in the particular case of binary data. Since then,
monothetic clustering methods have mostly been developed in the field of unsupervised
learning and are known as descendant conceptual clustering methods.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 185

These methods are mostly used with binary features. The division of clusters is
determined by certain features (usually one) on which certain scores are necessary to
belong to a certain new cluster. The best known variants of monothetic devise clustering
are association analysis. In this method only one feature is used for the splitting. This
result in cluster in which all entities possess that feature and a cluster in which no entity
possess it. The splitting feature is chosen in such a way that the similarity between newly
formed clusters is minimal in terms of a certain criterion. (e.g. information loss which
should be maximized because it is dissimilarity measure.) In the next step of algorithm,
another feature is selected for the splitting of the clusters. This need not be the same
feature for all clusters. By following this procedure, the resulting hierarchy is equivalent
to a decision tree in which each node is labeled with the feature used for splitting.

In Polythetic Methods the possession of a certain subset of the features suffices for an
entity to belong to a cluster, no features are compulsory. Other definitions say that in
polythetic methods all features are taken into account (e.g. to compute a similarity
measure) where as monothetic methods only look at one feature at every level.

T.A. Wiggerts, [93] described, dissimilarity analysis, which is one of the most feasible
polythetic methods. In this method a cluster A is split by taking out the entity a for which
sim(a, A-{a}) is minimal (the original description by was in terms of dissimilarity). For
this computation, several similarity measures working on an entity and a cluster can be
used. Also the average Euclidean distance is used. The entity ‘a’ is used to form a new
cluster, called splinter group. Now a number of iterations are performed. In each
iteration, that entity which is the ‘more similar’ to S than to A is moved to S and the
similarities are recomputed. The resulting clusters A and S are subdivided in the same
way in the next step of the hierarchical algorithm.

Divisive algorithms offer an advantage over agglomerative clustering algorithms because
most users are interested in the main structure of data which consists of few large clusters
found in the first steps of divisive algorithms. Agglomerative algorithms start with the
details (the individual entities) and work their way up to large clusters which may be
affected by unfortunate decisions in the first steps. However Agglomerative hierarchical
algorithms are most widely used for software architecture recovery. This is because it is
infeasible to consider all possible divisions of the first large clusters (2N-1 - 1
possibilities in the first step).

Both the partitional and hierarchical clustering has been applied to facilitate software
architecture recovery. Here in our study we focus on hierarchical clustering technique.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 186

Different Types of Clusters

Clustering aims to find useful groups of objects (clusters), where usefulness is defined by
the goals of the data analysis. Following are different types of clusters presented by Pang-
Ning Tan [61].

Well-Separated: A cluster is a set of objects in which each object is closer (or more
similar) to every other object in the cluster than to any object not in the cluster. To show
all the objects in the cluster, they must be sufficiently similar to one another. Sometimes
threshold is used to show this. In well separated clusters the distance between any two
points or objects in different groups is larger than the distance between any two points or
objects within a group. Well separated clusters can have any shape and need not be
globular.

Prototype- Based: A cluster is a set of objects in which each object is more similar to the
prototype that defines the clusters than to the prototype of any other cluster. The
prototype of cluster is often centroid i.e. the average (mean) of all the points in the cluster
or medoid, i.e. the most representative point of a cluster.

Graph-Based: If the data is represented as a graph, then nodes of graph are objects and
links between nodes represent connection among objects. In this case a cluster can be
defined as a connected component i.e. a group of objects that are connected to one
another but have no connections to objects outside the group.

Density-Based: A cluster is dense region of objects that is surrounded by a region of low
density. A density based definition of a cluster is often used when the clusters are
irregular.

Shared –Property (Conceptual Clusters): A cluster is a set of objects that share some
property. A clustering algorithm would need a very specific concept of a cluster to
successfully detect these clusters. The process of finding such clusters is called
conceptual clustering.

Measures of Similarity and Dissimilarity in Clusters

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 187

Pang-Ning Tan [61] described, the most important factor in clustering process is
similarity measure and dissimilarity measure. Some transformations can be used to
convert a similarity to dissimilarity or vice versa. The similarity between two objects is a
numerical measure of the degree to which the two objects are alike.

Cluster algorithms group similar entities together. In order to talk about the similarity of
entities and say things like “entity ‘a’ is more similar to entity ‘b’ than it is to entity ‘c’ ”
we need some kind of measure of similarity. Similarity measures determine how similar a
pair of classes is. Similarity of classes can be calculated by variety of ways and choosing
similarity measure is influence the result than the algorithm.

T.A. Wiggerts, [93] described, a similarity measure always yields a value between 0 and
1. Two entities are more similar when their similarity measure comes closer to 1. Often
dissimilarity measures are used. From these measures, similarity measures can easily be
computed as follows: sim (i, j) =1-dis (i, j).

Clustering is used for grouping the similar things or entities. Work with groupings is
strongly connected with the theory of similarity and dissimilarity. One characteristic of a
grouping might be that all things within one group are similar and all pairs of elements of
different groups are dissimilar. In more detail knowing that two given things are similar
is not enough: There are “degrees of similarity”. The same holds for dissimilarity.

Clustering applications typically employ three types of similarity measures, namely,
distance measures, correlation coefficients and association coefficients. Distance
measures numerically describe how far apart entities are, and these are typically used
when features are continuous. Correlation coefficients are usually used for correlating
continuous features. Association coefficients are usually applied to binary features.

Onaiza Maqbool and Haroon A. Babri [59] presented some well-known Distance and
Similarity measures as given below.

 Association Coefficients: Association coefficients are applied to calculate similarity
when the features are binary. To illustrate how these coefficients are calculated, assume
two entities E1 and E2, represented by feature vectors indicating the presence or absence
of a feature. The similarity between E1 and E2 can be compactly represented by a table
as shown below:

E2

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 188

 1 0

E1 1

 0

In the above table ‘a’ represents the count of features present in both E1 and E2, ‘b’
represents the total number of features present in E1 but absent in E2, ‘c’ represents the
total number of features present in E2 but absent in E1, and ‘d ’ represents the number of
features that are absent in both E1 and E2. It is worth noting that in the software domain,
typically d will be much larger than a, b, and c since the feature vector associated with
each entity is likely to be sparse.

Let cxy be the resemblance coefficient for components x and y. Some examples are given
by Chung-Horng Lung [12].

- Jaccard Coefficient: cxy = a / (a + b + c)

- Russel and Rao Coeffient: cxy = a / (a + b + c + d)

- Simple Matching Coefficient: cxy = (a + d) / (a + b + c + d)

- Sokal and Sneath: cxy = 2a / [2(a + d) + b + c]

- Sorrenson Coefficient: cxy = 2a / (2a + b + c]

- Yule Coefficient: cxy = (ad - bc) / (ad + bc)

The following association coefficients can then be defined.

A B

C D

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 189

Table III.a: Well- known Association Coefficients

In table III.a a represents the number of features that are “1” in both entities, d represents
the number of features that are “0” in both entities, whereas b and c represent the features
that are “1” in one entity and “0” in the other.

Distance Measures: The distance measures calculate the dissimilarity between entities.
The larger the distance, the lesser is the similarity between the entities. The measure is
zero if and only if the entities have the same score on all features. Some of the most
popular distance measures are the (squared) Euclidean Distance, Canberra Distance,
Murkowski Distance.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 190

Table III b: Well-known Distance measures

In table III b, x and y represents points in the Euclidian space Rs

Correlation Coefficients: Correlation coefficients are used to correlate features. They
are applied to the correlation of entities as well although it makes no statistical sense to
obtain mean value across different feature types rather than across entities. The well -
known Pearson product moment correlation coefficient for binary features reduces to:

P = (ad-bc) / √ (a+b) (c+d) (a+c) (b+d)

According to O. Maqbool [58], in the case of software, since normally d is much larger
than a, b and c, the above formula can be written as:

P = a / √ (a+b) (a+c)

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 191

The value of a correlation coefficient lies in the range from -1 to 1. A value of 0 means
that the two entities are not related at all.

Probabilistic Measures: According to T.A. Wiggerts [93] probabilistic measures are
based on the idea that agreement on rare features contributes more to the similarity
between two entities than agreement on features which are frequently present. So,
probabilistic coefficients take into account the distribution of the frequencies of the
features present over the set of entities. When this distribution is known, for each feature
a measure of information or entropy can be computed. The entropy quantifies the
disorder, variance, confusion or surprisal. The two (sets of) entities which provide the
least information gain (change of entropy) when combined have the highest similarity.

Linkage Methods: During clustering the similarity between the newly formed and
existing components should be iteratively recalculated. For this recalculation various
linkage methods are available. Some of the well-known linkage methods are presented
below in table III c.

Table III c: Well known Hierarchical Linkage Methods

These four linkage methods presented in Table III c determine similarity between a
newly formed cluster and existing entities by using given cluster similarity formulas. In
table III c Ei, Em, and Eo represent entities and Emo represents the cluster formed by
merging entities Em and Eo.

Dissimilarity Measure: According to Pang- Ning Tan [61], the dissimilarity between
two objects is a numerical measure of the degree to which the two objects are different.
Dissimilarities are lower for more similar pair of objects. Often the term distance is used
as synonym for dissimilarity. The common interval for dissimilarity is [0, 1] but can
range from 0 to ∞.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 192

Dissimilarity Measures are used to find dissimilar pairs of objects in X. The dissimilarity
coefficient, dij, is small when objects i and j are alike, otherwise, dij becomes larger. A
dissimilarity measure must satisfy the following conditions:

• 0 ≤dij≤ 1

• dii = 0

• dij = dji

Typically, distance functions are used to measure continuous features, while similarity
measures are more important for qualitative features. Selection of different measures is
problem dependent. For binary features, the similarity measure is commonly used. Let us
assume that a number of parameters with two binary indexes are used for counting
features in two objects. For example, n00 andn11 denote the number of simultaneous
absence and presence of features in two objects respectively, and n01 and n10 count the
features presented only in one object.

Extraction of connector classes from object oriented system while recovering Software architecture

Research study by Shivani Budhkar 193

Appendix – II (c)

Research Paper Repository

a. Component evaluation and component interface identification from object

oriented System by Shivani Budhkar, Dr. Arpita Gopal, in International Journal of
Advanced Research in Computer Science, ISSN No. 0976-5697, Volume 3, No.
4, July- August 2012

b. Component identification from existing object oriented system using Hierarchical
clustering by Shivani Budhkar, Dr. Arpita Gopal, in IOSR Journal of Engineering,
ISSN: 2250-3021, May. 2012, Vol. 2(5) pp: 1064-1068

c. Component based software architecture recovery from object oriented system

using existing dependencies among classes by Shivani Budhkar, Dr. Arpita
Gopal,in International Journal of Computational Intelligence Techniques ISSN:
0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 1, 2012, pp.-56-59.

d. Reverse Engineering Java Code to Class Diagram: An Experience Report, by

Shivani Budhkar, Dr. Arpita Gopal, in International Journal of Computer
Applications (0975 – 8887) Volume 29– No.6, September 2011, pp. 36-43

e. Component interactions from software architecture recovery by Shivani Budhkar,

Dr. Arpita Gopal, in International Journal of Computer Science and
Communication Vol. 2, No. 1, January-June 2011, pp. 149-15

f. Extraction of Connector Classes from Object –Oriented System while recovering

Software Architecture by Shivani Budhkar, Dr. Arpita Gopal, in IEEE
International Advance Computing Conference (IACC 2009) Patiala, India, 6–
7March 2009, pp.1826-1828

