

 FRAMEWORK TO DETECT AND MITIGATE UNTRACED

POLYMORPHIC SHELLCODE FOR INTRUSION DETECTION AND

PREVENTION SYSTEMS

A Thesis

SUBMITTED TO THE

TILAK MAHARASHTRA VIDYAPEETH, PUNE

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

 In Computer Science

Under the Board of Modern Sciences & Professional Skills

BY

Mrs. NAVNEET KAUR POPLI

(25315008509)

UNDER THE GUIDANCE OF

Dr. ANUP GIRDHAR

DEPARTMENT OF COMPUTER SCIENCE

2019

CERTIFICATE BY THE SCHOLAR

This is to certify that the thesis titled, “Framework to detect and mitigate untraced polymorphic

shellcode for Intrusion Detection and Prevention Systems” submitted by Mrs. Navneet Kaur

Popli, under the supervision of Dr. Anup Girdhar, P.R.N. Number 25315008509 for the award

of Ph.D. degree of Computer science from ‘Tilak Maharshtra Vidyapeeth’ University embodies

my original work and has not formed the basis for the award of any degree, diploma, fellowship,

titles in this or any other university or any other similar institutions of higher learning.

Date: Signature

Mrs. Navneet Kaur Popli,

Research Scholar, TMV.

Enrollment Number 25315008509

CERTIFICATE BY THE SUPERVISOR

This is to certify that the work incorporated in the thesis “Framework to detect and

mitigateuntraced polymorphic shellcode for Intrusion Detection and Prevention Systems”

submitted by Mrs.Navneet Kaur Popli is an original piece of research work carried out by the

candidate under my supervision. Literary presentation is satisfactory and the thesis is in a form

suitable for publication. Work evinces the capacity of the candidate for critical examination and

independent judgment. Such materials as has been obtained from other sources have been duly

acknowledged in the thesis.

Date: Signature

Dr. Anup Girdhar, Ph.D

Research Guide, TMV

DECLARATION

I hereby declare that this Ph.D. thesis entitled “Framework to detect and mitigateuntraced

polymorphic shellcode for Intrusion Detection and Prevention Systems” was carried out by me

for the degree of Doctor of Philosophy in Computer Science under the guidance and supervision

of Dr. Anup Girdhar, Tilak Maharashtra Vidyapeeth, Pune, India. The interpretations put forth

are based on my own experimentation and understanding. The books, articles and websites,

which I have made use of are acknowledged at the respective place in the text. All content is

plagiarism free. All the information gained is from genuine sources and the results are obtained

following the detailed procedure. For the present thesis, which I am submitting to the

University, no degree or diploma or distinction has been conferred on me before, either in this

or in any other University.

Date: Signature

Mrs. Navneet Kaur Popli,

Research Scholar, TMV.

Enrollment Number 25315008509

ACKNOWLEDGEMENTS

I wish to sincerely thank all those who have contributed in one way or another to this study.

Words can only inadequately express my deep gratitude to my guide, Dr. Anup Girdhar, for

his meticulous care, kindness and generosity. His fruitful comments and insightful suggestions

have been a crucial formative influence on the present study. He has supported me in every

possible way since the beginning of my research. His critical and careful reading of my writing

has saved me from a lot of errors. Without his guidance and encouragement, my research would

have never come out in the present form. I have seen in him an unpretentious and devoted

scholar. Furthermore, it has been a memorable and enjoyable experience for me to work with

him. Sincere thanks to all my family members for cooperating with me and helping me at every

juncture. A special thanks to my mother-in-law Mrs. Bhupinder Kaur Popli for helping me in

this treacherous journey. I wish to express my sincere gratitude to Dr. Sunanda Yadav, the

Director of the place of research, for her expert guidance and invaluable suggestions. Grateful

acknowledgments are also due to my student Mr. Varnit Goyal for helping me in the research

work. Special thanks are due to the Mr. G.L. Manchanda, Mr. Abhilash Varghese, Assistant

Directors, ISACA and the entire fraternity at ISACA (Information Systems Audit and Control

Association)-Delhi Chapter, for giving me an opportunity to attend their security and auditing

conferences, both as a speaker and as a participant. A lot of information was obtained regarding

the security threats faced by the industry today and the various steps taken by the security

personnel to mitigate these threats and risks.

Mrs. Navneet Kaur Popli,

Research Scholar, TMV.

ABSTRACT

 The Internet world is ridden with all kinds of malware and hackers are constantly trying out new innovative

techniques to evade detection mechanisms. When shellcodes became the choice of attack, antiviruses were

quick to come up with signature detection mechanisms to catch them. Hackers went one step ahead and created

the so called ‘Polymorphic shellcodes’. These shellcodes have different signatures for the same shellcode. Thus

it becomes impossible for a signature detection system to detect them. In our study, we are going to create a

framework for the detection and mitigation of untraced polymorphic shellcode.

In May 2017, when WannaCry ransomware attacked, 150 countries with 2,00,000 computers all over the world

were affected and some $50,000 was already paid to the attackers by various companies and individuals. The

base of this ransomware was shellcode. In early 2017 when Donald Trump won the US elections, power shells

were injected in mails which were sent to Hillary Clinton’s aide John Podesta. Once the shellcode entered the

machine, it infected all the systems in the network and exposed all emails of Hillary, which caused a great

reputational loss to her campaign and she paid the price by losing the elections. In 2016, the game PokemonGo

was found to be carrying shellcodes which caused clicking frauds and millions of dollars were earned by the

attackers by gaining root access to the phones and clicking all kinds of ads and sometimes stealing network

bandwidth and sensitive data from the compromised machine. HummingBad, another kind of shellcode

malware, affected ten million phones worldwide and got admin access to the phone and used that for generating

fraudulent advertising revenue up to $300,000 per month -- through the forced downloading of apps and

clicking of ads.

Shellcodes are tiny programs which look like legitimate code and are inserted in code-caves in a program code.

Once executed, they provide a shell to the hacker with root privileges. Eg.’Win32/ShellCode.gen!V’is a

shellcode exploit for the Windows system. The most common shellcode instruction is to execute a shell such as

/bin/sh, or cmd.exe. The only possible reason for launching such commands is to take control or exploit a

compromised machine. When the exploit code causes what would normally be a critical error in the targeted

program, the program jumps to the shellcode and is tricked into executing the attacker's commands. There are

many harmful effects of shellcode. A shellcode can connect itself with internet, can display promotional adverts

and fake messages, can corrupt secured system programs and files and can affect internet speed and system

performance. It can install more malwares and fake programs, can show unwanted pop-ups, can crash the

system, can help view others desktop, can sniff data from the network, can dump password hashes or use the

owned device to attack hosts deeper into the network.

Shellcodes have typical structures which can be detected through pattern - matching by the IDPS software.

Thus hackers have come up with a new type of shellcodes called ’Polymorphic Shellcodes’. Some algorithms

are executed on the shellcodes which make them ‘look’ very different, say by changing their commands,

encryption, code transposition, dead code insertion, register reassignment etc. However, the polymorphic

shellcode still performs the same functionality that the original shellcode did. Pattern matching fails here and

increases worries of IDPS and Antivirus developers.

We basically have to design a framework which can attack a shellcode from four different angles. We have to

do a static analysis of shellcode, then a dynamic (behavior) analysis, then study its network footprint and finally

try to see if it evades the sandbox. Then we aggregate the result obtained from these four stages and give the

final result. It is imperative that a check is put on malicious activities. The biggest threat, cyber world if facing

today is that of ‘Polymorphic Shellcodes’. These are shellcodes which are polymorphic in nature, meaning that

they change their look but have the same behavior. This makes them difficult to detect by Signature based

detection systems. Some polymorphic shellcodes are also capable of changing their behavior at runtime. Thus

Anomaly based detection systems also fail here.

All the current solutions which are exiting today have some lacunas in common:

1. Signature Matching-Most of them focus on malware detection by signature matching and pattern

recognition. Malware authors are now smarter than ever before and signature detection is of no use

due to techniques like polymorphism, metamorphism etc.

2. No behavioral analysis- Some of them do not take into consideration, thebehavior of malware, like

file behavior, network behavior and other dynamic behavior of the file to be analyzed.

3. Updating time-Another problem that current antiviruses face is that they take a lot of time to analyze

the malware and then update the definition of antiviruses into user’s device.

4. Danger to user’s privacy- The antivirus companies are sometimes a danger to the user’s privacy as

they collect data from user on regular basis and use that to make money. The normal user acts only

as a data feeder so that these antivirus companies can protect enterprises.

5. Centralized Antivirus Companies-All the antivirus organizations are centralized in nature. This

implies that a lot of computation power is required and very few computers are available to provide

it. If a distributed system could be designed where all systems in the network contribute to the work

of malware detection, things will become faster and more efficient.

Note that the recent ransomware attacks by WannaCry and Petya can prove the above statements, not to

mention that none of them were actually polymorphic or metamorphic.

Benefit of the Study

Our proposed model will take care of all kinds of polymorphic shellcodes. It consists of the snapshot

technique and the revert-back model. It takes snapshots of the memory and processes and keeps them in the

database to understand the working of the malware. Next time when the same malware shows up, we have

the list of its behaviors and thus can easily detect it. After that we restore the memory and the processes back

to their original state. Machine learning and artificial intelligence are further incorporated to make the work

more efficient and detect any new malware also. Decentralized currency was another incredible innovation

recently and it led us to the new system of bitcoins. Bitcoins are great but what makes them greater is the

technology on which it works. The technology is known as blockchain and blockchain has so many other

applications other than just decentralized currency. Here we use the blockchain concept to harness

distributive power of all the systems in the network so that a large amount of computing power is gained

with very little cost and everyone in the network is benefitted.

Our work is highly significant both in the present and in the future. Hackers have recently used shellcodes in

WannaCry and Petya Malwares. The next step is to use polymorphic shellcode attack. We must be ready for

them and our works makes us ready. Also we are proposing a framework of policies for Intrusion Detection

and Prevention Systems against such malware to harden them so that they can tackle any kind of threat.

 Conceptual Model Framework

Our conceptual model framework is a design created with the aim to identify and remove risks of polymorphic

shellcodes. It uses advance machine learning algorithms for detection. It is going to attack a shellcode, in fact

any type of malware from 4 sides-static, behavior, network and sandbox evasion:

1) Static analysis: Means that we will study the signature of the sample and match it with already given

signatures in our existing databases. If the signature matches with a malware we calculate the static

probability of the sample for maliciousness. The machine learning model will be trained and tested with

huge, ever increasing data.

2) Behavior Analysis: There are advance malware like polymorphic and metamorphic malware which

change their signatures quite often. In that case, we generally study the behavior of the sample to see if it

matches with the behavior that normally malware families show. If it does, we again calculate the

behavior probability of the sample for maliciousness.

3) Network Analysis: Now we will see the network behavior of the sample to match it with the alerts that

network monitors generate. If we see significant number of alerts, we again calculate the network

probability of the sample for maliciousness.

4) Sandbox Evasion Detection: Normally, an intrusion detection system will run a doubtful program in a

controlled environment which is normally a sandbox. This environment will have all the resources

required got the sample to run and all permissions are also given to the file. However, it is not allowed to

run in an actual system, it is only run in a virtual system. This is a smart way to know the true

characteristics of the sample and judge whether the file is malicious or benign before it enters the actual

system environment. However, there are advance malware which are created to stay dormant whenever

they detect that they are running in a virtual environment. There are many techniques which are applied

for the detection of sandbox. Thus they try to evade a sandbox whenever they experience one. Therefore

it is with surety one can declare a sample as a malware if it tries to evade a sandbox. This detection will

give us a Boolean value of 0 or 1.

5) Final Detection: From all the above four steps, we are going to get four probabilities. An average of

these four probabilities is calculated to get the final detection probability. A threshold probability is

calculated for the model according to the amount and variance of the data it currently has. A sample is

declared as malicious if its combined average probability is above the threshold probability of the model.

It is benign if the probability is lower. However, if the probability is equal to the threshold value, the

sample is termed as unknown and is sent to the model again for further analysis. The model is cyclic in

nature and every new sample is used as data for training of the model to make it more effective.

Therefore it will always be in an updated state. It will have information about all new malwares all the

time.

6) Decentralized Environment: The whole model is going to work in a decentralized environment. Thus the

model is very resource efficient. Also because the detection mechanism is completely decentralized,

therefore, every node is master node in the network and there is no central authority which can work for

selfish gains or unrealistic profits.

7) Blockchain network: All the transactions for detection of malware are logged in Blockchain network and

the data about the malwares which is stored in each node is stored in the form of blocks in the block

chain. Thus this database is immutable, secure, reliable, distributed and always updated. Thus every

node participating in the malware detection model gets an always updated data at a very cost effective

rate with the latest of machine learning technology.

8) Balancing the model: the model has to be always in a balanced state so that is never biased with more of

clean or more of malicious data. Whenever we find such a bias in the model according to our

calculations, we either increase the clean samples or malicious samples for training of the model.

Objectives of the Framework:

1) To identify and the mitigate risk factors occurring due to the execution of polymorphic shellcode.

2) Injecting the binaries in the code caves of existing (PE) application by using binding, embedding and

stubs methodology. This will create polymorphic shellcodes for our study.

3) Understanding polymorphic and metamorphic techniques of creating advanced malware.

4) Understanding the working of polymorphic shellcode including the attack methodology, hiding

methodology replication methodology and metamorphosis.

5) Working with live ransomware samples to understand their behavior and attack methodology.

6) The static analysis, behavior analysis, network analysis and sandbox evasion detection of polymorphic

shellcode on the host as well as on the network.

7) Proposing the framework for the detection and mitigation of untraced polymorphic shellcodes using

advanced machine learning techniques.

8) Proposing how this framework would work best in a decentralized environment.

9) Proposing blockchain network usage for recording and logging all transactions to make them secure,

updated and reliable.

10) Training the framework with already known samples.

11) Testing the framework with live samples from the wild.

12) Analysis of the proposed framework with its limitation and future scope.

▪ Static analysis -static analysis here refers to the act of extracting information based on

file properties without running it. This is the quickest way to classify the file but not

always accurate. We have extracted a total of 52 parameters using a python module called

PE Analyzer 2.

▪ Behavior analysis -Behavior analysis refers to the act of extracting information at

runtime. We have extracted api call graphs, files created and affected at runtime etc. We

did this using a very powerful tool ‘Volatile Framework’.

▪ Packet analysis - In this module we are doing the analysis of network traffic of a

particular file using tcpdump and snort.

▪ Sandbox Evasion Analysis – If the sample is trying to evade the sandbox, we consider

that this is a sort of malware behavior.

In our approach, we first use supervised learning. We have a machine learning algorithm. It would be given

some binary files as a training data set. Although most of our dataset will be contributed by the users of

network, we have provided some initial dataset which comprises of malicious data from virus-share database ,

all .exe files from clean windows installation and .exe files of popular software from filehippo database as a

clean source of data . After getting trained, the algorithm would be given an unknown sample. Through the

knowledge it has attained, it would be able to recognize the malicious file. The algorithm is fine-tuned with

better training samples.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction to the Study……………………………………………………………. 1

1.2 Malware Detection Mechanism…………………………………………………….. 2

 1.2.1 Signature Based Systems……………………………………………….. 3

 1.2.2 Anomaly Based Systems……………………………………………….. 3

 1.2.3 Emulation/Behavior Based Systems……………………………………. 3

1.3 Types of Malicious Attacks ………………………………….…………………….. 6

1.3.1 Viruses…………………………………………………………………... 6

1.3.2 Worms…………………………………………………………………… 6

1.3.3 Trojans…………………………………………………………………… 7

1.3.4 Rootkits………………………………………………………………….. 7

1.3.5 Botnets…………………………………………………………………… 7

1.3.6 Ransomware……………………………………………………………... 7

1.3.7 Zombies………………………………………………………………….. 8

1.3.8 Rats………………………………………………………………………. 8

1.3.9 Spyware………………………………………………………………….. 8

1.3.10 Shellcodes………………………………………………………………... 8

1.3.11 Polymorphic Shellcodes…………………………………………………. 9

1.3.12 Metamorphic Shellcodes……………………………………………….... 10

1.3.13 Advance Malware-Beyond Polymorphic

 and Metamorphic Shellcodes……………………………………………. 11

1.4 Shellcode Infection Mechanisms…………………………………………………… 12

1.4.1 Buffer Overflow………………………………………………………… 13

 1.4.2 Code Injection …………………………………………………………... 13

 1.5 Machine Learning used for Malware Detection…………………………………... 13

 1.5.1 Introduction to Machine Learning………………………………………... 13

 1.5.2 Reasons for Using Machine Learning for Malware Detection…………... 14

 1.5.3 Supervised v/s Unsupervised Machine Learning…………………………. 14

1.6 Motivation for the Study……………………………………………………………. 14

1.7 Scope and Contribution of the study………………………………………………... 15

1.8 Research Methodology used in the Study…………………………………………... 16

1.9 Structure of the Thesis……………………………………………………………… 17

1.10 Keywords used…………………………………………………………………….. 19

CHAPTER 2: LITERATURE REVIEW

2.1 Analysis of Literature Survey………………………………………………………. 21

2.2 Malware detection techniques……………………………………………………… 22

2.3 The various threats and Working of common

 antimalware solutions…………………….………………………………………… 22

2.4 Concept of CVE’s…………………………………………………………………... 23

2.5 Polymorphic and metamorphic malware……………………………………………. 23

2.6 Machine learning for malware detection…………………………………………… 24

2.7 Working of emulators like Cuckoo……………………………………………........ 24

2.8 Studying static and dynamic behavior of malware……………………………........ 25

2.9 Studying various ransomware…………………………………………………........ 26

2.10 Studying distributive technologies like Hadoop………………………………….. 26

2.11 Understanding cloud architecture and working…………………………………… 26

2.12 Understanding Blockchains………………………………………………………. 27

2.13 Studying digital currencies like Bitcoins and Ethereum…………………………. 27

2.14 Gap Analysis…………………………………………………………………....... 28

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction: Research Approach……………………………………………… 32

3.2Method of Data Collection…………………………………………………….. 34

3.3 Research Methodology used…………………………………………………… 36

3.4 Analysis Report of data collected……………………………………………………... 42

 3.4.1 Type of organization …………………... 43

 3.4.2 Location of organization……………………………………… 43

 3.4.3 Title level held in the organization ……………………………………… 44

 3.4.4 Degree of security responsibility …………………... 45

 3.4.5 Types of malicious activities ……………………………………… 46

 3.4.6 Origin of malicious activity ……………………………………… 47

 3.4.7 Percentage of Overall budget allocated to cyber security …………………... 48

 3.4.8 Level till which devices get affected ……………………………………… 49

 3.4.9 Level of concern for cyber security ……………………………………… 50

 3.4.10 Technologies used for protection …………………... 51

 3.4.11 Approach followed for malware detection ……………………………………… 52

 3.4.12 Resource allocation to cyber security ……………………………………… 53

 3.4.13 Response time after malicious attack …………………... 54

 3.4.14 Factors hindering cyber security efforts in the organization …… 55

3.5 Key Understandings………………………………………………………... 56

3.6 Objectives of the Study………………………………………………………... 57

 3.6.1 The Theoretical Framework of the Present Study…………………... 57

 3.6.2 Conceptual Model Framework……………………………………… 57

 3.6.3 Objectives of the Framework……………………………………….. 60

3.7 Experiments to assess Polymorphic shellcode threat………………………… 60

 3.7.1 Creating a shellcode by Smashing the Stack……………………….. 60

 3.7.2 Injecting a polymorphic shellcode in PE file……………………….. 68

 3.7.3 Getting privileges after infecting a file with polymorphic

 shellcode…………………………………….………. 72

3.8 Significance of Research…………………………………………...………… 76

 3.8.1 Need of the Study…………………………………………………… 76

 3.8.2 Benefit of the Study………………………………………………… 77

3.9 Designing PosDeF………………….………………………………………… 78

 3.9.1Design Methodology……………………………………………….. 78

 3.9.2 Objective…………………………………………………………… 78

 3.9.3PosDeF Design…………………………………………………. 79

 3.9.4 Proposed Working of PosDeF…………………………………… 80

 3.9.4.1 Collection of Data for the Formation of the Training Set…… 83

 3.9.4.2 Training with our initial dataset………………………….. 83

 3.9.4.3 Profiling the files…………………………………………. 84

 3.9.4.4 Convert the dataset into machine learning compatible format 84

 3.9.4.5 Pre train the model……………………………………….. 84

 3.9.4.6 Train the dataset using various machine Learning Algorithms… 85

 3.9.4.7 Iteratively scan all available files………………………... 86

 3.9.4.8 Reward the user…………………………………………... 86

 3.9.4.9 Balancing the dataset…………………………………….. 87

 3.9.4.10 Endless loop…………………………………………….. 87

3.10 Algorithms Used for Building PosDeF………………………………. 87

3.10.1. The Final Algorithm………………………………………………. 87

 3.10.1.1 Algorithm for Training of PosDeF…………..………… 88

 3.10.1.2 Algorithm for Threshold Calculation

 for the Final Framework during the training phase……... 89

 3.10.1.3 Algorithm for Testing of PosDeF………….…………. 91

3.10.2 Static Analysis…………………………………………………….. 92

 3.10.2.1 Algorithm for Static Training…………………………… 92

 3.10.2.2 Algorithm for finding out the Best

 Classification Algorithm for Static Testing…………... 93

 3.10.2.3 Algorithm for Static Testing…………………………… 94

3.10.3 Behavior Analysis……………………………………………….. 94

 3.10.3.1 Algorithm for Behavior Training……………………… 95

 3.10.3.2 Algorithm for Finding Best

 Classification Algorithm for Behavior Testing……….. 96

 3.10.3.3 Algorithm for Behavior Testing………………………. 96

3.10.4 Snort Analysis…………………………………………………… 97

 3.10.4.1 Algorithm for Snort Training………………………….. 97

 3.10.4.2 Algorithm for Finding out the

 Best Classification Algorithm for SnortTesting………. 98

 3.10.4.3 Algorithm for Snort Testing…………………………… 98

3.10.5 Algorithm for Sandbox Evasion…………………………………. 99

CHAPTER 4: ANALYSIS AND INTERPRETATION

4.1 Creation of Polymorphic and Metamorphic Shellcodes…………………... 102

4.1.1 Obfuscation of NOP sled………………………………………… 102

4.1.2 Obfuscation of the shellcode…………………………………….. 105

4.2 Using the Polymorphic Shellcode for Attack……………………………..... 108

 4.2.1 Launching a multi-staged attack…………………………. 108

 4.2.2 Sandbox evasion techniques……………………………………... 111

 4.2.3 Polymorphic blending……………………………………………. 111

 4.2.4 Conversion to metamorphic code………………………………… 112

4.3 Working with Live Ransomware Samples- WannaCry and Petya………… 112

 4.3.1 Recent Impact of Ransomwares………………………………..... 112

 4.3.1.1WannaCry……………………………………..... 113

 4.3.1.2 Petya……………………………………………. 113

 4.3.2 Reasons of Attack of Ransomware………………………………. 114

 4.3.3 Behavior Analysis of WannaCry and Petya……………………… 115

 4.3.4 Working of WannaCry…………………………………… 119

4.3.4.1 Components of WannaCry……………………………………..... 122

 4.3.4.1.1 DoublePulsar………………………………………… 122

 4.3.4.1.2 TOR…………………………………………………... 123

 4.3.4.1.3 Domain Check………………………………………... 123

 4.3.4.1.4 Bitcoin Wallets……………………………………….. 124

4.3.5 Precautions to be safe from ransomware……………….. 124

4.3.6 Remedy after ransomware attack……………………….. 125

4.4 Building the Framework………………………………………………….. 125

 4.4.1 Building the Static Part of the Framework……………………… 125

 4.4.1.1 Feature Extraction…………………………………….. 126

 4.4.1.2 Feature Selection……………………………………... 128

 4.4.1.3 Feature Classification………………………………… 129

 4.4.2 Building the Behavior Part of the Framework…………………. 132

 4.4.2.1 File Analyzed in Cuckoo Sandbox…………………… 133

 4.4.2.2 JSON Reports Generated……………………………... 134

 4.4.2.3 JSON Reports converted into MIST format………….. 134

 4.4.2.4 MIST reports converted into N-Gram data…………... 136

 4.4.2.5 Sparse matrix Generated…………………………….... 137

 4.4.2.6 KNN Classification Algorithm applied………………. 138

 4.4.3 Building Network Part of the Framework……………………… 139

 4.4.3.1 Cuckoo generates dump.pcap file…………………….. 140

 4.4.3.2 Snort generates text file out of pcap file…………….... 140

 4.4.3.3 Text file converted into MIST format………………... 141

 4.4.3.4 MIST file converted into sparse matrix………………. 141

 4.4.3.5 KNN applied to sparse matrix………………………… 141

 4.4.4 Building Sandbox Evasion Detection part of the Framework…….. 142

4.5 Distributive Execution of the Framework………………………………... 143

 4.5.1 Introduction…………………………………………… 143

 4.5.2 Proposed Distributive Framework………………………. 145

 4.5.3 Centralized versus Distributed Computing…………… 147

 4.5.4 Role of Apache Spark in the Framework……………... 148

 4.5.4.1 AWS M3……………………………………… 149

 4.5.4.2 M3 medium………………………………….... 149

 4.5.4.3 Amazon EC2…………………………………. 149

 4.5.4.4 SSD…………………………………………… 149

 4.5.4.5 HDFS…………………………………………. 150

 4.5.4.6 HDFS Architecture…………………………….. 150

 4.5.4.7 Non-Computational Data Locality…………… 150

 4.5.4.8 Data and Processing on each machine…………. 150

 4.5.5 Working of the Hadoop Cluster…………………………… 152

CHAPTER 5 FINDINGS AND CONCLUSIONS ……………………….. 155

5.1 Execution for a clean sample on the Framework…………………. 155

 5.1.1 Static Analysis…………………………………………... 155

 5.1.2 Dynamic Analysis……………………………………….. 155

 5.1.3 Snort Analysis…………………………………………… 161

5.2 Execution for a malicious sample on the Framework…………….... 162

 5.2.1 Static Analysis……………………………………………. 162

 5.2.2 Dynamic Analysis………………………………………… 163

 5.2.3 Snort Analysis…………………………………………….. 167

 5.2.4 Sandbox Evasion Detection………………………………. 170

5.3 Final Results………………………………………………………... 170

 5.3.1 Results obtained from the Framework

 after all four steps…………………………………………… 171

 5.3.2 Comparison with the existing Centralized systems……….... 175

 5.3.2.1 Working of the Distributed Framework…………... 177

 5.3.2.2 Blockchain for Records and Rewards…………….. 177

 5.3.2.3 Using Ethereum for maintaining Blockchains……. 180

5.4 Conclusions……………………………………………………………. 182

5.5 Limitations of the Study………………………………………………. 182

5.6 Further Research Potential…………………………………………….. 183

 REFERENCES…………………………………………………………… 184

APPENDIX 1 : PUBLICATION DETAILS …………………………………… 191

APPENDIX 2 : Company Letters and Mail Conversations………………….. 193

APPENDIX 3 : Screenshots of NoDistribute malware detection of self created malwares…. 203

APPENDIX 4 : Programming Codes Used for Complete Execution………… 215

LIST OF FIGURES

Figure 1.1 Estimate of average economic loss to countries from cyber-attack.

 Figure 1.2 Classifications of Malware Families According to their Detection Techniques.

 Figure 1.3 Malware using dynamic programming with a pool of IP addresses and ports.

Figure 1.4 Difference between Polymorphic, Metamorphic and Advance Malware.

Figure 1.5 Structure of the Thesis.

Figure 3.1 Research Methodology.

Figureure 3.2: Survey Questionnaire

Figure.3.3: Companies Covered, location and role of respondents during Data Collection and Analysis

Figure.3.4 Location of organizations

Figure.3.5: Title level held in the organization

Figure.3.6: Degree of security responsibility

Figure.3.7: Type of malicious activities

Figure.3.8: Origin of malicious activity

Figure.3.9: Percentage of budget allocated for cyber security

Figure.3.10: Level till which devices get affected

Figure.3.11: Level of concern for cyber security

Figure.3.12: Technologies used for protection

Figure.3.13: Approach followed for malware detection

Figure.3.14: Resource allocation to cyber security

Figure 3.15: Response time after malicious attack

Figure 3.16 Factors hindering cyber security efforts in the organization

Figure 3.17 Framework for Detection and Mitigation of Polymorphic Shellcode.

Figure 3.18 Representation of a Stack Frame.

Figure 3.19 Creating a vulnerable program.

Figure 3.20 Output after crashing the program.

Figure 3.21 Output of GDB.

Figure 3.22 Information of stack pointer.

Figure 3.23 Finding beginning of the stack.

Figure 3.24 Output from NoDistribute with our created shellcode.

Figure 3.25 Copying ‘raadmin.exe’ file on desktop.

Figure 3.26 Getting system information using infection through shellcode.

Figure 3.27 Threat Reports of two advance malware created during testing.

Figure 3.28 Output of Nodistribute while detecting ‘raadmin.exe’ shellcode.

Figure 3.29 Flowchart to demonstrate proposed working of PosDeF.

Figure 3.30 Machine Learning Stub.

Figure 3.31 Balancing the Training-Testing Dataset.

Figure 3.32 The underlying steps in all four analysis parts.

Figure 4.1 Creation and injection of malicious payload for attacking the target system.

Figure 4.2 Process of Attacking the Target System with the created payload.

Figure 4.3 Flowchart showing working of WannaCry.

Figure 4.4 Snapshot of a part of the ‘data.csv’ file created for training and testing purpose.

Figure 4.5 Features selected on the basis of their variance.

Figure 4.6 Screenshot showing performance of various classification algorithms for testing of static analysis.

Figure 4.7 Depiction of a MIST Instruction.

Figure 4.8 Understanding a MIST Instruction with the help of an example.

Figure 4.9 MIST Levels.

Figure 4.10 A Sample Confusion Matrix.

Figure 4.11 Proposed model for Decentralized Malware Detection.

Figure 4.12 Comparison of performance between a centralized and a distributive system.

Figure 4.13 Traditional Database Processing Structure.

Figure 4.14 Hadoop Cluster.

Figure 4.15 Hadoop Master-Slave Architecture.

Figure 5.1 Python Script for submitting files to Cuckoo.

Figure 5.2 Analysis of files by Cuckoo.

Figure 5.3 Cuckoo processing the file in a virtual sandbox.

Figure 5.5 Conversion of JSON report to MIST format.

Figure 5.6 N Gram Sparse Matrix.

Figure 5.7 A 16 X 7255 Dimension Sparse Matrix.

Figure 5.8 Explanation of a sample Sparse Matrix.

Figure 5.9 Commands to show the formation of Sparse Matrix for our data.

Figure 5.10 KNN algorithm used to predict probability on the transformed matrix.

Figure 5.11 Snapshot of dump.pcap file.

Figure 5.12 Predicting probability of maliciousness using Random Forest Algorithm.

Figure 5.13 Comparison of various machine learning algorithms to show that Random Forest is

 the best.

Figure 5.14 Result of a file showing malicious behavior.

Figure 5.15 Same file submitted to Cuckoo for dynamic analysis.

Figure 5.16 Sample running in a VM virtual box.

Figure 5.17 A JSON report generated for the sample.

Figure 5.18 JSON report converted to MIST format using cuckoo2mist converter.

Figure 5.19 MIST report for the sample.

Figure 5.20 Graph comparing all algorithms and finding that KNN is best suited for analysis.

Figure 5.21 KNN Algorithm predicting maliciousness of the sample from transformed matrix.

Figure 5.22 A dump.pcap file generated by Cuckoo.

Figure 5.23 Graph comparing all algorithms and showing Random Forest to be the best for analysis.

Figure 5.24 Random Forest algorithm predicts maliciousness of the sample to be 74%.

Figure 5.25 Evasion of sandbox by the sample.

Figure 5.26 Graph showing training on Apache Spark.

Figure 5.27 Distribution of load on 4 nodes aggregated for 1 hour.

Figure 5.28 A part Blockchain of five blocks generated by Implemented model.

Figure 5.29 Comparison of Ehereum Blockchain database architecture without Indexing and with Indexing on

top of Hadoop.

LIST OF TABLES

Table 1.1 Comparative analysis of various Malware Detection Techniques.

Table 1.2 Differences between Polymorphic and Metamorphic malwares.

Table 3.1 Qualitative versus quantitative research.

Table 3.2 Companies Covered, location and role of respondents during Data Collection and Analysis.

Table 3.3: Type of organisations of respondents

Table 3.4: Count of locations of respondents

Table 3.5: Count of title level of respondents

Table 3.6: Count of degree of responsibilities of respondents

Table 3.7: Count of type of malicious activities in respondents organisations

Table 3.8: Count of origin of malicious activities in oranisations

Table 3.9: Percentage of Overall budget allocated to cyber security

Table 3.10: Count of level till which devices get affected

Table 3.11: Level of concern for cyber security

Table 3.12: Technologies used for protection

Table 3.13: Approach followed for malware detection

Table 3.14: Resource allocation to cyber security

Table 3.15: Response time after malicious attack

Table 3.16: Factors hindering cyber security efforts

Table 4.1 Single Byte NOP Equivalent instructions.

Table 5.1 Final results obtained by testing sample files.

LIST OF ABBREVIATIONS

IM : Instant Messaging

ML : Machine Learning

GPU : Graphical Processing Unit

TOR : The Onion Router

DLL : Dynamic Link Library

JSON : JavaScript Object Notation

SMB : Service Message Block

JVM : Java Virtual Machine

CSV : Comma Separated Values

ARP : Address Resolution Protocol

SVM : Support Vector Machine

IDPS : Intrusion Detection Prevention System

RAT : Remote Access Trojan

DDOS : Distributed Denial of Service

IOT : Internet of Things

IRC : Internet Relay Chat

XOR : Exclusive OR

MAC : Medium Access Control

PCAP : Packet Capture

KNN : K Nearest Neighbor

DNS : Domain Name Service

IP : Internetworking Protocol

SSD : Solid State Device

EC2 : Elastic Compute Cloud

HDFS : Hadoop Distributed File System

AWS : Amazon Web Services

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION

1.1 Introduction to the Study……………………………………………………………. 1

1.2 Malware Detection Mechanism…………………………………………………….. 2

 1.2.1 Signature Based Systems……………………………………………….. 3

 1.2.2 Anomaly Based Systems……………………………………………….. 3

 1.2.3 Emulation/Behavior Based Systems……………………………………. 3

1.3 Types of Malicious Attacks ………………………………….…………………….. 6

1.3.1 Viruses…………………………………………………………………... 6

1.3.2 Worms…………………………………………………………………… 6

1.3.3 Trojans…………………………………………………………………… 7

1.3.4 Rootkits………………………………………………………………….. 7

1.3.5 Botnets…………………………………………………………………… 7

1.3.6 Ransomware……………………………………………………………... 7

1.3.7 Zombies………………………………………………………………….. 8

1.3.8 Rats………………………………………………………………………. 8

1.3.9 Spyware………………………………………………………………….. 8

1.3.10 Shellcodes………………………………………………………………... 8

1.3.11 Polymorphic Shellcodes…………………………………………………. 9

1.3.12 Metamorphic Shellcodes……………………………………………….... 10

1.3.13 Advance Malware-Beyond Polymorphic

 and Metamorphic Shellcodes……………………………………………. 11

1.4 Shellcode Infection Mechanisms…………………………………………………… 12

1.4.1 Buffer Overflow………………………………………………………… 13

 1.4.2 Code Injection …………………………………………………………... 13

 1.5 Machine Learning used for Malware Detection…………………………………... 13

 1.5.1 Introduction to Machine Learning………………………………………... 13

 1.5.2 Reasons for Using Machine Learning for Malware Detection…………... 14

 1.5.3 Supervised v/s Unsupervised Machine Learning…………………………. 14

1.6 Motivation for the Study……………………………………………………………. 14

1.7 Scope and Contribution of the study………………………………………………... 15

1.8 Research Methodology used in the Study…………………………………………... 16

1.9 Structure of the Thesis……………………………………………………………… 17

1.10 Keywords used…………………………………………………………………….. 19

CHAPTER 1

INTRODUCTION

1.1 Introduction To the Study

 The Internet world is ridden with all kinds of malware and hackers are constantly trying

out new innovative techniques to evade detection mechanisms. When shellcodes

became the choice of attack, antiviruses were quick to come up with signature detection

mechanisms to catch them. Hackers went one step ahead and created the so called

‘Polymorphic shellcodes’. These have different signatures for the same shellcode. Thus

it becomes impossible for a signature detection system to detect them. In our study, we

are going to create a framework for the detection and mitigation of untraced

polymorphic shellcode.

In May 2017, when WannaCry ransomware attacked, 150 countries with 2,00,000

computers all over the world were affected and some $50,000 was already paid to the

attackers by various companies and individuals. The base of this ransomware was

shellcode. In early 2017 when Donald Trump won the US elections, powershells were

injected in mails which were sent to Hillary Clinton’s aide John Podesta. Once the

shellcode entered the machine, it infected all the systems in the network and exposed all

emails of Hillary, which caused a great reputational loss to her campaign and she paid

the price by losing the elections.

In 2016, the game PokemonGo was found to be carrying shellcodes which caused

clicking frauds and millions of dollars were earned by the attackers by gaining root

access to the phones and clicking all kinds of ads and sometimes stealing network

bandwidth and sensitive data from the compromised machine. HummingBad, another

kind of shellcode malware, affected ten million phones worldwide and got admin

access to the phone and used that for generating fraudulent advertising revenue up to

$300,000 per month through the forced downloading of apps and clicking of ads.

Figure 1.1 Estimate of most and least cyber-vulnerable countries.

 According to the ‘Global Cybervulnerability Report’ of 2017 by UMIACS, Figure 1.1

 (http://terp.umd.edu/what-nations-are-most-vulnerable-to-

cyberattacks/#.XVFrpvIzapo, March 29, 2016) shows a rough estimate of which

countries are most and least cyber-vulnerable. The global average loss per cyber-attack is

$32,20,000. Out of this a major contribution is that of shellcodes. Thus it becomes

imperative that research may be done on the working and successful detection of shellcodes

 and polymorphic shellcodes.

1.2 Malware Detection Mechanism

Computer security, also known as cyber security or IT security means the protection

of information systems from theft or damage to the hardware, the software, or to

https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Software

the information on them. It also means protecting the systems against denial of

services or misdirection of service of any kind.

The computer security field is growing in importance because of our increasing

reliance on computer systems as well as the exponential growth of "smart" devices,

including smartphones, televisions and

 tiny devices as part of the Internet of Things (IOT) and of wireless

networks like Bluetooth and Wi-Fi.

There are various ways in which malwares can be detected, chiefly: Signature based

detection, Anomaly based detection and Behavior Based detection mechanisms.

1.2.1 Signature based systems

In this type of detection mechanism, the opcode pattern is extracted from the

executable file, called the signature of the file. This signature is then matched with a

database of already stored signatures. If it matches a malware signature, it is flagged

as malicious otherwise it is declared as clean. This technique is fast and accurate and

raises very low number of false alarms. However, a new virus cannot be detected. The

signature has to be in the database for it to be detected. The database is huge and

needs constant updating. Therefore the detection is slow. Also a new virus signature

needs 7 hours to get updated in the database.

1.2.2 Anomaly based systems

This type of detection mechanism monitors various processes on systems for any

abnormal activity. It detects a malware based upon any anomalous activity it

performs. It is quite reliable and can detect even new, previously unknown malware.

However it raises large number of false alarms which can be quite cumbersome to

deal with.

1.2.3 Emulation/Behavior based systems

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Smart_devices
https://en.wikipedia.org/wiki/Smartphones
https://en.wikipedia.org/wiki/Television
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Wi-Fi

These systems make the malware execute in a virtual environment and observe all its

behavior-includingabnormal activity, connection failures, network telescopes, pattern

of destination addresses, and causation. They are able to identify encrypted malware

like those of polymorphic and metamorphic nature but are very expensive to

implement.

Detection Technique

Strengths Weaknesses

Signature Based Fast and accurate.

 Low chance of fast

positives.

 Cannot detect

mutated virus like

polymorphic or

metamorphic.

 Cannot detect new

and previously

unknown malware.

 Slow because of

huge database.

Anomaly Based Can detect new

malware whose

signatures are

missing in the

database.

 Can detect

abnormal activity

quickly.

 High chance of false

positives.

 Expensive to

implement.

Emulation/Behavior Based Can detect

polymorphic and

metamorphic

(encrypted)

malware

 Expensive to

implement.

 The malware may

detect the virtual

environment and stay

 Can show the

severity of

malware based on

behavior

dormant till it is in

the sandbox, not

showing its actual

behavior.

Table 1.1 Comparative analysis of various Malware Detection Techniques.

Signature Based

Detection

Techniques

Detection

Techniques

Anomaly Based

Detection

Emulation/Behaviour

Based Detection

General

Malwares
Shellcode

Virus

Worms

Trojan

s

Rootkit

s

Botnets

Ranso

General

Malwares

Polymorphic

Shellcode

Metamorphic

Shellcode

Polymorhic

Shellcode

General

Malware

Figure 1.2 : Classifications of Malware Families According to their Detection Techniques.

1.3 Types of Malicious Attacks

Our computers and systems are always under attack from malicious components.

Attackers continue planning different ways to enter into systems and do their nefarious

activities. They keep developing different kinds of malware which choose different

routes, different attack mechanisms and different ways to remain hidden from prying

eyes of antimalware software.

There are various types of malicious attacks which are jeopardizing our computer systems

everyday like:

● Viruses

● Worms

● Trojans

● Rootkits

● Botnets

● Ransomware

● Zombies

● Rats

● Shellcodes

1.3.1 Viruses

A computer virus is a type of malicious piece of code which propagates by inserting a

copy of itself into and becoming part of another program. It spreads from one system

to the next, leaving infections as it travels. A virus can be an Overwriting virus,

Appending virus, Prepending virus or a Cavity virus depending upon where it attaches

its code in the normal program. A virus will normally attach itself to an executable

file. Thus, it will be in a system but will not be active or will not spread until a user

runs or opens the executable to which it is attached. When that file executes, the virus

executes as well.

1.3.2 Worms

Worms are just like viruses because they can replicate functional copies of themselves

and damage the systems just like viruses do but they do not require a host. Worms are

standalone pieces of malicious code which do not require a host program to

propagate.

1.3.3 Trojans

A Trojan is another type of malware named after the wooden horse used by the

Greeks used to infiltrate the city of Troy. It is a malicious piece of software which

looks perfectly legitimate. It uses social engineering to trick users to get downloaded

into their systems. The various functions Trojans can perform are- deleting files,

changing desktops, pop-up windows, activating or spreading other malware, stealing

data etc. They more often create backdoors but do not self-replicate. They spread by

user interaction like opening e-mail attachments or running a file from the Internet.

1.3.4 Rootkits

Rootkits are a collection of tools and programs designed to give administrator-level

access of computer or network to the attacker. Root means administrator in UNIX and

Linux systems. The software components of rootkits are associated with different

malwares like Worms, Trojans, Viruses etc. These malware hide their actions and

existence from users.

1.3.5 Bots

Bot is an automated process normally used for gathering information. Bots are

actually Internet robots which automate repetitive tasks which may be malicious like

launching Dos attack, relaying spam, logging keystrokes or providing information to a

c&c(command and control) center. They can form a botnet which is a network of

compromised computers to perform these malicious tasks in a very effective and fast

manner. They can be self-propagating. They can also work as spiders or crawlers.

1.3.6 Ransomware

Is a type of malware which infects a system and encrypts its data till the required

amount of ransom is paid. Thus a system is locked and is only unlocked and the data

only decrypted when the ransom is paid. The ransomware is normally loaded into the

system using a trojan typically using social networking. Different ransomwares work

in different fashion but all of them would work by first getting the admin rights of the

shell. The payment is mostly made using bitcoins. Some ransomwares may work as

wipers and may not decrypt the system even after the ransom has been paid.

1.3.7 Zombies

Zombie is a computer system which is compromised by an attacker and works for

him, unaware that it is working for the attacker. Normally, a system which is used as a

zombie will show decreased performance for the unaware users. A network of

zombies can be used to perform mass illegal activities. They can be used to send

massive amount of spam , Dos attacks or attacking other computers or websites.

1.3.8 Rats

RAT stands for Remote Access Trojan. RATs are malwares that provide a backdoor

to the attacker for his administrative control. Thus they are also called ‘Creepware’.

These are installed invisibly without the user’s knowledge and can enable the attacker

to monitor behavior, modify system configuration, use Internet connection or perform

some criminal activity.

1.3.9 Spyware

Spyware is type of malware which does espionage. It takes search history and sends

personalized advertisements and tracks user activities to send them to third parties.

1.3.10 Shellcode

Shellcodes are tiny programs which look like legitimate code and are inserted in code-

caves in a program code. Once executed, they provide a shell to the hacker with root

privileges. Eg.’Win32/ShellCode.gen!V’is a shellcode exploit for the Windows system.

The most common shellcode

instruction is to execute a shell such as /bin/sh, or cmd.exe. The only possible reason

for launching such

commands is to take control or exploit a compromised machine. When the exploit code

causes what would normally be a critical error in the targeted program, the program

jumps to the shellcode and is tricked into executing the attacker's commands. There are

many harmful effects of shellcode. A shellcode can connect itself with internet, can

display promotional adverts and fake messages, can corrupt secured system programs

and files and can affect internet speed and system performance. It can install more

malwares and fake programs, can show unwanted pop-ups, can crash the system, can

help view others desktop, can sniff data from the network, can dump password hashes

or use the owned device to attack hosts deeper into the network.

1.3.11 Polymorphic Shellcodes

Shellcodes have typical structures which can be detected through pattern - matching by

the IDPS software. Thus hackers have come up with a new type of shellcodes called

’Polymorphic Shellcodes’. Some algorithms are executed on the shellcodes which

make them ‘look’ very different, say by changing their commands, encryption, code

transposition, dead code insertion, register reassignment etc. However, the

polymorphic shellcode still performs the same functionality that the original shellcode

did. Pattern matching fails here and increases worries of IDPS and Antivirus

developers.

Suppose we have a malware say:

[NNNN]

If we use it in its original form, its signature may get detected. Therefore, we encrypt it

and it becomes:

[LLLL]

But to use it, we have to put the decryption routine, D with it because it has to be

deciphered before it can be executed. So now the signature looks like:

[DLLLL]

Now we can change the key and we get a different signature each time

 [DLLLL] with key K1

 [DFFFF] with key K2

 [DAAAA] with key K3

 [DBBBB] with key K4

Now the key is different each time but there is a static part ‘D’ which is constant in

each signature. Over a period of time, because of this weakness, a malware may be

detected.

Therefore, advanced polymorphic malwares change this decryption routine too, each

time a signature has to change:

[D1LLLL] with K1

[D2FFFF] with K2

[D3AAAA] with K3

[D4BBBB] with K4

The polymorphism may be caused by:

 Register renaming

 Code permutation

 Code expansion

 Code shrinking

 Garbage code instruction etc.

1.3.12 Metamorphic Shellcodes

These shellcodes are BODY POLYMORPHIC. They do not have a decryptor. They

create a new malware which looks completely different from the original signature.

There is no decryption algorithm or a key involved. Following are the differences

between Polymorphic and Metamorphic malware:

Polymorphic Malware Metamorphic Malware

They need to return back to their original

form for execution.

They do not need to return to their original

form for execution.

There is a decryption routine which uses a

key, embedded in the mutated code.

The mutated code has no decryption routine

or any key.

It is less difficult to write as compared to

metamorphic shellcode

It is more difficult to write.

Their body is constant. Their body is polymorphic, though

functionally same.

Eg. W32/Coke, W95/HPS and W95/Marburg Eg. Simile, ZMist

Table 1.2 Differences between Polymorphic and Metamorphic malwares

1.3.13 Advance Malware- Beyond Polymorphic and Metamorphic

Shellcodes

 Polymorphic shellcodes change their signatures with same or different decryptor

routines. Metamorphic malware change their body even without decryptor

routines or keys. The changed signatures are functionally equivalent to the original

ones. However, a new family of advance malwares is coming up in the wild. This type

of malware is not only polymorphic or metamorphic but can change their behaviors

also in every iteration. Say in one instance, the malware may delete files, in other, it

may open network ports, in still other, it may try to get remote access.

There already are some malwares which use ‘dynamic programming’. Say we have a

malware which has infected a system. Now it tries to use an IP address and a specific

port, say IP1, P1. If these are blocked by a firewall, the malware has a pool of IP

addresses and ports to choose from. It keeps trying other IP addresses and ports till it

can get past the firewall. In this manner a different behavior is shown by the malware.

Figure 1.3 : Malware using dynamic programming with a pool of IP addresses and

ports.

However more advance behavior mutations are possible in malware in addition to

them employing polymorphic and metamorphic techniques.

F1 can be: Delete files.

 F2 can be:Open network

ports.

 F3 can be: Get remote

access etc…...

Figure 1.4 Difference between Polymorphic, Metamorphic and Advance Malware.

1.4 Shellcode Infection Mechanisms

There are several ways in which shellcodes can attack a host and take control of it.

The two most common ways are Buffer overflow and Code Injection.

1.4.1 Buffer Overflow

There are many possible avenues that would allow a shellcode to take over a remote

host, but by far the most common is exploiting a buffer overflow. Despite this style of

attack having been a known vector for worm propagation for many years, buffer

overflow vulnerabilities continue to show up frequently in software. The essence of a

buffer overflow attack is to write more data to a buffer than it has allocated space for.

The excess data will then overwrite adjacent memory addresses, and when this is done

properly, the overwritten memory areas can be used to execute arbitrary code. Buffer

overflow attacks must be targeted specifically at an architecture and operating system.

The buffers that are overwritten can be either on the heap or the stack, with different

exploitation requirements for the two options. The heap is the pool of free memory

that is allocated dynamically to the running program. It is typically referenced

indirectly. The call stack stores the information about the execution of the program,

but varies greatly with operating system and machine environment.

1.4.2 Code Injection

A second form of attack is known as code injection. It is typically found in web

applications. In this attack, a server accepts posted data from a client, and if it doesn't

properly sanitize the data for code markers, it can end up executing the posted data as

code. This allows the client the opportunity to execute arbitrary code on the server,

allowing the client to compromise it and infect it with a worm.

1.5 Machine Learning used for Malware Detection

There are various ways in which Shellcodes can be detected, chiefly: Content Based

and Behavior Based detection mechanisms. However, to detect the advance malware

that we are predicting, which is polymorphic, metamorphic and functionally different,

machine learning algorithms are the only viable choice.

1.5.1 Introduction to Machine Learning

Machine learning is an upcoming field in computer science. It is an application of

artificial intelligence that gives the system, a capability to automatically learn and

improve from experience without being explicitly programmed. It is basically a

collection of programs meant to learn from examples, also called

as ‘data set’. Say we want to teach an application to recognize handwritten characters.

Now there are two ways of doing it. First is to write down a set of rules for each

character specifying all different shapes and styles a character can have. Add to it huge

variations in human handwriting. Also there would be separate rules for printed and

cursive characters. Writing of such programs would be a humongous task for a

programmer and it would also require tremendous computing power.

The second way is to prepare a data set having many different examples of handwritten

characters and the computer, by itself learns the rules that best identify a character.

This way of learning is called supervised learning. Machine learning is of two types:

supervised Learning and Unsupervised Learning.

1.5.2 Reasons for Using Machine Learning for Malware Detection

Computer science is changing very fast and according to some statistics, Artificial

intelligence has arrived 10 years prior to the expected time. Researchers have shown

an incredible success rate of detecting malwares using machine learning although the

problem with machine learning is that no matter how much data you train the machine

learning algorithm with, it’s not sufficient and also it takes huge amount of time to

train a large dataset using machine learning. However recent innovations like deep

learning and cheaply available GPUs have made machine learning really fast but still

the time to train the model increases linearly as the size of dataset increases.

1.5.3 Supervised v/s Unsupervised Machine Learning

Supervised Learning: Here labeled training data is provided to the system and then it

tries to classify the unknown sample.

Unsupervised Learning: Here we do not provide labeled training data and ask the

system to cluster the sample in n number of clusters. Unsupervised learning is quite

difficult as it is very hard to analyze how system classifies data as it does not output

the parameters on which it clusters the data.

1.6 Motivation for the Study

Among the various malware families, the general malwares and shellcodes are detected

using signature detection mechanisms. Polymorphicmalwares can be detected using

Anomaly based detection mechanisms. Metamorphic malwares can be detected using

Behavior/Emulation based detection mechanisms. However, advance malwares which

not only change their signatures, but also their behavior are the most difficult to detect.

Thus one defense mechanism is not enough for these malwares. They have to be detected

using a multidimensional approach. No current mechanism attacks a malware from all

sides so as to perfectly detect it. A framework is required for IPS and IDPS systems

which takes care of static analysis, dynamic analysis, network analysis and sandbox

evasion analysis.

Many current solutions fail to detect a new variant of malware for which they have no

prior information. WannaCry and Petya are the most recent examples. The advance

malwares can show a new signature and behavior every time which makes logging

impossible.

Malware detection is an ever growing industry where, it is said that antivirus companies

makes malwares first and then give patches later. The rich keep getting richer and safety

and security seems to be slipping out of the hands of ordinary citizens. Our framework is

designed to give safety and security features to every common man in the cheapest

possible manner.

The solutions which claim to be able to detect even advance malware require large CPU

capacities and very high speeds. Our framework will achieve the same performance

using distributive architecture so that the load is shared by all the nodes participating in

the detection process.

The database of the malware information will be updated in an instant and the current

copy of the database would be available to all the nodes at all times. It is seen that at

times, it takes about seven days for an update to reach all systems across the world. Till

that time, the malware is easily able to perform its dirty work.

1.7 Scope and Contribution of the study

The framework covers the security domain and will detect malwares of all types in an

efficient, timely and cost effective manner. The range of people benefitted out of this

system is unlimited. Big organizations need not spent millions of rupees on expensive

detection systems. This framework does the same job in the least expensive manner

using distributive framework. The latest malware can be detected as soon as

possible and the information travels to all the nodes participating in the process in a very

quick manner. The common man on the Internet who is sometimes bluffed by the

security agencies will be saved. The latest and the most current detection mechanism will

be available to him at the lowest cost possible. Governments, schools, colleges, hospitals,

all small, medium or big organizations stand to benefit from this study. The study will

not only aim at detecting general malwares like virus, Trojans, rats, worms etc., but will

also aim at ransomware, polymorphic, metamorphic and advance malwares.

1.8 Research Methodology used in the Study

A series of interviews were conducted with industry professionals, security auditors,

ethical hackers, bankers, developers, database administrators, senior managers, HR

professionals, university lecturers, students, and many other people in various

organizations, serving at different positions. Their security problems were analyzed.

There were a few important findings which are stated below:

1. Many of them have quite often suffered from a ransomware threat. If the organization is

big, these threats are not brought to light because of prestige issues.

2. These people are often under risk from a new, previously unknown malware.

3. They are spending huge amount of resources on maintaining security within the company

and still do not feel completely secure.

4. They are often worried about losing important organization data and resources to puny

hackers.

5. The entire security system is centralized thus is expensive to maintain and sometimes

slow to counter fat spreading attacks.

The hypothesis was developed by taking a number of malwares from the wild and testing

them against popular anti malware solutions. Some were able to detect these malwares

and some were not. All these malwares were of general families. Therefore, we

developed some polymorphic malwares ourselves and then tested them against these

solutions. To our surprise, many of these solutions were unable to detect them. All these

malwares were able to do all kinds of malicious activities like installing keyloggers,

capturing screens, deleting and sometimes encrypting files and data etc. Any such

malware, if launched can be a big threat to the world. Popular ransomwares like

WannaCry, Petya, Misha etc. were studied in detail to understand their structure,

behavior and attack pattern.

Therefore it was concluded that the present solutions are no match for advance

technologies that hackers have at their disposal. So a framework has to be developed

which takes care of all these threats effectively. It has to be fast and affordable. It should

de distributive and power should be in the hands of common man and not centralized in

the hands of anti-malware companies.

The research methodology is experimental in nature and of quantitative type. We would

create the framework and would try to verify its working by testing it against various

malwares. The model will be trained first by giving it known samples so that it self learns

the factors required for detection. Then it would be tested to check whether it is giving

correct results or not. Finally, it would be tested by taking random samples from the wild

to analyze its effectiveness and performance.

1.9 Structure of the Thesis

Chapter 1. Introduction

The first chapter gives introduction of the study. We classify the malware families based

on their detection techniques. We find out about polymorphic and metamorphic

shellcodes which cannot be detected by signature detection alone. Advance malware

which can change their behavior also cannot be detected by all present techniques. We

understand the scope and contribution of the study and the research methodology used.

Chapter 2. Literature Review

In the second chapter, we do a literature review of the work done till now in various

areas like malware detection techniques, working of common antimalware solutions and

the concept of CVE’s, polymorphic and metamorphic malware, machine learning for

malware detection, working of emulators like Cuckoo, studying static and dynamic

behavior of malware, studying various ransomware, studying distributive technologies

like Hadoop, understanding cloud architecture and working, understanding Blockchains,

studying digital currencies like Bitcoins and Ethereum.

Figure 1.5 : Structure of the Thesis

PosDeF
(Polymorphic

Shellcode
Detection

Framework)

Ch 1-
Introduction

I. Malware
Detection

Mechanisms

II.Types of
Attacks

III. Shellcode
Infection

Mechanism

IV.Machine
Learning for

Malware
Detection

Ch 2-
Literature

Review

Ch 3- Research
Methodology

I. Data
Collection

II.

Objectives

III.
Experiments

IV.
Significance

V. Designing
of

Framework

VI. Algorithms
for Building
Framework

Ch 4 - Analysis
and

Interpretation

I. Creation
of Advance

Malware

II.Using it
for Attack

III. Working with
Live Ransomware

IV. Building
Framework

V.
Distributive
Execution

Ch 5 - Findings
and Conclusions

I. Clean Sample
Execution

II. Malicious
Sample

Execution

III. Final
Results

IV.
Comparison

with
Centralized

Systems.

Chapter 3. Research Methodology

The third chapter describes the research approach undertaken for proposal and

development of the model. The objective, scope and contribution of the study is also

understood, gauged and analyzed. Hypothesis is built based upon interviews, testing with

malware samples from the wild and self-created advance malwares. The framework is

designed and all the steps of the proposed model are understood in detail. Algorithms for

all the steps are built and formulae generated for calculations like threshold,

maliciousness probability and severity.

Chapter 4. Analysis and Interpretation

The fourth chapter deals with analysis and interpretation. The process of creation and

attack of advance malwares is studied in detail. We have worked with live ransomware

samples like WannaCry and Petya and understood their impact, attack process and

behavior. We have built every part of the framework starting from the static part to

behavior, network and sandbox evasion part. We have shown hoe the entire model works

in a distributive manner and how the blockchain concept can be used for logging the

database and also as a means for rewards and recognition.

Chapter 5. Findings and Conclusions

The fifth chapter deals with findings and conclusions of the study. We have executed

every part of the trained model with clear and malicious malware samples and found out

whether the model is giving correct results or not. The severity is analyzed according to

the calculated probability. The concept of alerts is built which gives message to the user

about the threat. The study is concluded and limitations are enumerated. Further scope of

the study is also analyzed and more research potentialof the study is observed.

1.10 Keywords used

Shellcode, polymorphic shellcode, metamorphic shellcode, machine learning,malwares,

antivirus, IDPS, IPS systems, framework, virus, Trojan, CVE, severity, alert, profiling,

pretraining, static analysis, dynamic analysis, Snort, networkanalysis, sandbox evasion,

VirusShare, NoDistribute,buffer overflow , Cuckoo, JSon, MIST, KNN classifier,

Random Forest, Naïve Bayes, N Gram, Apache Spark, Amazon AWS, cloud storage,

Distributive architecture, machine learning, artificial intelligence, Hadoop, Map Reduce,

master node, slave node, Ethereum, blockchain, WannaCry, Petya, TOR, DLL

CHAPTER 2: LITERATURE REVIEW

2.1 Analysis of Literature Survey………………………………………………………. 21

2.2 Malware detection techniques……………………………………………………… 22

2.3 The various threats and Working of common

 antimalware solutions…………………….………………………………………… 22

2.4 Concept of CVE’s…………………………………………………………………... 23

2.5 Polymorphic and metamorphic malware……………………………………………. 23

2.6 Machine learning for malware detection…………………………………………… 24

2.7 Working of emulators like Cuckoo……………………………………………........ 24

2.8 Studying static and dynamic behavior of malware……………………………........ 25

2.9 Studying various ransomware…………………………………………………........ 26

2.10 Studying distributive technologies like Hadoop………………………………….. 26

2.11 Understanding cloud architecture and working…………………………………… 26

2.12 Understanding Blockchains………………………………………………………. 27

2.13 Studying digital currencies like Bitcoins and Ethereum…………………………. 27

2.14 Gap Analysis…………………………………………………………………....... 28

CHAPTER 2

LITERATURE REVIEW

2.1 Analysis of Literature Survey:

The purpose of literature survey is to understand the previous work done in the chosen

topic. Many papers were read and analyzed to understand in which directions other

researchers have moved in this field. When we started to do research on this topic,

there were many areas, of which we had little or no knowledge. The concept of

polymorphic, metamorphic and advance malware had to be studied. We had to

understand the detection techniques that researchers have been using till now. What are

the benefits of these techniques and what are the gaps that these techniques are not able

to fill. We had to understand the behavior of different kinds of malwares and know

their attack methodologies to counter them better. We had to know about centralized

and distributive detection methodologies to gauge what are the advantages and

disadvantages of each. We divided the literature review in the following sections:

1. Malware detection techniques,

2. The various threats and Working of common antimalware solutions

3. Concept of CVE’s,

4. Polymorphic and metamorphic malware,

5. Machine learning for malware detection,

6. Working of emulators like Cuckoo,

7. Studying static and dynamic behavior of malware,

8. Studying various ransomware,

9. Studying distributive technologies like Hadoop,

10. Understanding cloud architecture and working,

11. Understanding Blockchains,

12. Studying digital currencies like Bitcoins and Ethereum.

2.2 Malware detection techniques

2.2.1 In the paper, “A Survey on Heuristic Malware Detection

Techniques”[1], Z. Bazrafshan explains the widely used methods of

malware detection Signature based, Behavioral based and Heuristic based.

The signature based and Behavior based methods are explained in detail

 with their advantages and shortcomings. Heuristic methods gain an

advantage over the other two methods because of various disadvantages

that they have. The various techniques used in Heuristic methods involve

API Calls, OpCodes, N-Grams etc. The working, advantages and

 shortcomings of Heuristic methods is also explained in detail.

2.2.2 In the paper, “A Survey on Techniques in Detection and Analyzing

Malware Executables”[2], K. Mathur explains Static, Dynamic and

Hybrid analysis of Malware executables, comparing the techniques in terms

of where they can be used and how effectively. The paper also discusses the

ways of creation of obfuscated malwares. Their technique uses Bi-feature

analysis rather than Mono-feature analysis thus reducing the number of

false-positives.

2.3 The Various Threats and Working of Common Antimalware

Solutions

2.3.1 In the paper, “Evaluating the Ability of Anti-Malware to Overcome

Code Obfuscation”[3], M. Carson, discusses the various anti malware

technologies like Binary file checking, classifying packed and Polymorphic

malware, understanding static system calls etc. The paper understands and

compares the various techniques in terms of their strong and weak points.

Various other related works have also been studied to know the points they

did not cover. The concept of code obfuscation is studied well and the

techniques which can handle it are analyzed.

2.3.2 In the paper, “Internet Attack Methods and Internet Security

Technology”[4], O. Adeyinka, investigates the various Internet attack

methods like viruses, system and boot record infectors, eavesdropping,

hacking, worms, Trojans, IP Spoofing, DOS, spam, email bombing and

phishing. Many security techniques to counter these threats like

cryptographic systems, firewalls, IDS, IPSec, SSL etc. are discussed. Their

merits and demerits are also analyzed.

2.4 Concept of CVE’s

2.4.1 In the paper,”Managing vulnerabilities in networked systems”[5],R. A.

Martin, explains what are the common vulnerabilities and exposures database

and classifies the parts of the database as Vulnerability scanner database,

Software vendor patches and updates, Intrusions system detection

signature database , Software vendor alerts etc. The paper describes how

 CVEs work and how the CVE list is built and what are the benefits of

CVE compatibility.

2.4.2 In the paper, “Common vulnerability scoring system”[6],P.Mell,

explains the recommendations of the National Institute of Standards and

Technology(NIST) regarding the CVE naming system. It provides

guidelines for use and acquisition of CVE databases. It explains that CVEs

contain a list of publicly know vulnerabilities, authenticates newly

published vulnerabilities and gives a unique name to each vulnerability. The

paper explains how CVEs can be used by federal organizations and how

they can make their security systems CVE compatible.

2.5 Polymorphic and metamorphic malware

2.5.1 In the paper,“Classification of polymorphic and metamorphic malware

samples based on their behavior”[7], K Tsyganok, classifies malware on

the basis of their behavior characteristics like WinAPI calls, files which are

handled by the program, arguments taken by them etc. Clustering technique

is used for classification of the samples. The work is tested using actual

malware files.

2.5.2 In the paper, “ Structural entropy and metamorphic malware“[8], D.

Baysa, explains that metamorphic malware is able to change their internal

structure without changing their

 functionality. Thus they cannot be detected using Signature Detection

Methods. Thus they use Structural Entropy to find differences in

complexity of data in a sample file. They first segment the file using

entropy measurements and then find the similarity between samples by

finding the edit distance between sequence segments.

2.6 Machine learning for malware detection

2.6.1 In the paper,“ Automatic analysis of malware behavior using machine

learning“[9], K. Rieck, propose a framework for incremental detection of

malware using automatic clustering and classification of novel malware

samples based on dynamic behavior analysis. A malware sample is

projected in a vector representation and machines learning techniques

work in this vector space.

2.6.2 In the paper, “ Opem: A static-dynamic approach for machine-

learning-based malware detection “[10], I. Santos, proposes the first

hybrid machine learning based malware detector that combines both static

opcode frequencies with dynamic execution trace of the binaries to reach

to a conclusion whether they are malicious or clean. The files are executed

in a sandbox environment to know their behavior. Also a vector of

frequency of opcode frequencies is generated to determine maliciousness.

2.7 Working of emulators like Cuckoo

2.7.1 In the book, “Cuckoo malware analysis”,D. Oktavianto, explains working

of the Cuckoo sandbox. He explains that a sandbox is used to analyze

a malware without the user worrying about the changes which will happen

in the system during the process. Sandboxes work using snapshot technique

which saves the virtual state of the machine while it runs. One can revert to

the original state after analysis. Cuckoo was started as Google Summer of

code project and it is open software. It analyses files like generic windows

executables, DLL files, PDF documents etc. As results it produces traces of

win32 API calls, memory dumps, screenshots and network traffic trace in

PCAP format.

2.7.2 In the paper,“An android application sandbox system for suspicious

software detection”[12],T. Blasing, explains that a sandbox will work by

monitoring system and library calls and logging them. It also generates

pseudo-random streams of user events like clicks, touches, or gestures, and

also some system-level events. The sandbox is placed in the kernel. The

entire system state is recorded so that no malicious activity can be hidden.

All the logs are kept in a separate file.

2.8 Studying static and dynamic behavior of malware

2.8.1 In the paper,“Implementation of malware analysis using static and

dynamic analysis method”[13], Y. Prayudi, uses two methods of malware

analysis: static and dynamic. Static analysis is done without running the

malware and dynamic analysis is done while running the malware in a

secure environment. Both basic and advance static and dynamic malware

analysis is done and finally a malware analysis report is generated. Various

analysis tools like Anubis, Wireshark, VirusTotal, BinText and OllyDbg are

used.

2.8.2 In the paper,“An approach for malware behavior identification and

classification”[14], M Zolkipli, solves various threats like polymorphic and

metamorphic malware threat in the paper. He first does behavior analysis of

malware and then classification into families is done. The resulting

framework identifies and classifies malwares based on behavior analysis.

The malware classification is also optimized using AI techniques.

2.9 Studying various ransomware

2.9.1 In the paper, ”Ransomware digital extortion: a rising new age

threat”[15], A. Bhardwaj, studies Crypto and Locker ransomware, their

propagation, attack techniques and new emerging threat vectors like screen

lock, Windows and browser lock, encryption ransomware, pop

advertisements and URL redirections. The reports generated give

ransomware behavior analysis, code analysis and classification. Anti

ransomware elastic cloud based platforms were used.

2.9.2 In the paper, “Ransomware: Studying transfer and mitigation”[16], R.

Shinde, conducts interviews and surveys with victims of ransomware and

tries to find the relation between ransomware attacks and victims age,

education, company etc. Various methods of transfer of different kinds of

ransomware are studied. Many mitigation strategies are analyzed and ways

to spread awareness to protect and mitigate from these ransomwares are

also suggested.

2.10 Studying distributive technologies like Hadoop

2.10.1 In the paper, “Analytical review on Hadoop Distributed file

system”[17],K. Dwivedi,explains a step by step process of handling large

amount of unstructured data using Hadoop and its Map Reduce algorithm.

The paper explains how Hadoop Distributed File System-HDFS, is rapidly

growing and is being used in a variety of different applications. The

working of HDFS and Map Reduce is explained in detail along with its

various applications.

2.10.2 In the paper,“Teaching Distributed Systems Using Hadoop”[18],R.

Correia,develops a teaching method using benchmark tests for students

using Hadoop framework. Students study complex databases, various

network infrastructures and system architectures on cloud based Hadoop

systems. The framework proves very effective in this teaching

methodology.

2.11 Understanding cloud architecture and working

2.11.1 In the paper, “Spectrum of cloud computing architecture: Adoption

and avoidance issues”[19],Jangra A., explains the set of technologies

used in cloud computing. The architecture of cloud is explained in detail

along with the working details and various deployment and service

models. Advantages of cloud computing like elasticity, flexibility and

scalability are explained in detail. The paper ends with handling cloud

deployment and use issues like security, privacy, internet dependency and

availability.

2.11.2 In the paper, “Cloud computing: types, architecture, applications,

concerns, virtualization and role of it governance in cloud” [20],

P.Sareen, defines Cloud architecture, various cloud providers, compares

cloud computing with grid computing,

 explains cloud virtualization, applications and concerns regarding cloud

computing and detailed working of a cloud. The role of I.T. governance in

cloud computing is also discussed.

2.12 Understanding Blockchains

2.12.1 In the chapter,“Blockchains and the boundaries of self-organized

economies: Predictions for the future of banking” [21],T.J.

MacDonald, explains how distributed Blockchains give a self-organized,

autonomous economy. The chapter explains that Blockchains are resilient,

transparent and distributed public ledger. This decentralized solution is

cost effective and more innovative as compared to centralized solutions. It

is an open and a dynamic system. It is also robust, flexible and secure. The

chapter explains that Blockchains are crypto economic mechanisms which

overcome difficulties in the existing economic systems.

2.12.2 In the paper,“Blockchains and the economic institutions of

capitalism”[22], S.Davidson, explains that Blockchains are a digital

technology which uses peer-to-peer network computing and combines it

with cryptography to create an immutable and decentralized public ledger.

The entries in the ledger can record not only money but other data

structures like contracts, certifications, identities, property titles etc. The

paper explains the working of Blockchain in detail.

2.13 Studying digital currencies like Bitcoins and Ethereum

2.13.1 In the paper, “Bitcoin and beyond: A technical survey on decentralized

digital currencies” [23], F.Tschorsch, explains the Bitcoin protocols

and its building blocks. The paper also discusses the various applications

and impacts of Bitcoins. It explains how the purpose of banks is taken

over by these decentralized currencies. Mining of bitcoins is also

explained in detail. The various types and chain of transactions is also

talked about.

2.13.2 In the paper,“Bitcoin: Economics, technology, and governance” [24],

R.Böhme, explains that Bitcoins are based on transactionallogs in a

distributive computing environment where

 participating computers are rewarded according to the level of honest

participation.

 This mechanism is against concentration of power. It is designed using

irreversible transactions and a public record ledger. It is free to use and

very flexible. The paper explains the design principles of Bitcoins, its

uses and risk and regulatory features.

2.14 Gap Analysis

After going through many research papers and books related to the subject, we have

found gaps in the research done till now.

 Some papers talk about only signature detection of shellcodes, however, they

fail when dealing with polymorphic shellcodes.

 Many of the techniques like Network Emulation are a high resource-consuming

technique. Many models have just been proposed in theory but have not come

into practice because of their complexity.

 Some techniques deal with static and some with dynamic analysis, however, an

approach of hybrid analysis is required for the most effective solution.

 The techniques which are dealing with polymorphic signatures are not dealing

with polymorphic blending attacks. These attacks merge the malware traffic

with normal traffic so that even anomaly based IDPS systems are not able to

detect them.

 A multi staged attack where a small malware enters first and shows not much

action initially but later calls bigger malwares, is also not tackled by many

papers.

 Some papers deal with obfuscation of the NOP sled and some with obfuscation

of the rest of the code. What is required, however is that both type of

obfuscations must be dealt with for true detection.

 Some papers fail to take into consideration that the malware will stop showing

its true behavior once it detects a sandbox. Various sandbox evasion techniques

are being followed by malwares to evade detection.

 Also, considering that only signature detection is not the solution, we need

behavior analysis, network analysis and sandbox evasion analysis.

 We can consider using machine learning tools and decentralized computing for

this framework.

Some papers have taken a machine learning approach to malware detection.

However, some have taken only static analysis approach and some are only

analyzing the API calls that the malware is making. No paper discusses a four

pronged approach of attacking the malware from four sides, static, dynamic,

network and sandbox evasion based.

 Also, many of them are training their models on one or the other specific

machine learning algorithms. We propose to create a framework where the

algorithm is not fixed. We will calculate the score of each machine learning

algorithm based on the training and the test data that we have and based on the

score we will decide which algorithm to finalize for the framework.

 Also since the machine learning approach is resource-heavy, thus it is

imperative that a distributive way is used for implementing the entire system.

This also most of the papers have not taken into consideration. Therefore,

without the distributive approach, many machine learning algorithms fail to

work when dealing with huge amount of data.

 Thus a comprehensive solution is required which takes into consideration, all

the above mentioned points and thus become a strong detection mechanism.

Therefore, we propose a framework for the detection and mitigation of untraced

polymorphic shellcode which takes into consideration all these points and thus

becomes a hard detection mechanism.

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction: Research Approach……………………………………………… 32

3.2Method of Data Collection…………………………………………………….. 34

3.3 Research Methodology used…………………………………………………… 36

3.4 Analysis Report of data collected……………………………………………………... 42

 3.4.1 Type of organization …………………... 43

 3.4.2 Location of organization……………………………………… 43

 3.4.3 Title level held in the organization ……………………………………… 44

 3.4.4 Degree of security responsibility …………………... 45

 3.4.5 Types of malicious activities ……………………………………… 46

 3.4.6 Origin of malicious activity ……………………………………… 47

 3.4.7 Percentage of Overall budget allocated to cyber security …………………... 48

 3.4.8 Level till which devices get affected ……………………………………… 49

 3.4.9 Level of concern for cyber security ……………………………………… 50

 3.4.10 Technologies used for protection …………………... 51

 3.4.11 Approach followed for malware detection ……………………………………… 52

 3.4.12 Resource allocation to cyber security ……………………………………… 53

 3.4.13 Response time after malicious attack …………………... 54

 3.4.14 Factors hindering cyber security efforts in the organization …… 55

3.5 Key Understandings………………………………………………………... 56

3.6 Objectives of the Study………………………………………………………... 57

 3.6.1 The Theoretical Framework of the Present Study…………………... 57

 3.6.2 Conceptual Model Framework……………………………………… 57

 3.6.3 Objectives of the Framework……………………………………….. 60

3.7 Experiments to assess Polymorphic shellcode threat………………………… 60

 3.7.1 Creating a shellcode by Smashing the Stack……………………….. 60

 3.7.2 Injecting a polymorphic shellcode in PE file……………………….. 68

 3.7.3 Getting privileges after infecting a file with polymorphic

 shellcode…………………………………….……….

 72

3.8 Significance of Research…………………………………………...………… 76

 3.8.1 Need of the Study…………………………………………………… 76

 3.8.2 Benefit of the Study………………………………………………… 77

3.9 Designing PosDeF………………….………………………………………… 78

 3.9.1Design Methodology……………………………………………….. 78

 3.9.2 Objective…………………………………………………………… 78

 3.9.3PosDeF Design…………………………………………………. 79

3.9.4 Proposed Working of PosDeF…………………………………… 80

 3.9.4.1 Collection of Data for the Formation of the Training Set…… 83

 3.9.4.2 Training with our initial dataset………………………….. 83

 3.9.4.3 Profiling the files…………………………………………. 84

 3.9.4.4 Convert the dataset into machine learning compatible format 84

 3.9.4.5 Pre train the model……………………………………….. 84

 3.9.4.6 Train the dataset using various machine Learning Algorithms… 85

 3.9.4.7 Iteratively scan all available files………………………... 86

 3.9.4.8 Reward the user…………………………………………... 86

 3.9.4.9 Balancing the dataset…………………………………….. 87

 3.9.4.10 Endless loop…………………………………………….. 87

3.10 Algorithms Used for Building PosDeF………………………………. 87

3.10.1. The Final Algorithm………………………………………………. 87

 3.10.1.1 Algorithm for Training of PosDeF…………..………… 88

 3.10.1.2 Algorithm for Threshold Calculation

 for the Final Framework during the training phase……... 89

 3.10.1.3 Algorithm for Testing of PosDeF………….…………. 91

3.10.2 Static Analysis…………………………………………………….. 92

 3.10.2.1 Algorithm for Static Training…………………………… 92

 3.10.2.2 Algorithm for finding out the Best

 Classification Algorithm for Static Testing…………... 93

 3.10.2.3 Algorithm for Static Testing…………………………… 94

3.10.3 Behavior Analysis……………………………………………….. 94

 3.10.3.1 Algorithm for Behavior Training……………………… 95

 3.10.3.2 Algorithm for Finding Best

 Classification Algorithm for Behavior Testing……….. 96

 3.10.3.3 Algorithm for Behavior Testing………………………. 96

3.10.4 Snort Analysis…………………………………………………… 97

 3.10.4.1 Algorithm for Snort Training………………………….. 97

 3.10.4.2 Algorithm for Finding out the

 Best Classification Algorithm for SnortTesting………. 98

 3.10.4.3 Algorithm for Snort Testing…………………………… 98

3.10.5 Algorithm for Sandbox Evasion…………………………………. 99

CHAPTER 3

RESEARCH METHODOLOGY

In this section, we will give an overview on the different types of research methodologies.

This will be followed by the rationale behind selecting a particular method for this thesis.

3.1 Introduction: Research Approach

Research approaches are plans and the procedures for research that spans from broad

assumptions to detailed methods of data collection, analysis, and interpretation. There are

three approaches to research which are as follows:

1. Qualitative

2. Quantitative, and

3. Mixed methods

Qualitative research is an approach for exploring and understanding a social or human

problem as described by individuals. It is aimed at gaining in-depth understanding of a

specific organization or event, rather than surface description of a large sample of a

population. This type of research puts more focus on how people feel, think and make their

choices.

This research is largely managed with discussion around the concepts with some open

questions. Respondents are asked to explain the reasons for their responses. This can reveal

underlying motivations, associations and behavioural triggers [25].

Common data collection methods that are used in this research are focus groups, in-depth

interviews, uninterrupted observation, bulletin boards, and ethnographic

participation/observation

Quantitative research is an approach for testing objective theories by examining the

relationship among variables. This type of research is a more logical approach that provides a

measure of what people think from a statistical point of view. For example, if you wanted to

know how many students use Android phone or services and how strongly they support it,

you would do a quantitative research.

This research largely uses methods such as questionnaires and surveys with multiple choice

questions where respondents are asked to select one or more of the given options. Answer

options may include acceptance scale (strongly agree to strongly disagree), Likert scale,

ranking in order of priority, etc.

This type of research can be conducted via telephone, web or with the help of paper

questionnaires. The only constraint is that the number of respondents should be significant

enough to be able to generate directional results.

Following Table 3.1 illustrates key differences between qualitative and quantitative research

Criteria Qualitative Quantitative

Data Data is in the form of words,

pictures or objects.

Data is in the form of

numbers and statistics.

Method used Methods include focus groups,

in-depth interviews, and

reviews of documents for non-

numeric information

Surveys, structured

interviews & observations,

and reviews of records or

documents for numeric

information

Process of Research Inductive approach used to

formulate theory or hypotheses

Deductive approach used to

test pre-specified concepts,

constructs, and hypotheses

Response options Unstructured or semi-structured

response options

Fixed response options

Statistical test No statistical tests are

performed

Statistical tests are

performedfor analysis

Time required Time spend at the time of

planning is lower than that

spent during the analysis phase

Time spend at the time of

planning is higher than that

spent during the analysis

phase

Objectivity/subjectivity Highly subjective Highly objective

Result Results depend on skill and

accuracy of the researcher

Results depend on the

measuring device /

instrument

Final Report

Report contains textual

details&verbatim from

research participants

Report contains statistical

analysis of data.

Table 3.1: Qualitative versus quantitative research

3.2 Method of Data Collection

1) Semi- structured interview technique: was used for data collection. The respondents

chosen were from ISACA. I have a long association with an organization known as

ISACA. ISACA stands for Information Systems Audit and Control Association.

ISACA is an international organization which works for IT governance and auditing

controls. It was formed in 1967 in USA by a group of people working as auditors and

computer security personnel who wanted to have a centralized agency which could

provide information and guidance in this field. Today it has its branches in 180

countries. It has more than 200 chapters. ISACA members include Information

security auditors, Information security professionals, educators, consultants,

regulators, CIOs, internal auditors etc. These chapters give education, provide for

resource sharing, networking, advocacy etc. ISACA has a CPE- Continuing

Professional Education Policy. All certified ISACA personnel have to attain a

minimum of 20 CPE hours for attaining knowledge about the latest technology and

advancements in the IT security industry. This can be achieved by webinars,

conferences, online and offline trainings etc. I was called as a speaker four times at

these conferences to talk about my ongoing research on polymorphic shellcode. In

other conferences, I attended as a participant. In all these conferences, I got a chance

to interact with security professionals, auditors, CTOs and regulators. Sample size

was 30.

 These were conducted at every conference. There were not many formalized

questions. More open ended questions enabled me to gauge the present security scenario and

reach to my final research topic. The discussions allowed me to get clear understanding

of the security risks that these professionals deal with every day, how they tackle these

risks, what is the cost of applying anti malware solutions, what problems the current anti

malwares systems can solve and more importantly what they cannot. They were also

asked about their biggest security fears and what is it that is at the most risk. A sample

 question sequence was:

Q) What is the biggest security risk that you face as security personnel?

A) Fear of a malware, particularly ransomware attacking the organization’s systems and

encryption of all data.

Q) Which anti malware solutions do you use?

A) We use the latest anti malware solutions.

Q) Aren’t those capable of handling these attacks?

A) They are quite efficient in handling known attacks but have sometimes failed in handling

new, previously unknown malwares.

Q) What do you think is the reason for that?

A) Well maybe they are feigned by new malwares into assuming they are clean files.

Q) Is the security model centralized or distributive?

A) Well it is centralized.

.

2) Surveys: were conducted using both Google online forms and hard copy printed

forms. Some 361 respondents filled these forms. Some were qualified security

professionals while some were not so qualified. Some were directly responsible for

security in their organisations while others were not directly responsible. Variety of

organisations was selected. Time was from Jan 2016 to Dec 2016.

3) In-Depth interview technique was used with either individual people or a focused set

of interviewees. This technique was used because it helps in exploring the

respondent’s detailed perspective on a particular idea, program or solution. It is very

useful when we want to explore new issues and ideas in depth. Laddering technique

of question asking was used wherein one question led to another. This technique is

particularly useful in the early stages of research as it provides a direction to the

researcher.

These types of interviews and surveys helped me a lot in topic finalization and data

collection. Each interview was roughly of 15-20 minutes. It would either be an individual

interview or a focused group interview. The sample size was of about 25-30 people and

snowball technique of sampling was used for sample selection where participants of an

interview were asked to identify other potential participants and the chain goes on until the

right sample size was found. Snowball sampling is particularly useful where the researcher is

not able to find the required number of participants and also a situation where potential

participants may be wary of disclosing their identities. Some security people may not want to

accept that they were actually attacked by ransomware and they did pay the ransom to

recover their encrypted files and data. Here the company’s reputation is at risk.

3.3 Research Methodology used

Our research is exploratory in nature till the time we are finding the WHAT of the problem.

It is also descriptive where we describe the WHY of the problem and experimental where

we give the SOLUTION to the problem.Therefore, the study covers all aspects of research.

Thus it is a mixed research methodology. We are trying to collect information regarding the

problem which is being faced by the security industry today. The information is collected

through in-depth interview techniques.

We also create our own advance malware and test it under common anti malware solutions to

verify our hypotheses that common anti malware solutions are not able to detect advance

malware. Then we study the behavior of common ransomwares and advance malware to see

their build, attack patterns and anti-detection strategies. Then we study different techniques

used to create advance malwares because we cannot give a solution until we know the

problem well.

We also study why common anti malware solutions are not able to detect advance malware

and what are the reasons of their failure. The research is quantitative because we propose a

framework which can detect these advance malware. We build the framework and test it

against known and unknown samples. We first train the model and then test the model. We

also run the model in a distributive environment and find out that the model is very efficient

and cost effective as compared to the models existing in the industry today.

Since the respondents are a mixed bag of primary responsible, secondary responsible and not

responsible (for cyber security) employees therefore, these are perceived notions rather than

actual ones.

Fig. 3.1: Research Methodology

Data Collection

• Semi-structured Interviews(Sample
Size=30)

Snowball Sampling Technique

• Surveys(Sample Size=300)

• In-Depth Interviews(Sample
Size=15), Laddering Technique

Identification of the
Problem Creation of Advance

Malware

Testing the Advance
Malware on Available

Platforms

Creation of the
Framework

•Static part

•Dynamic part

•Network part

•Sandbox evasionpart Training and Testing
the Framework with

known samples

Distributive
Execution of the

Framework

Testing the framework
with unknown samples

Final
Results

Conclusion
Future
Scope

Fig.3.2: Survey Questionnaire(1/4)

Fig.3.2: Survey Questionnaire(2/4)

Fig.3.2: Survey Questionnaire(3/4)

Fig.3.2: Survey Questionnaire(4/4)

3.4 Analysis Report of Data Collected

The following table shows the companies covered for interviews and surveys, their locations

and role of respondents.

S. No. Organizaition Location Role

1 IBM
Gurgaon, Noida,
Bangalore Security Delivery Lead

2 HCL New Delhi Manager information Security

3 Punjab National Bank New Delhi Ex. IT Auditor

4 IT Birbal New Delhi CIO

5 EY (Ernst & Young) Trivandarum, Kerala Information Security Analyst

6 BHEJONA powered by Stadhawk Group Gurgaon
Head, Information Security
Operations

7 Tipping Edge Consulting Pvt Ltd. Noida CIO

8 MERI College New Delhi Vice President

9 Sedulity Solutions Pvt Ltd New Delhi, Pune CEO

10 Deloitte Gurgaon Director

11 Internet & Mobile Association of India Noida Cyber Security Consultant

12 Network Solutions Pvt Ltd Bangalore IT Security Lead

13 Mother Dairy Fruit & Vegetable Pvt Ltd New Delhi CIO

14 Cvent Gurgaon Senior Manager, Information Security

15 Blue Pi Consulting Pvt Ltd Gurgaon Software Engineer

16 Dalmia Bharat Group New Delhi Head - SAP Audits and IT Controls

17 Axis Risk Consulting New Delhi Manager information Security

18 Goldman Sachs Bangalore Internal Auditor

19 Canara Bank Bangalore Chief Information Security Officer

20 Supreme Court Of India New Delhi Advocate and Cyber Evangelist

21 WestSide New Delhi Operations Manager

22 Concentrix
Gurgaon, Noida,
Bangalore Head Operations

23 TCS Mumbai IT Security Lead

24 Tech Mahindra Pune Senior Manager, Information Security

25 Mindtree Bangalore Manager information Security

26 Mphasis Bangalore Internal Auditor

27 Rolta Mumbai Information Security Analyst

28 Hexaware Technologies Mumbai IT Security Lead

29 Cognizant Hyderabad Internal Auditor

30 Sonata Software Bangalore CIO

Table 3.2: Companies Covered, location and role of respondents during Data Collection and

Analysis

3.4.1 Type of Organisation

Among all the respondents, the companies that are majorly targeted are Telecommunications,

Technology and Financial/Banking services. Though malicious attacks affect all types of

organisations, however, the above type of organisations offer lucrative resources to the

attackers. Thus these organisations form 77% of our respondent organisations.

 Type of Organisation Count

Telecommunication 9

Technology Services 8

Financial/Banking 6

Education 1

Healthcare 3

Government 1

Retail 2

Total 30

Table 3.3: Type of organisations of respondents

Fig.3.3: Companies Covered, location and role of respondents during Data Collection and

Analysis

3.4.2 Location of oranisations

Though malicious attacks affect entire India, but Delhi, Gurugram and Bengaluru are prime

affected areas. Although Mumbai and Hyderabad are also very important metro cities, 80%

Telecommunic
ation
30%

Technology
Services

27%

Financial/Banki
ng

20%

Education
3%

Healthcare
10%

Government
3%

Retail
7%

TYPE OF ORGANIZATION

of the respondents are from Delhi,

Gurugram and Bengaluru. Some respondents were given online questionnairs to fill, some

filled them in hard copy, printed formats. Some values were taken during interviews.

Location Count

New Delhi 123

Gurugram 113

Bengaluru 77

Mumbai 44

Pune 24

Hyderabad 11

Total 392

Table 3.4: Count of locations of respondents

 Fig.3.4 Location of organisations

3.4.3 Title level held in the organization

Out of all the respondents, 45% were senior level personnel. 35% were middle level and 16%

were executive level. These were decision makers in the organisation and were most affected

during a malicious attack. Also, they were primarily responsible for making security policies

and compliances to be followed by the entire organization.

New Delhi
31%

Gurugram
29%

Bengaluru
20%

Mumbai
11%

Pune
6%

Hyderabad
3%

LOCATION

Title level Count

Executive Level 63

Senior Level 176

Middle Level 138

Lower Level 15

Total 392

Table 3.5: Count of title level of respondents

 Fig.3.5: Title level held in the organisation

3.4.4 Degree of security responsibility

Out of all the respondents, 49% were primary responsible for security in their organisations.

46% held seconadary responsibility while only 8% were those who were not always

responsible for security but only at some times.

Degree of responsibility Count

Primary responsibility 194

Secondary responsibility 167

Sometimes responsible, whenever needed 31

No responsibility 0

Total 392

Executive Level
16%

Senior Level
45%

Middle Level
35%

Lower Level
4%

WHAT LEVEL DO YOU HOLD IN YOUR ORGANISATION ?

Table 3.6: Count of degree of responsibilities of respondents

 Fig.3.6: Degree of security responsibility

3.4.5 Types of malicious activities

There are many types of malicious activities which are encountered in an organization. Out of

these, 53% are hacking activities. 51% of the times, ransomware attacks happen which are

primarily for financial gains. Only 10% damage the software whereas 18% damaged software

and applications. Three years mean 2013, 2014 and 2015

Type of malicious activity Count

Denial of service 9

Damage to hardware 38

Loss of intellectual property 56

Online identity theft 61

Damage to software and applications 66

Ransomware attack 186

Hacking 191

Total 607

Table 3.7: Count of type of malicious activities in respondents organisations

Primary
responsibility

49%

Secondary
responsibility

43%

Sometimes
responsible,
whenever

needed
8%

WHAT IS YOUR DEGREE OF RESPONSIBILITY FOR YOUR
ORGANISATION'S CYBER SECURITY ?

Fig.3.7: Type of malicious activities

3.4.6 Origin of malicious activity

Most of the malicious activity originates through emails either by infiltration(56%) or by

phishing(27%). Ransomware accounts for 52% malicious activity whereas insiders do not

normally breach security.

Origin Count

Insider breach 2

Web browser infiltration 23

Social media phishing 89

Email infiltration 201

Ransomware 188

Email phishing 99

Total 602

Table 3.8: Count of origin of malicious activities in oranisations

9

38

56

61

66

186

191

2%

10%

15%

17%

18%

51%

53%

0 20 40 60 80 100 120 140 160 180 200

Denial of service

Damage to hardware

Loss of intellectual property

Online identity theft

Damage to software and applications

Ransomware attack

Hacking

WHICH TYPES OF MALICIOUS ACTIVITIES WERE MOST COMMON IN YOUR
ORGANISATION OVER THE PAST 3 YEARS?

Fig.3.8: Origin of malicious activity

3.4.7 Percentage of Overall IT budget allocated to cyber security

Mostly companies (74%) allocate less than 10% of the overall IT budget to security. Only

20% companies allocate 10-20% buget to security and in all the respondents there was not a

single company allocating more than 30% budget to security.

% of Total
budget

Count

>30% 0

20-30% 21

10-20% 79

<10% 292

Table 3.9: Percentage of Overall IT budget allocated to cyber security

2

23

89

201

188

99

1%

6%

25%

56%

52%

27%

0 50 100 150 200

Insider breach

Web browser infiltration

Social media phishing

Email infiltration

Ransomware

Email phishing

WHAT IS THE MOST COMMON ORIGIN OF MALWARE ACTIVITY IN YOUR
ORGANISATION?

Fig.3.9: Percentage of budget allocated for cyber security

3.4.8 Level till which devices get affected

When a malicious attack happens, 72% of the times it is contained in the end point only. 28%

of the time the infection spreads to some other systems as well but not to the entire network,

probably due to network segmentation. Only in 8% of the cases, the infection spreads to the

entire network.

Level Count

All devices in the network 30

End point and some more devices 101

Only endpoint 261

Total 392

Table 3.10: Count of level till which devices get affected

0

21

79

292

0%

5%

20%

74%

0 50 100 150 200 250 300

>30%

20-30%

10-20%

<10%

WHAT PERCENT OF OVERALL BUDGET IS ALLOCATED IN YOUR COMPANY
TO CYBER SECURITY ?

Fig.3.10: Level till which devices get affected

3.4.9 Level of concern for cyber security

62% of the respondents believe, organisations have moderate level of concern for security.

Only 32% organisations have a high concern whereas 6% have low concern for security.

Level of concern Count

Low 24

Moderate 244

High 124

No concern 392

Table 3.11: Level of concern for cyber security

30

101

261

8%

28%

72%

0 50 100 150 200 250 300

All devices in the network

End point and some more devices

Only endpoint

TILL WHAT LEVEL ARE DEVICES NORMALLY AFFECTED IN YOUR
ORGANISATION DURING A MALICIOUS ATTACK ?

Fig.3.11: Level of concern for cyber security

3.4.10 Technologies used for protection

Out of the total organisations covered, 86% have anti virus and anti spyware technologies

installed. 77% have email security both in servers and all systems. 74% have updated anti

virus and applications. Only 27%have cloud malware detection and 6% have outsourced

security providers.

Technologies used Count

Outsourced security service provider 22

Regular backup 78

Cloud malware detection 98

Segmentation of the network 109

Firewalls and IDPS 207

Regular system and network scans 221

Updated antiviruses and softwares 268

Email security installation on all devices 280

Anti virus and anti spywares 311

Table 3.12: Technologies used for protection

24

244

124

6%

62%

32%

0 50 100 150 200 250

Low

Moderate

High

WHAT IS THE LEVEL OF CONCERN FOR CYBER SECURITY IN YOUR
ORGANISATION?

Fig.3.12: Technologies used for protection

3.4.11 Approach followed for malware detection

Out of the total respondents, 80% use signature detection approach. Almost same percentage

use behavior (58%) and static (52%) detection.

Approach Count

Network behavior detection 126

Static behavior detection 190

Dynamic behavior detection 211

Signature detection 289

Don't know 3

Total 819

Table 3.13: Approach followed for malware detection

22

78

98

109

207

221

268

280

311

6%

22%

27%

30%

57%

61%

74%

77%

86%

0 50 100 150 200 250 300

Outsourced security service provider

Regular backup

Cloud malware detection

Segmentation of the network

Firewalls and IDPS

Regular system and network scans

Updated antiviruses and softwares

Email security installation on all devices

Anti virus and anti spywares

WHAT TECHNOLOGIES ARE USED IN YOUR ORGANISATION FOR
PROTECTION AGAINST MALICIOUS ATTACKS?

Fig.3.13: Approach followed for malware detection

3.4.12 Resource allocation to cyber security

Out of the total number of respondents, 74% say that their organisations spend less that 10%

of the total resources on security. 19% say the percentage to be between 10-20%. 7% say

their organisations spend 20-30% resourses on cyber security and none of them say their

organisations spend more than 30% resources on cyber security.

Resource allocaion Count

>30% 0

20-30% 28

10-20% 73

<10% 291

Total 392

Table 3.14: Resource allocation to cyber security

126

190

211

289

35%

52%

58%

80%

0 50 100 150 200 250 300

Network behavior detection

Static behavior detection

Dynamic behavior detection

Signature detection

WHICH APPROACH IS YOUR ORGANISATION FOLLOWING FOR MALWARE
DETECTION ?

Fig.3.14: Resource allocation to cyber security

3.4.13 Response time after malicious attack

Out of the total number of respondents, 56% say that their security teams take more than a

day to respond to malicious attacks. 31% say the team responds within a day. 13% say the

response time is less than an hour. Only 5% say it takes more than a week to respond to

malicious attacks.

Response time Count

>= 1 week 18

>1 day 219

<1 hour 51

1 day 122

Total 392

Table 3.15: Response time after malicious attack

0

28

73

291

0%

7%

19%

74%

0 50 100 150 200 250 300

>30%

20-30%

10-20%

<10%

WHAT PERCENTAGE OF TOTAL IT RESOURCES IS YOUR ORGANISATION
ALLOCATING TO CYBER SECURITY ?

Fig.3.15: Response time after malicious attack

3.4.14 Factors hindering cyber security efforts

Out of the total number of respondents, 85% say resource crunch is the main reason hindering

cyber security efforts in their organisations. 80% cite lack of information as the reason. 68%

blame insufficient training to be the reason and a percentage of 45% believe new automated

and AI driven attacks are the reasons and they are not prepared for such advance attacks.

Factors Count

New automated and AI driven attacks 164

Resource crunch 307

Lack of information 288

Insufficient training 246

Others 0

Table 3.16: Factors hindering cyber security efforts

18

219

51

122

5%

56%

13%

31%

0 50 100 150 200 250

>= 1 week

>1 day

<1 hour

1 day

WHAT IS THE AVERAGE RESPONSE TIME OF YOUR ORGANISATION AFTER
A MALICIOUS ATTACK ?

Fig.3.16: Factors hindering cyber security efforts in the organisation

3.5 Key Understandings

The key understandings that we have got after analysis of the collected data are as follows:

1) Organisations allocate very less percentage of overall budgets to cyber security.

2) Organisations face a resource crunch when dealing with advance malware.

3) Security persons are sometimes unaware of impending malicious attacks and

futuristic attack mechanisms.

4) Lack of regular training amongst employees lead them to become weak against

malicious attacks.

5) Attackers are using advance AI and ML techniques for creation of malware whereas

the current security mechanisms are unable to handle them.

6) The average response time of security team is very high which leads to infection

spreading in the entire organization.

7) The level of concern for cyber security in organisations is low to moderate.

8) Organisations are not using a combined approach of static, dynamic, network and

sandbox evasion for detection of malware.

9) Centralized security systems make mechanisms slow.

0

164

307

288

246

0%

45%

85%

80%

68%

0 50 100 150 200 250 300 350

Others

New automated and AI driven attacks

Resource crunch

Lack of information

Insufficient training

WHAT IS THE MOST IMPORTANT FACTOR HINDERING CYBER SECURITY
EFFORTS IN YOUR ORGANISATION ?

3.6 Objectives of the Study

Internet is full of versatile malware, shellcode is the most common technology used by

hackers nowadays. Intrusion detection system is able to mitigate the risk level up to certain

limit because it relies on signature detection methodology. That‘s why the new version of

shellcode is polymorphic due to which to detect the root cause is almost impossible in the

existing detection technique. Due to such scenario we have identified the research gap in the

current research and have proposed a framework to detect and mitigate untraced polymorphic

shellcode.

3.6.1 The Theoretical Framework of the Present Study

We basically have to design a framework which can attack a shellcode from four different

angles. We have to do a static analysis of shellcode, then a dynamic (behavior) analysis, then

study its network footprint and finally try to see if it evades the sandbox. Then we aggregate

the result obtained from these four stages and give the final result.

3.6.2 Conceptual Model Framework

Our conceptual model framework is a design created with the aim to identify and remove

risks of polymorphic shellcodes. It uses advance machine learning algorithms for detection. It

is going to attack a shellcode, in fact any type of malware from 4 sides-static, behavior,

network and sandbox evasion:

1) Static analysis: Means that we will study the static behavior of the sample and match

it with already given behavior in our existing databases. If it matches with a malware

we calculate the static probability of the sample for maliciousness. The machine

learning model will be trained and tested with huge, ever increasing data.

2) Behavior Analysis: There are advance malware like polymorphic and metamorphic

malware which change their signatures quite often. In that case, we generally study

the behavior of the sample to see if it matches with the behavior that normally

malware families show. If it does, we again calculate the behavior probability of the

sample for maliciousness.

3) Network Analysis: Now we will see the network behavior of the sample to match it

with the alerts that network monitors generate. If we see significant number of alerts,

we again calculate the network probability of the sample for maliciousness.

4) Sandbox Evasion Detection:Normally, an intrusion detection system will run a

doubtful program in a controlled environment which is normally a sandbox. This

environment will have all the resources required got the sample to run and all

permissions are also given to the file. However, it is not allowed to run in an actual

system, it is only run in a virtual system. This is a smart way to know the true

characteristics of the sample and judge whether the file is malicious or benign before

it enters the actual system environment. However, there are advance malware which

are created to stay dormant whenever they detect that they are running in a virtual

environment. There are many techniques which are applied for the detection of

sandbox. Thus they try to evade a sandbox whenever they experience one. Therefore

it is with surety one can declare a sample as a malware if it tries to evade a sandbox.

This detection will give us a Boolean value of 0 or 1.

5) Final Detection: From all the above four steps, we are going to get four probabilities.

An average of these four probabilities is calculated to get the final detection

probability. A threshold probability is calculated for the model according to the

amount and variance of the data it currently has. A sample is declared as malicious if

its combined average probability is above the threshold probability of the model. It is

benign if the probability is lower. However, if the probability is equal to the threshold

value, the sample is termed as unknown and is sent to the model again for further

analysis. The model is cyclic in nature and every new sample is used as data for

training of the model to make it more effective. Therefore it will always be in an

updated state. It will have information about all new malwares all the time.

6) Decentralized Environment: The whole model is going to work in a decentralized

environment. Thus the model is very resource efficient. Also because the detection

mechanism is completely decentralized, therefore, every node is master node in the

network and there is no central authority which can work for selfish gains or

unrealistic profits.

7) Blockchain network: All the transactions for detection of malware are logged in

Blockchain network and the data about the malwares which is stored in each node is

stored in the form of blocks in the block chain. Thus this database is immutable,

secure, reliable, distributed and always updated. Thus every node participating in the

malware detection model gets an always updated data at a very cost effective rate with

the latest of machine learning technology.

8) Balancing the model: the model has to be always in a balanced state so that is never

biased with more of clean or more of malicious data. Whenever we find such a bias in

the model according to our calculations, we either increase the clean samples or

malicious samples for training of the model.

Figure 3.17 Framework for Detection and Mitigation of Polymorphic Shellcode

3.6.3 Objectives of the Framework:

To identify and the mitigate risk factors occurring due to the execution of polymorphic

shellcode.

1) Injecting the binaries in the code caves of existing (PE) application by using binding,

embedding and stubs methodology. This will create polymorphic shellcodes for our

study.

2) Understanding polymorphic and metamorphic techniques of creating advanced

malware.

3) Understanding the working of polymorphic shellcode including the attack

methodology, hiding methodology replication methodology and metamorphosis.

4) Working with live ransomware samples to understand their behavior and attack

methodology.

5) The static analysis, behavior analysis, network analysis and sandbox evasion detection

of polymorphic shellcode on the host as well as on the network.

6) Proposing the framework for the detection and mitigation of untraced polymorphic

shellcodes using advanced machine learning techniques.

7) Proposing how this framework would work best in a decentralized environment.

8) Proposing blockchain network usage for recording and logging all transactions to

make them secure, updated and reliable.

9) Training the framework with already known samples.

10) Testing the framework with live samples from the wild.

11) Analysis of the proposed framework with its limitation and future scope.

3.7 Experiments to assess Polymorphic shellcode threat:

1. Exp 1: Creating a Shellcode by Smashing the Stack

2. Exp 2: Injecting shellcode in PE file and making it polymorphic thus making it

undetectable.

3. Exp 3: Getting privileges after infecting a file with polymorphic shellcode, then

running it through antiviruses to get results.

3.7.1 Experiment 1 : Creating a Shellcode by Smashing the Stack

Purpose- Exploiting a program having a buffer overflow vulnerability. Overflowing the

buffer by giving a very large input. Then overwriting the ‘Return Address’ to point to a

malicious shellcode which will then give admin access of the system to us.

Hypothesis- The hypothesis is that in some vulnerable programs where bounds checking of

the buffer is not strictly performed, the buffer can be overflown to point to the malicious

code. In case, the return address cannot be exactly determined, NOP instructions are added

before the malicious code.

Explanation- Buffer overflow exploits are accomplished by mangling the way that C handles

memory allocation. When a program in C begins, or starts a function, it allocates a stack of

memory for that particular piece of the program. This stack consists of space for variables

and data, as well as pointers to return flow control to the proper place in the stack. This

allows stacks to grow dynamically as programs fork and carry out subroutines and other

processes. This is efficient because the stack doesn't have to be initialized at the start of the

program with room for every possible execution path of the program. Instead, as the program

runs, memory is allocated on a per needed basis.

Programs don't run in a vacuum, however, and one process can't be allowed to own the stack

entirely until its completion. For this reason the return pointer on these individual pieces of

the stack (called stack frames) is critical, so that at the end of the frame execution the

processor can return to the original programmatic instructions and continue the program.

Because these frames are allocated dynamically and because they are of a fixed size, if a

programmer is not careful it becomes possible to pass in more variable data than is reserved

on the stack. For instance, if the following represents a frame:

| data |

| data |

| data |

| data |

| return pointer|

Figure 3.18 Representation of a Stack Frame

You can see that there are 5 'slots' for data in the frame; the sixth slot is for the return pointer.

What happens if the program tries to write 6 'slots' of data into the frame? An exception

probably, but if the attacker is careful they could arbitrarily send the pointer to a different

location in memory, perhaps a location that contains malicious code.

Procedure- The first step when we experiment with shell codes is to create a vulnerable

program so let's create one in c

#include<stdio.h>//lets include some basic library files

#include<string.h>

#include<stdlib.h>

// IN int main function in gcc the second argument is to accept the //arguments

// As you can see there are no checks made which processing the arguments // hence the

program is vulnerable

intmain(int argc,char*argv[])

{

char buffer[256];// array of 256 characters is pretty standard

 strcpy(buffer,argv[1]);

 printf("%s\n",buffer);

return0;

}

Figure 3.19 Creating a vulnerable program

Let’s compile the following code with the following command

gcc vulnerable.c -o vuln -z execstack -fno-stack-protector

Make sure to disable some stack protection of gcc compiler that’s why we have used

some parameters

-z execstack -fno-stack-protector .

After compiling the code successfully we can execute the program in linux with / operator

followed by the ‘.’operator as -

./vunl helloworld

Output of the following program will be the argument that was entered during the

execution of the program

Helloworld

The most effective way to do this is to pass in malicious bytecode as part of the 'data' and

then overwrite the return pointer with the location of the malicious bytecode. Even this

process is tricky though, because the return pointer must point to the exact location of the

exploit code or the code will fail. For instance, if the pointer lands in the middle of the

exploit code it won't execute properly. A neat trick is to pad the start of the exploit

shellcode with NOP (no operation) instructions. When the machine encounters a NOP it

simply moves to the next instruction. If there are a series of NOP instructions preceding

the malicious shell code then the pointer merely has to hit one of them, and then the

instructions will cascade down the NOP's to the shellcode. This technique is called a NOP

sled.

Now before we try to crash the program with our infamous buffer overflow attack there is

a program calledulimit which restrict the length of the argument that is being passed.

A simple way to check what the size ulimit is allows is just entering the ulimit in your

linux terminal.

Ulimit

Unlimited

If it returns unlimited everything will works fine otherwise go to the following link to set

the limit of ulimit

The first program is crashed using the following command.

./vuln $(python -c 'print "h"*300')

The output is

hhh

hhh

hhh

hhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Segmentation fault (core dumped)

Figure 3.20 Output after crashing the program

As you can see we have used python to crash the program and after getting and printing

‘h’ 256 times it gave segmentation fault error.

There are two points worth noting:

1. We have used a little python trick to generate ‘h’ 300 times but one can do it

manually too but it will take a lot of time.

2. We can count how many times it has printed ‘h’ before it gets crashed

So we have learned lately how to crash any program and smash the stack of that program

if it suffers from buffer overflow vulnerability.

Let’s try to run gdb through our program and see where it crashed but first run the

following command

ulimit -c unlimited

Then run

gdb --core core

gdb--core core

Whenever a core is dumped during the execution of a program it generate a core file with

the name of core which can be debugged with the help of gnu debugger AKA gdb.

Output of gdb in one system is as follows. It may differ for others -

Figure 3.21 Output of GDB

Now few things need to be explained over here

First of all there is a command in the gdb called i rwhich provides us the information

about the system registers

As we can see a register called rbp at 7th position which means register which contains

value of the base variable in stack this case its 0x6868.

Now a command x/20x $rsp is entered.

Here rsp is the register contains the pointer to the stack variable and x/20x is the way to

print the information.

Now as it can be seen in the above screenshot after printing the information of stack

pointer we got

0x7ffe8ae94af8: 0x68686868 0x68686868 0x68686868 0x68686868

0x7ffe8ae94b08: 0x68686868 0x68686868 0x68686868 0x68686868

0x7ffe8ae94b18: 0x68686868 0x00000000 0x00000000 0x00000000

0x7ffe8ae94b28: 0x1d6a8fd3 0xecdf79e3 0x00400470 0x00000000

0x7ffe8ae94b38: 0x8ae94bd0 0x00007ffe 0x00000000 0x00000000

Figure 3.22 Information of stack pointer

Now after doing this we got the address where our core was dumped we are going to

make the note of this address for future purpose

0x7ffe8ae94af8

After that we have to find the beginning of our stack so we have to use some sort of brute

force approach here so let’s execute another gdb command

 x/20x $rsp -300

0x7ffe8ae949cc: 0x00007ffe 0x00400470 0x00000000 0x004005ad

0x7ffe8ae949dc: 0x00000000 0x8ae94bd8 0x00007ffe 0xa50fe8f6

0x7ffe8ae949ec: 0x00000002 0x68686868 0x68686868 0x68686868

0x7ffe8ae949fc: 0x68686868 0x68686868 0x68686868 0x68686868

0x7ffe8ae94a0c: 0x68686868 0x68686868 0x68686868 0x68686868

The program has started finding the values although to find the actual address.

x/20x $rsp -312

0x7ffe8ae949c0: 0x00000000 0x00000000 0x8ae94af0 0x00007ffe

0x7ffe8ae949d0: 0x00400470 0x00000000 0x004005ad 0x00000000

0x7ffe8ae949e0: 0x8ae94bd8 0x00007ffe 0xa50fe8f6 0x00000002

0x7ffe8ae949f0: 0x68686868 0x68686868 0x68686868 0x68686868

0x7ffe8ae94a00: 0x68686868 0x68686868 0x68686868 0x68686868

0x7ffe8ae949c0: 0x00000000 0x00000000 0x8ae94af0 0x00007ffe

0x7ffe8ae949d0: 0x00400470 0x00000000 0x004005ad 0x00000000

0x7ffe8ae949e0: 0x8ae94bd8 0x00007ffe 0xa50fe8f6 0x00000002

0x7ffe8ae949f0: 0x68686868 0x68686868 0x68686868 0x68686868

0x7ffe8ae94a00: 0x68686868 0x68686868 0x68686868 0x68686868

Here the address of beginning of stack is found.

Figure 3.23 Finding beginning of the stack.

So now we got the address of the end and beginning of our stack time to do some math

and find out how much big our buffer is now because Linux shell is too powerful we can

do that in single command

echo 'ibase=16;' $(echo '7ffe8ae94af8-7ffe8ae949f0'|tr "a-z""A-Z")|bc

This command is understood as follows:

Echo is used to output stuff to standard output and ibase=16 is used to tell bc (bash

calculator) that we are trying to enter base 16 value then again we are subtracting the

address that we have noted previously after removing 0X from them also we changed the

cases from lower to upper by piping the output of echo command to another tool called tr

(transform cases) and finally piped it to bc.

The output is:

264 which is the size of our stack

Observation & Results- In the experiment, it was observed that a buffer in a vulnerable

program can indeed be overflown and the return address can be overwritten to point to the

malicious code. Once we are able to reach the malicious code, we can get the admin

rights of the attacked machine and thus can use the machine for any malicious purpose.

3.7.2 Experiment 2 : Injecting a polymorphic shellcode in PE file

Purpose:Injecting a process executable file from the Windows binary file with a

polymorphic shellcode and scanning this malicious file against a list of antiviruses.

Hypothesis: A hypothesis can be formed that since many antiviruses do not have the

required capability to detect dynamically generated polymorphic malwares, thus more

than fifty percent of the antivirus software will not be able to detect it.

Explanation- Once a PE file is injected with a polymorphic shellcode, it will become

very difficult for the antiviruses to detect it. Signature matching fails and polymorphism

is dynamic. In this experiment, we are going to use a tool called Shellter. Shellter is a

dynamic shellcode injection tool, and the first truly dynamic PE infector ever created. It

can be used in order to inject shellcode into native Windows applications (currently 32-bit

applications only).

Shellter is capable of re-encoding any native 32-bit standalone Windows application.

Since we are trying to avoid AV detection, we need to avoid anything that might look

suspicious to AV software such as packed applications or applications that have more

than one section containing executable code.

Shellter is capable of taking any of these 32-bit Windows applications and embedding

shellcode, either your custom payload or one available from such applications as

Metasploit, in a way that is very often undetectable by AV software. Since you can use

any 32-bit application, you can create almost an infinite number of signatures making it

nearly impossible for AV software to detect.

The shellcode can be something yours or something generated through a framework, such

as Metasploit. Shellter takes advantage of the original structure of the PE file and doesn’t

apply any modification such as changing memory access permissions in sections (unless

the user wants), adding an extra section with RWE access, and whatever would look

dodgy under an AV scan. Shellter uses a unique dynamic approach which is based on the

execution flow of the target application, and this is just the tip of the iceberg. Shellter is

not just an EPO infector that tries to find a location to insert an instruction to redirect

execution to the payload. Unlike any other infector, Shellter’s advanced infection engine

never transfers the execution flow to a code cave or to an added section in the infected PE

file.

Procedure- After firing Shellter in Kali Linux, we need to select from among its various

modes: Automatic or Manual (A/M/H). After that, Shellter asks for the location of the PE

file. Here we can use a PE file from the list of readymade Windows binary files or use our

own executable file. We choose ’vncviewer.exe’. Then it asks you to enable the ‘Stealth

Mode’. This mode makes the file polymorphic. Then we will ask whether we want to use

a listed payload or custom? This is the framework to be used for controlling the host. We

select ‘L’. Then it asks to ‘select the payload by index’. There are many options listed

say:

1. meterpreter reverse TCP

2. meterpreter reverse HTTP

3. meterpreter reverse HTTPS

4. meterpreter bind shell

5. reverse shell TCP

6. bind shell TCP

7. WinExec

We choose ‘1. meterpreter reverse TCP’ to get reverse shell.

Then it will ask for LHOST. Enter the local ip of your system. You can find the local ip

by using command ‘ifconfig’.Next you need to enter LPORT. Enter anything in lport but

the traditional port is 4000 and 4444 but you are free to use any port. Once you are done

shellter will do the rest of the job itself.

The file which is created is run through NoDistribute which is a scanner which scans your

file through 35 antivirus software and tells as to which one detects malicious content in

your file.

Observations & Result- When the infected PE file was canned through 35 antivirus

software, only one antivirus was able to detect it out of 35. This goes on to prove that

once we make a polymorphic shellcode, then many antiviruses today do not have the

required capability to detect malicious content in the file.

Figure 3.24 Output from NoDistribute with our created shellcode.

3.7.3 Experiment 3: Getting privileges after infecting a file with

polymorphic shellcode.

Purpose: Writing an experiment to infect a PE file and then getting privileges of the

attacked system through this file and showing that it remains undetected by many

antivirus software.

Hypothesis: Using this experiment we try to prove that it is possible to infect any process

executable file with polymorphic shellcode. The infected file may then be used to attack a

system and get all privileges of the system. After that many attacks can be performed on

the compromised machine.

Explanation: Polymorphic shellcodes are dynamically generated and thus bypass simple

signature matching antivirus systems. The dynamism and the latest techniques of

polymorphism, helps the malicious software to evade many antivirus systems. Thus it

becomes simple for the polymorphic shellcode to attack a compromised machine and get

all privileges of the machine. Various attacks can then be performed on the machine like

keylogging, camera hacking and obtaining information about system files.

Procedure: Here in this experiment, we will take a Windows binary file called

radmin.exe. Since we should not meddle with an actual Windows file, therefore, we copy

it in root. After firing Shellter, it asks for the operation mode. We choose Auto. In the PE

target, we give ‘/root/radmin.exe’. We are however not limited to these binaries. Before

this we have done ‘ifconfig’ and we know the IP address of our machine is 192.168.0.7.

Shellter will infect this PE file.

 It will also ask if you want the ‘stealth mode’. This mode makes the file polymorphic.

Then we will ask whether we want to use a listed payload or custom? This is the

framework to be used for controlling the host. We select ‘L’. Then it asks to ‘select the

payload by index’. There are many options listed say:

1. meterpreter reverse TCP

2. meterpreter reverse HTTP

3. meterpreter reverse HTTPS

4. meterpreter bind shell

5. reverse shell TCP

6. bind shell TCP

7. WinExec

We choose ‘1. meterpreter reverse TCP’ to get reverse shell. Then it verifies the infected

file.

Then we copy ‘radmin.exe’ using pen drive to windows desktop. Enable the pen drive in

Kali linux. Then copy the file in it. Then disable it in Kali. It will automatically get

enabled in Windows. Copy the file in Windows Desktop.

Figure 3.25 Copying ‘raadmin.exe’ file on desktop.

Set up metasploit in Kali using the command ‘msfconsole’. Set lhost to 192.168.0.7. Set

Lport to 1. Same as in the exploit. It can be 4000 or other port number also.

Then fire the exploit. Now we get the reverse shell. If we write ‘sysinfo’, we get remote

system’s information. We can get a screenshot or click a photo using webcam. Or write

‘getPrivs’ to get privileges and probably even shut down the system. Just write ‘help’ to

know all options’. Then exit the msf.

Figure 3.26 Getting system information using infection through shellcode

The file was scanned by 36 antiviruses out of which only 10 were able to detect that it

was malicious. Rest all including QuickHeal and Kasperskey were not able to detect it.

Name radmin.exe vncviewer.exe

Threat Level High Medium

Category Polymorphic shellcode Polymorphic shellcode

Propagation
Method

Downloaded by users considering it
as legit software

Spam emails

Behaviour Degrades system performance
significantly.

 Can cause system to crash or
shut down abruptly.

 Modifies system.

 Credential stealing.

 Consumes system
resources thus
slowing down the
system.

 Injects its code into
all running
processes and
spreads further.

 Logs keystrokes.

Figure 3.27 Threat Reports of two advance malwares created during testing

Figure 3.28 Output of Nodistribute while detecting ‘raadmin.exe’ shellcode

Observation & Results: Using the experiment, it was observed that using a dynamically

generated polymorphic shellcode, injected in a PE file, the attacker was able to gain full

access to the compromised machine and could do keylogging, getting the camera access

or getting all system information and access to important system files of the compromised

machine. This infection can easily bypass majority of the common antivirus systems

especially those that only employ simple signature matching techniques.

3.8 Significance of Research

Cybercrime and cyber espionage are the biggest threats to businesses today. Not only are

big to small organizations getting affected from it but individuals all over the world are

also incurring losses. Hacking started as a fun activity and has now developed as a fully

funded business. It’s used widely by rival organizations to either keep a track of the other

organization’s business or ruin it partly or completely. Countries are using it for cyber

warfare and cyber espionage against other countries.

3.8.1 Need of the Study

It is imperative that a check is put on malicious activities. The biggest threat, cyber world

if facing today is that of ‘Polymorphic Shellcodes’. These are shellcodes which are

polymorphic in nature, meaning that they change their look but have the same behavior.

This makes them difficult to detect by Signature based detection systems. Some

polymorphic shellcodes are also capable of changing their behavior at runtime. Thus

Anomaly based detection systems also fail here.

All the current solutions which are exiting today have a some lacunas in common:

1. Signature Matching-Most of them focus on malware detection by signature matching

and pattern recognition. Malware authors are now smarter than ever before and

signature detection is of no use due to techniques like polymorphism,metamorphism

etc.

2. No behavioral analysis- Some of them do not take into consideration, the of

malware, like file behavior, network behavior and other dynamic behavior of the

file to be analyzed.

3. Updating time-Another problem that current antiviruses face is that they take a lot

of time to analyze the malware and then update the definition of antiviruses into

user’s device.

4. Danger to user’s privacy- The antivirus companies are sometimes a danger to the

user’s privacy as they collect data from user on regular basis and use that to make

money. The normal user acts only as a data feeder so that these antivirus

companies can protect enterprises.

5. Centralized Antivirus Companies-All the antivirus organizations are centralized in

nature. This implies that a lot of computation power is required and very few

computers are available to provide it. If a distributed system could be designed

where all systems in the network contribute to the work of malware detection,

things will become faster and more efficient.

Note that the recent ransomware attacks by WannaCry and Petya can prove the above

statements, not to mention that none of them were actually polymorphic or metamorphic.

3.8.2 Benefit of the Study

Our proposed model will take care of all kinds of polymorphic shellcodes. It consists of

the snapshot technique and the revert-back model. It takes snapshots of the memory and

processes and keeps them in the database to understand the working of the malware. Next

time when the same malware shows up, we have the list of its behaviors and thus can

easily detect it. After that we restore the memory and the processes back to their original

state. Machine learning and artificial intelligence are further incorporated to make the

work more efficient and detect any new malware also. Decentralized currency was

another incredible innovation recently and it led us to the new system of bitcoins.

Bitcoins are great but what makes them greater is the technology on which it works. The

technology is known as blockchain and blockchain has so many other applications other

than just decentralized currency. Here we use the blockchain concept to harness

distributive power of all the systems in the network so that a large amount of computing

power is gained with very little cost and everyone in the network is benefitted.

Our work is highly significant both in the present and in the future. Hackers have recently

used shellcodes in WannaCry and Petya Malwares. The next step is to use polymorphic

shellcode attack. We must be ready for them and our works makes us ready. Also we are

proposing a framework of policies for Intrusion Detection and Prevention Systems

against such malware to harden them so that they can tackle any kind of threat.

3.9 Designing the Framework (PosDeF)

We are first going to design the framework conceptually using flowcharts. Then we will

develop algorithms for it. Finally we would create programs to develop a complete, workable

model which can detect any kind of malware with good accuracy.

3.9.1 Design Methodology

This is Applied, Quantitative Research and the research design is Experimental in nature.

Various kinds of experiments would be conducted to prove the correctness of our proposed

Framework for detection and mitigation of untraced polymorphic shellcodes.

3.9.2 Objectives:

1. Understand the various types of malwares, especially polymorphic shellcodes present

in the wild today.

2. Build a machine learning model for the detection of polymorphic shellcodes.

3. Train the model using both malicious and legitimate samples.

4. Do static analysis, behavior analysis, packet analysis and disassembly of the sample in

the model.

5. The machine automatically finds out the relevant features for the detection of

polymorphic shellcode.

6. Test the model with known samples.

7. Establish a cloud network for distributive analysis in the model.

8. Maintain a ledger to keep a track of amount of computation given by each virtual

node.

9. Rigorous testing of the model to ensure accuracy.

3.9.3 PosDeF Design

Based on recent innovations we have designed a decentralized system of malware detection

in which no central antivirus company is involved and everybody in the network is

contributing and is getting benefitted from this system. We use the latest techniques to fight

the latest malware, i.e.

1. Machine Learning(Supervised)

2. Deep Learning

3. Distributive Computing

4. Ledger maintenance using Blockchain networks

Machine learning is an upcoming field in computer science[26]. It is an application of

artificial intelligence that gives the system, a capability to automatically learn and improve

from experience without being explicitly programmed. It is basically a collection of programs

meant to learn from examples, also called as ‘data set’. Say we want to teach an application

to recognize handwritten characters. Now there are two ways of doing it. First is to write

down a set of rules for each character specifying all different shapes and styles a character

can have. Add to it huge variations in human handwriting. Also there would be separate rules

for printed and cursive characters. Writing of such programs would be a humongous task for

a programmer and it would also require tremendous computing power.

The second way is to prepare a data set having many different examples of handwritten

characters and the computer, by itself learns the rules that best identify a character. This way

of learning is called supervised learning. Machine learning is of two types: supervised

Learning and Unsupervised Learning.

Supervised Learning: Here labeled training data is provided to the system and then it tries to

classify the unknown sample.

Unsupervised Learning: Here we do not provide labeled training data and ask the system to

cluster the sample in n number of clusters. Unsupervised learning is quite difficult as it is

very hard to analyze how system classifies data as it does not output the parameters on which

it clusters the data.

Computer science is changing very fast and according to some statistics, Artificial

intelligence has arrived 10 years prior to the expected time. Researchers have shown an

incredible success rate of detecting malwares using machine learning although the problem

with machine learning is that no matter how much data you train the machine learning

algorithm with, it’s not sufficient and also it takes huge amount of time to train a large dataset

using machine learning [27]. However recent innovations like deep learning and cheaply

available gpus have made machine learning really fast but still the time to train the model

increases linearly as the size of dataset increases.

3.9.4 Proposed Working of PosDeF

In our approach, we first use supervised learning. We have a machine learning algorithm. It

would be given some binary files as a training data set. Although most of our dataset will be

contributed by the users of network, we have provided some initial dataset which comprises

of malicious data from virus-share database, all .exe files from clean Windows installation

and .exe files of popular software from filehippo database as a clean source of data. After

getting trained, the algorithm would be given an unknown sample. Through the knowledge it

has attained, it would be able to recognize the malicious file. The algorithm can be fine-tuned

with better training samples. The whole process can be shown using a flowchart as below.

Figure 3.29 Flowchart to demonstrate proposed working of PosDeF.

Figure 3.30 Machine Learning Stub

Figure 3.31 Balancing the Training-Testing Dataset

Sandbox

Evasion

Let’s understand the working of PosDeF step-by-step:

3.9.4.1 Collection of Data for the Formation of the Training Set

 For creating the training data set, we have to have large number of different files,

some malicious and some benign. Having random data set is very important in

supervised machine learning algorithm for test model formation. This algorithm is

used here. Supervised machine learning adaptively learns from data. It does not need

a specific set of rules given by the programmer. It actually learns by examples. We

must take care that the data set which is used for training the data must be carefully

chosen. It must be an unbiased and random set. If the examples are collected by

random sampling only then can an accurate model is generated. In case our training

data set is biased or partial, the resulting model would also be incorrectly biased.

Therefore, for the system to be fair, not only should one have more data samples for

fine-tuning of the model, but having the ‘right’ samples is the most important

precedent.

We have taken .exe and .dll files for training. For getting the legitimate files we have

collected all binaries from Windows xp, Windows 7 and Windows 2008 which

resulted into around 40000 clean files. More clean files can be obtained from trusted

sites like FileHippo.com. For getting malicious files, we have used VirusShare.com

dataset which contained around 96000 files. Other malicious files can be obtained

from Contagio.com, malshare.com, scumware.com etc. Also polymorphic engines

like ADMutate, Clet and PhatBot can be used to create polymorphic shellcodes.

In all we have trained our model with around 1.3 lakh files for static analysis and

2000 for dynamic, network and Sandbox evasion analysis. For clean files we have

extracted 1000 exe files from clean installation of windows 7. We have used

virusshare_00302.zip file as the collection of malwares we have randomly extracted

1000 files from the above zip.

3.9.4.2 Training with our initial dataset

This step makes our model useful to some extent. We have used the dataset provided

from virushare.com containing thousands of malicious samples and all files from a

clean Windows 7 installation (around 2500 files). All these files are run through the

system and the feature vector which is formed after following the steps in the model is

given to the system labeled as malicious or benign. Through this, the model learns

that which features distinguish a malicious file from a benign one.

3.9.4.3 Profiling the files

Profiling here refers to extracting information from files which can be useful in

malware detection. It has following sub steps:

 Static analysis –static analysis here refers to the act of extracting

information based on file properties without running it. This is the

quickest way to classify the file but not always accurate. We have

extracted a total of 52 parameters using a python module called PE

Analyzer 2.

 Behavior analysis –Behavior analysis refers to the act of extracting

information at runtime. We have extracted api call graphs, files created

and affected at runtime etc. We have used Cuckoo for this.

 Packet analysis – In this module we are doing the analysis of network

traffic of a particular file using tcpdump and snort.

 Sandbox Evasion Analysis – If the sample is trying to evade the

sandbox, we consider that this is a sort of malware behavior.

3.9.4.4 Convert the dataset into machine learning compatible format

This step is about converting the raw data into structured data that can be understood

by machine learning. We have normalized various parameters using various available

techniques like ngram [28] and then used csv format as our dataset format.

3.9.4.5 Pre train the model

Pre training here refers to finding the variance in parameters so that the training time

can be optimized.

3.9.4.6 Train the dataset using various Machine Learning Algorithms

We have tried various algorithms for training of dataset and compared various

approaches and according to the data available, we will use a suitable machine

learning algorithm.

n all the stages of the model, be it static analysis, dynamic analysis, packet analysis or

sandbox evasion, the basic steps remains the same. The underlying idea is shown in

the figure below:

 Analysis: We analyze the dataset to find out which features are relevant to our

analysis and whether those features are in a usable format.

 Feature Extraction: If features are not in a compatible format, they are

converted into a compatible format.

 Feature Selection: All relevant features, which are required for the algorithm,

are selected and the irrelevant features are dropped.

 Feature classification: All features are ranked according to their importance

for prediction of maliciousness.

Figure 3.32 The underlying steps in all four analysis parts.

3.9.4.7 Iteratively scan all available files

Since our model is based on distributive properties we will take advantages of our

available nodes and constantly improve our model. Yara and Clamav are open source

anti malwares available. We will scan the file and if it’s detected by existing

definition of yara and clamav then label is as malicious. If it’s not detected by existing

solution then let’s give our trained model a try. We will set the malicious threshold

value based on our research. For example, if the calculated probability is below 5%

then we will mark it as clean and if it is 95% then we will label it as malicious; if it’s

in the middle of our lower threshold and higher threshold then we will leave it

unlabeled as of now. Also if the file is proved to be clean then we will update the

ledger of clean files and would not scan the file again but will surely fingerprint it. If

the file is proved to be malicious then we will update our distributive ledger with the

hash of that file which will act as our always-updated virus definition and will work

much faster than current virus definition solutions.

Concept of CVE’s: CVE stands for Common Vulnerabilities and Exposures. It is a

publicly available database which provides a reference method for a list of public

security threats. Most of the antimalware companies get their data from this list. We

also use these CVE in the form of analysis by open anti malware systems like

ClamAV and Yara. After analyzing our dataset, if we are able to find a new security

threat, we update the CVE so that everyone knows of this threat almost immediately

at the same time. We also have a reward system described below involving CVE’s.

3.9.4.8 Reward the user

Since in our model there is no central authority for which we have to pay our nodes.

Users are everything in our network. They are the data providers and they are the ones

who will benefit from model. So they must be the ones who should get rewarded for

their contribution of bandwidth and computation power. The rewards can be in the

form of points. These points can be in the form of CSR points for a company which

they can use in any way that they want. Individuals can be awarded with getting their

names in CVE files indicating that they helped finding a particular vulnerability and

removing it. Later on the points can be used for giving any form of reward and

recognition.

3.9.4.9 Balancing the dataset

There can be unbalancing issues with our dataset which can later be turned into

undesirable results there can be two cases:

More clean files than malicious – In this case the solution is simple. We will

block the extra clean files to go into the training phase and delay them for the

next time (whenever required).

More malicious files that clean – We can perform the same step as above but

this time we can do it in a better way. In our model, we are assuming that all

executable files hosted on filehippo are clean so we can download some .exe

files from filehippo and label them as clean which will further increase the

accuracy of our model.

3.9.4.10 Endless loop

The whole process explained in our flowchart is continuous and will never end as

when we will get more and more nodes, more and more files will be there and more

and more computation power will be there so our model keeps on improving until it

becomes better than existing solutions and there is no end to it.

3.10 Algorithms used for Building PosDeF

Here we present the various algorithms that we have created for building of the framework.

We start by giving the final algorithm followed by the stub algorithms of static, dynamic,

network analysis and sandbox evasion.

3.10.1 The Final Algorithm

The final framework is created using an algorithm which takes the various parts like Static

analysis, Behavior analysis, Packet analysis and Sandbox evasion as stubs. The final

algorithm predicts the possibility of maliciousness of the sample by calculating the average of

probabilities predicted by all the stubs.

Before this, a threshold value of maliciousness is calculated according to the data set that we

currently have for training the framework. If our combined predicted value is lower than the

threshold value then the sample is considered clean. If it is above the threshold value, the

sample is considered malicious. However, if it is equal to the threshold value, the sample is

considered unknown and sent for detection again.

3.10.1.1 Algorithm for Training of PosDeF

Let us assume that D is a multifactor set

D={a U b U d U e}

Where:

aselected features of static analysis

bselected features of dynamic (behavior) analysis

cselected features of Snort analysis

esandbox evasion (Boolean 0 or 1)

We calculate four probabilities of maliciousness for a sample

Pa= Static Probability of maliciousness

Pb= Behavior Probability of maliciousness

Pc= Snort Probability of maliciousness

Pe= Sandbox Evasion Probability of maliciousness

Cp=Combined Probability

Tc= clean.threshold.percentage

Tm=malicious.threshold.percentage

Then we calculate combined probability of maliciousness for the sample by calculating

average

Cp=(Pa+Pb+Pc+Pe)/4

R= Result after testing

N=Total number of samples

Nc= Number of clean samples

Nm= Number of malicious samples

Now, let’s see when a sample is passed from our model-

Threshold calculations

 4

Tc=∑ Pi { R≠ Malicious}/n

 i=1

 4

Tm=∑ Pi { R≠ Clean}/n

 i=1

3.10.1.2 Algorithm for Threshold Calculation for PosDeF during

 the training phase.

Say Sample[] is our array for training the model. It has both clean and malicious files.

FindThresholdAlgorithm

{

Nm0;

Nc0;

 //Initially we set number of clean and malicious samples to 0

Tc0;

Tm0;

//Initially set the threshold of both clean and malicious samples to 0

for (i=0 ; i<=Sample.length ; i++)

{

 Sample[i].Pa=Calculate.Static.Probability (Sample[i]);

//Calculate.Static() is a function which calculates static maliciousness probability for

Sample[i]

 Sample[i].Pb=Calculate.Behavior.Probability (Sample[i]);

//Calculate.Behavior() is a function which calculates Behavior maliciousness

probability for Sample[i]

Sample[i].Pc=Calculate.Snort.Probability (Sample[i]);

//Calculate.Snort() is a function which calculates Snort i.e. network maliciousness

probability for Sample[i]

Sample[i].Pe=Calculate.SandboxEvasion.Probability (Sample[i]);

//Calculate.SandboxEvasion() is a function which calculates whether the Sample[i]

tries to evade the sandbox or not. This value is Boolean 0 or 1

Sample[i].Cp=

(Sample[i].Pa + Sample[i].Pb + Sample[i].Pc + Sample[i].Pe) / 4 ;

 If (Sample[i].result == clean)

 {

 Tc=Tc+ Sample[i].Cp ;

 Nc ++ ;

 }

 else

 {

Tm=Tm + Sample[i].Cp;

 Nm ++ ;

 }

}

clean.threshold.percentage=Tc/Nc * 100 ;

malicious.threshold.percentage=((Tm/Nm) –clean.threshold.percentage) * 100 ;

unknown.threshold.percentage=more_ than(clean.threshold.percentage) and

less_than(malicious.threshold.percentage) ;

}

3.10.1.3 Algorithm for Testing of PosDeF

TestAlgorithm(Sample)

{

Pa= Calculate.Static.Probability(Sample)

Pb= Calculate.Behavior.Probability(Sample)

Pc= Calculate.Snort.Probability(Sample)

Pe= Calculate Sandbox Evasion.Probability(Sample)

CP=(Pa+Pb+Pc+Pd)/4

Md5Sum= Find Md5Sum(Sample)

If (Cp>ThClean)

{

//means file is malicious

Log(Md5Sum) in clean sample database

Start_BlockChain_Transaction(Md5Sum)

}

Else

{

//means file is clean

Log(Md5Sum) in malicious sample database

Start_BlockChain_Transaction(Md5Sum)

}

}

3.10.2 Static Analysis

The data for training is in the form of .csv file which we have created using samples by

extracting a total of 52 parameters using a python module called PE Analyzer 2

This data has to be stored in a ‘Panda’ frame. Panda is a python package which provides fast

and flexible data structure for analysis in python. The two important data structures for Panda

are ‘Series’(1-Dimentional) and ‘Data Frame’(2-Dimentional).

3.10.2.1 Algorithm for Static Training

Extra Tree Classifier is used for feature selection here. Extra Tree stands for Extremely

randomized trees. Extra Trees are computationally faster than other methods of feature

selection. They select a cut point in the tree at random. Thus they reduce the computation

burden of determining the cut point and leads to increased accuracy because of smoothening.

Cut point is the point of best split which separates the samples of a node into two groups. The

cut point randomization leads to a good variance reduction effect and gives great results in

many high-dimensional complex problems. Therefore, in this case, Extra Tree classifier is

used for static training.

Static_Training (data)

{

//Read data in Panda Frame for further processing

X=Pandas.read(data);

Y=data(labels);

/* The labels are Boolean values of 1 or 0. Since this is training data we know which file has

a clean and which a malicious label */

//Pretraining phase for shortlisting of features

Feature_Selection=ExtraTreeClassifier.fit(X,Y);

X_new=Feature_Selection(X);

/*Now we apply Cross Validation technique by splitting the data into 80% training and 20%

testing with the data with selected features along with their labels*/

Cross.Validation.split(X_new,Y,0.2);

}

3.10.2.2 Algorithm for finding out the best classification algorithm for

Static

 Testing

We have the types of classification algorithms in Machine Learning like Linear Classifiers:

Logistic Regression, Naive Bayes Classifier, Support Vector Machines, Decision Trees,

Boosted Trees, Random Forest, Neural Networks, Nearest Neighbour etc. We have to check

all algorithms and find out the score as to which algorithm works best with our data. The

winner algorithm is then applied for the testing algorithm.

 BestAlgoStatic()

{

algo[]={a0,a1,a2,a3…..an}; // We put all the available algorithms in an array

int i;

float score[10];

for(i=0;i<n;i++)

 {

 score[i]=ai.fit(X.test,Y.test);

//We try to find out the score with which an algorithm best fits a model

 }

j=max(score[]);

WinAlgo=aj; //Algorithm with the maximum score is chosen for static testing

}

3.10.2.3 Algorithm for Static Testing

P Calculate.Static.Probability(Sample)

{

/*Extract features from the Sample file using python’s PE Analyser. Only those features are

used which we have selected during the training phase */

Features[]={f1,f2,f3,….,fi};

Result=aj.predict.probability(Features[]);

return Result;

}

3.10.3 Behavior Analysis

Behaviour analysis or Dynamic analysis, tries to see the behaviour of the sample, rather than

its signature and matches the behaviour with known malware behaviour patterns. In this way,

even if the sample evades signature detection, it can get caught in behaviour analysis.

3.10.3.1 Algorithm for Behaviour Training

For behaviour training, we submit all our training data samples to Cuckoo. JSON reports are

generated for these samples. All these JSON reports are converted into MIST reports. These

MIST reports are then converted into an N-Gram sparse matrix using TF-IDF vectorizer

object of skLearn.

TF-IDF stands for ‘term frequency-inverse document frequency’. This means that the weight

assigned to each token not only depends on its frequency in the document but also how

recurrent that term is in the whole corpora. Actually in a big file, some words like “the”, “a”,

“is” etc. are very frequently present. Therefore, they give very less meaningful information

about the actual contents of the document. If we give the direct count data to the classifier,

the very frequent terms will shadow the frequencies of the rarer but more interesting terms.

Through TF-IDF, we reweigh the count features to make them more meaningful.

Behaviour_Training(data[])

{

reports[];

mist_reports[];

int i=0;

while(data.length)

{

 reports.append(Cuckoo.submit(data[i]); //JSON reports generated

 mist_reports.append(Cuckoo_to_mist(reports[i]));

 //MIST reports generated

 i++;

}

X=Tfidf.vectorizer.transform(mist_reports[]);

// MIST reports getting transformed into NGram sparse matrices

Y=data[].lables; //Boolean 0 or 1

Cross.Validation.split(X,Y,0.4);

//60% data is used for training and 40% for testing

}

3.10.3.2 Finding Best Classification Algorithm for Behaviour Testing

 BestAlgoBehaviour()

{

algo[]={a0,a1,a2,a3…..an}; // We put all the available algorithms in an array

int i;

float score[10];

for(i=0;i<n;i++)

 {

 score[i]=ai.fit(X.test,Y.test);

//We try to find out the score with which an algorithm best fits a model

 }

j=max(score[]);

WinAlgo=aj; //Algorithm with the maximum score is chosen for static testing }

3.10.3.3 Algorithm for Behaviour Testing

P Calculate.Behavior.Probability(Sample)

{

report=Cuckoo.submit(Sample);

mist_report=Cuckoo_to_mist(report);

transformed_mat=vectorizer.transform(mist.report);

Result=aj.predict.probability(transformed_mat);

return Result;

}

3.10.4. Snort Analysis

‘Snort’ analysis is done to obtain network characteristics of the file. Cuckoo creates a

dump.pcap file. Snort generates a text report based on this file predicting alerts or malicious

content in the sample. This text file is again converted into a sparse matrix of N grams using

‘vectorizer’ object.

3.10.4.1. Algorithm for Snort Training

 Snort_Training (data)

{

pcap_reports[];

snort_reports[];

int i=0;

while(data.length)

{

 pcap_reports.append(Cuckoo.submit(data[i]);

//dump.pcap files are generated by Cuckoo

snort_reports.append(pcap_to_snort(pcap_reports[i]));

 //Snort reports generated from pcap files

i++;

}

X=vectorizer.transform(snort_reports[]);

// Snort reports getting transformed into NGram sparse matrices

Y=data[].lables; //Boolean 0 or 1

Cross.Validation.split(X,Y,0.4);

//60% data is used for training and 40% for testing

}

3.10.4.2 Finding out the best algorithm for Snort Testing

 BestAlgoSnort()

{

algo[]={a0,a1,a2,a3…..an}; // We put all the available algorithms in an array

int i;

float score[10];

for(i=0;i<n;i++)

 {

 score[i]=ai.fit(X.test,Y.test);

//We try to find out the score with which an algorithm best fits a model

 }

j=max(score[]);

WinAlgo=aj; //Algorithm with the maximum score is chosen for static testing

}

3.10.4.3. Algorithm for Snort Testing

P Calculate.Snort.Probability(Sample)

{

Pcap.file.Cuckoo.submit(Sample);

Snort.report=Snort(Pcap.file);

transformed_mat=vectorizer.transform(Snort.report);

Result=aj.predict.probability(transformed_mat);

return Result;

}

3.10.5. Algorithm for Sandbox Evasion

Boolean Find_Sandbox_Evasion(Sample)

{

Report=Cuckoo.submit(Sample);

//here we parse the JSON report to find out whether the sandbox is evaded or not

return parse.sandbox(report);

}

CHAPTER 4: ANALYSIS AND INTERPRETATION

4.1 Creation of Polymorphic and Metamorphic Shellcodes…………………... 102

4.1.1 Obfuscation of NOP sled………………………………………… 102

4.1.2 Obfuscation of the shellcode…………………………………….. 105

4.2 Using the Polymorphic Shellcode for Attack……………………………..... 108

 4.2.1 Launching a multi-staged attack…………………………. 108

 4.2.2 Sandbox evasion techniques……………………………………... 111

 4.2.3 Polymorphic blending……………………………………………. 111

 4.2.4 Conversion to metamorphic code………………………………… 112

4.3 Working with Live Ransomware Samples- WannaCry and Petya………… 112

 4.3.1 Recent Impact of Ransomwares………………………………..... 112

 4.3.1.1WannaCry……………………………………..... 113

 4.3.1.2 Petya……………………………………………. 113

 4.3.2 Reasons of Attack of Ransomware………………………………. 114

 4.3.3 Behavior Analysis of WannaCry and Petya……………………… 115

 4.3.4 Working of WannaCry…………………………………… 119

4.3.4.1 Components of WannaCry……………………………………..... 122

 4.3.4.1.1 DoublePulsar………………………………………… 122

 4.3.4.1.2 TOR…………………………………………………... 123

 4.3.4.1.3 Domain Check………………………………………... 123

 4.3.4.1.4 Bitcoin Wallets……………………………………….. 124

4.3.5 Precautions to be safe from ransomware……………….. 124

4.3.6 Remedy after ransomware attack……………………….. 125

4.4 Building the Framework………………………………………………….. 125

 4.4.1 Building the Static Part of the Framework……………………… 125

 4.4.1.1 Feature Extraction…………………………………….. 126

 4.4.1.2 Feature Selection……………………………………... 128

 4.4.1.3 Feature Classification………………………………… 129

 4.4.2 Building the Behavior Part of the Framework…………………. 132

 4.4.2.1 File Analyzed in Cuckoo Sandbox…………………… 133

 4.4.2.2 JSON Reports Generated……………………………... 134

 4.4.2.3 JSON Reports converted into MIST format………….. 134

 4.4.2.4 MIST reports converted into N-Gram data…………... 136

 4.4.2.5 Sparse matrix Generated…………………………….... 137

 4.4.2.6 KNN Classification Algorithm applied………………. 138

 4.4.3 Building Network Part of the Framework……………………… 139

 4.4.3.1 Cuckoo generates dump.pcap file…………………….. 140

 4.4.3.2 Snort generates text file out of pcap file…………….... 140

 4.4.3.3 Text file converted into MIST format………………... 141

 4.4.3.4 MIST file converted into sparse matrix………………. 141

 4.4.3.5 KNN applied to sparse matrix………………………… 141

 4.4.4 Building Sandbox Evasion Detection part of the Framework…….. 142

4.5 Distributive Execution of the Framework………………………………... 143

 4.5.1 Introduction…………………………………………… 143

 4.5.2 Proposed Distributive Framework………………………. 145

 4.5.3 Centralized versus Distributed Computing…………… 147

 4.5.4 Role of Apache Spark in the Framework……………... 148

 4.5.4.1 AWS M3……………………………………… 149

 4.5.4.2 M3 medium………………………………….... 149

 4.5.4.3 Amazon EC2…………………………………. 149

 4.5.4.4 SSD…………………………………………… 149

 4.5.4.5 HDFS…………………………………………. 150

 4.5.4.6 HDFS Architecture…………………………….. 150

 4.5.4.7 Non-Computational Data Locality…………… 150

 4.5.4.8 Data and Processing on each machine…………. 150

 4.5.5 Working of the Hadoop Cluster…………………………… 152

CHAPTER 4

ANALYSIS AND INTERPRETATION

4.1 Creation of Polymorphic and Metamorphic Shellcodes

As shown in Figure 1, the creation of shellcode is broadly a two-step process in which

first a host program is created which has some vulnerability like buffer overflow. This is

the code in which the shellcode is injected. These two programs together become the

payload which attacks the target computer. Both these codes have to be obfuscated so

become undetectable.

Steps in the creation of polymorphic and metamorphic shellcodes:

A. Obfuscation of NOP sled

B. Obfuscation of the shellcode

4.1.1 Obfuscation of NOP Sled

Normally the buffer overflow attack follows very simple steps. First the attacker finds a

vulnerable program, which is most often a program with a buffer (an array) whose bounds

are not being checked by the program. In a typical memory layout of this program, the

used buffer will be followed by the EIP (Extended Instruction Pointer), which is the

address of the program counter or the return address that the execution would jump to

when the current function has finished. The attacker would overflow this buffer with a

crafted input so that it overwrites the buffer and the EIP and instead points to the

shellcode which the attacker wants to execute. This is a precise address where the

shellcode is located. Now, the operating system designers are well aware of the buffer

overflow attacks. Therefore, to get over these attacks, they have devised a process called

‘Address Space Layout Randomization’. In this process, the address spaces including

stacks, heaps and other memory structures are randomly offset. This makes guessing of

the accurate location of the shellcode all the more difficult. To get over this problem, the

attackers increase the address space using NOPs. NOP stands for No operation. These are

one byte instructions[29] which actually perform no operation but take space in the

instruction stream.It does not affect any programmer-accessible registers, flags or

memory. It only affects the EIP and just takes the control flow to the next instruction

without affecting the program in any way. A series of consecutive NOP instructions is

called a NOP sled. The NOP sled is appended before the shellcode which the attacker

wants to execute. This ensures that the CPU jumps somewhere in the sled to ultimately

reach the shellcode to start the attack.

This boon of NOP sleds can easily become a bane for the attacker. The moment a series

of NOP instructions are visible to the Antivirus or the IDS, they will block the shellcode

from executing. Here we come to a technique called obfuscation where we replace the

NOPs with some other equivalent instructions to bypass the AVs and the IDS.

Figure 4.1 Creation and injection of malicious payload for attacking the target system.

There are multiple ways in which NOP sleds can be obfuscated[30]:

 Single byte NOP equivalent instructions: single byte NOPs like 0x90 can easily be

detected. However, if these 0x90 can be replaced by other equivalent instructions,

then the chance of detection can be reduced. There are many single byte

instructions which can act as a substitute for 0x90. Here is a list of instructions

which can be used:

ASCII character Instruction ASCII character Instruction

A Inc ecx W Push edi

B Inc edx X Pop eax

C Inc ebx Y Pop eax

D Inc esp Z Pop edx

E Inc ebp A Popa

F Inc esi B Bound

G Inc edi C Arpl

H Dec eax D seg=fs

Table 4.1 Single Byte NOP Equivalent instructions

All the uppercase letters can be used to obfuscate the NOP sled. For example, the

sentence-” GET THE REGISTER VALUE”, is a valid NOP equivalent sled. K2

states[31] that there are at least 55 suitable replacements for NOP instructions for the Intel

architecture. Sometimes, while deciding which equivalent NOP instruction to use, one

may consider a number of factors. For example, using capital letters may be dangerous

because the first group of capital letters increment or decrement registers[32]. This may

affect the shellcode. The next group of capital letters are push and pop instructions which

can play havoc with the stack. However, letters ‘abcdefghijklmno’ don’t map to anything.

After that mapping to opcodes begins again. These can easily be used without crashing

the system. Also using alphabets can be inefficient if the service is not an alphanumeric

service.

 Multibyte NOP equivalent sleds: The problem with one-byte fake NOPs is that

not many of them are available. So it becomes easy for IDS to detect a fake NOP

zone. Therefore to evade detection, the one byte NOPs can also be replaced by

multibyte NOP instructions. The only requirement is that every instruction must

be executable at the offset and must take the program counter to the address of the

exploit.

 Four byte NOP aligned sled-The restriction of multibyte NOP equivalent sleds is

that every instruction must be executable. However, one can create an easier sled

which needs to be executable after every 4 bytes i.e. after a word. Here only the

last instruction needs to advance the program counter.

 Trampoline sled- Trampolines are memory locations where whenever execution

into them, it bounces out immediately. This technique is used by the attacker to

jump quickly to the shellcode address[31]. Actually whenever a system gets

initialized, every process loads the contents of the external libraries in their

address space. This address space is a reserved section of the memory. Thus these

addresses are predictable. Now say the attacker uses an instruction ‘jmp ESP’ and

knows the address of the register pointed by ESP. Now the attacker places his

exploit in this register. Then he overwrites the return address by the address

pointed by ESP. thus on returning, the application will jump and execute ‘jmp

ESP’ instruction and the exploit at that location would be executed.

4.1.2 Obfuscation of the shellcode

There are various ways in which the shellcode can be obfuscated[33]. These are

‘Code transformations’:

 Dead code insertion-means that you change the signature by adding garbage

instructions in the code which does not affect the code functionality. Eg.

 a=h; b=23; f=m+n

Can be changed to

 a=h; a++; a++; b=23; a=a-2; f=m+n

 Subroutine and Instruction reordering- here order of the subroutines is changed

so that they are called in a random order. Also the order of the instructions may be

changed as long as the interdependencies among instructions is retained.

Instruction reordering example:

 a= q+m; b=c-b; d=a*b

 Can be changed to

 b=c-b; a=q+m; d=a*b

 Code transposition-Code transposition reorders the flow of the instructions

keeping the result of the program same. It can be achieved using either

conditional or unconditional branches. This technique was used by the Zperm

virus.

 Instruction substitution- means changing instructions in the code with equivalent

instructions. Eg. ADD reg,imm=>SUB reg,(-imm)

 MOV reg1,reg2=> PUSH reg2 POP reg1

 x=1=>y=21; x=y-20

Similarly there are four instructions which would set the register r2 to zero

CLEAR r2; MOVE 0,r2; AND 0,r2; XOR r2,r2

 Code integration- in this technique, the virus first fragments the code of the program

in which it has to get inserted, into small fragments. Then it inserts itself in between

these fragments and then compiles the code to create a new code. This technique is

used by Zmist virus. It de-compiles the PE file into fragments 32 MB long. Some

code blocks are removed and Zmist inserts itself into the code. Then it creates the

code again and compiles it into a new executable file. This virus then becomes very

difficult to detect.

 Register reassignment-basically means that you replace one register to the other

while keeping the functionality of the code same. The binary sequence of the code

changes and makes signature detection difficult. As an example, edx can be replaced

by eax, edi can be replaced with ebx and esi can be replaced with edx.

In addition to code obfuscation, for malwares, additional techniques are to be employed.

These are called ‘Miscellaneous Transformations’:

 Entry point obfuscation- Whenever a virus infects a PE file, it must gain control to

start its execution. Normally the easiest way to do this is to change the entry point of

the PE file to the virus body. But this method is the best detectable also. Therefore

entry point obfuscation changes the entry point to the middle of the PE file and the

control is obtained using jump or call instructions.

 Information exfiltration obfuscation- Different kinds of data can be filtered from the

compromised machine to the c&C server. All this web traffic may consist of screen-

shots, key log details, user id, passwords, email messages, recorded conversations,

clicked photographs etc. All this data is hidden using encryption and then sent across.

 Obfuscation of communication to the c&c server - Communication with the c&c

server may use covert channels like TCP, ICMP and IPv6 tunnels. Also, compromised

servers may be used as c&c servers without the knowledge of the administrator.

Additionally, TOR can be used for all communications to make them untraceable.

 Avoiding a big return address and hiding it-normally the return address in a

shellcode is a huge zone. The return address comes after the payload after

overwriting the original return address and is repeated several times. Also it cannot be

encrypted. If the detection methods find this large area, they may get suspicious. The

idea is to avoid such a huge return address and hide it from the detecting eyes. Return

address polymorphism [34]can be achieved by mutating the lower order bits in the

address in each generation so that all these addresses point to somewhere in the NOP

zone.

 Self-modification of code- in many cases, a highly effective obfuscation technique is

self-modification of code. Here, the code alters itself during runtime. What it

essentially means is that the code can modify itself when it runs and it may not be the

same code that was there when it first loaded. Self-modification involves dynamic

code generation and subroutine patch management. This is an effective way of

bypassing sandboxes. New code can be generated at runtime or even existing code

can be modified.

One way this can be done in Java rootkits is by modifying the JVM. One first locates the

class which is to be modified. Then you extract it and disassemble it. Then you modify

the bytecode and assemble the code back again. Then you can deploy the file back to its

original location. Additionally, since all classes are children to the Object class, therefore

the Object class can be modified to affect all child classes thereafter, say by adding a

function like public void keyLogEventHandler(Event e) which will act as a key logger for

all the classes.

4.2 Using the Polymorphic Shellcode for Attack

As shown in Figure 2, the payload has to enter the target system after getting all

information about the system and the connected network. After entering the system, the

malware has to perform three functions: first it has to send vital information about the

system and the network back to the attacker, it has to infect the connected computers and

it has to employ evasion techniques to bypass constant monitoring by the anti-malware

systems.

Steps of attack are:

A. Launching a multi-staged attack

B. Sandbox evasion techniques

C. Polymorphic blending

D. Conversion to metamorphic code

4.2.1Launching a Multi-staged attack

There are various steps in launching a multi-staged attack:

1. Information gathering

2. Entering the target system

3. Privilege escalation

4. Establishing a connection back to the attacker

5. Injecting a c&c component into the target

6. Going deeper into the network

7. Cleaning up the mess

Figure 4.2. Process of Attacking the Target System with the created payload

 Information gathering- In this step, the attacker uses various techniques to gather

information about the target machine and its network configuration[35]. Social

engineering and Google hacking are the most commonly employed techniques. In

addition to that, information about the network is obtained using mechanisms like

ARP, TCP SYN packets, ICMP echo requests, TCP connect and passive discovery.

Port scanning is another useful technique. ‘WannaCry’, for example was a

ransomware which hit the world in May 2017. It entered the target systems through

open SMB ports. To know the operating system of the target machine, one can use

nmap if packets can be sent to it. The command ‘nmap -o’ provides OS fingerprinting

whereas if one can eavesdrop network traffic one can use ‘pof’ for passive

fingerprinting.

 Entering the target system- After gathering information about the target machine, it is

now time to attack and penetrate it in the best possible manner. Normally an exploit is

injected into the system and then it starts collecting local information about the

compromised machine.

 Privilege escalation- getting the admin rights makes the attacker ‘God’ of the

compromised system. Thus the next step is to get root privileges of the machine.

 Establishing a connection back to the attacker- The information collected and the

rights obtained are of no use until the attacker can employ them. So the malware now

establishes a connection back to the attacker which can further be used for much other

exploitation, not just on the compromised machine but also on other machines of the

connected network.

 Injecting a c&c component into the target-This command and control component

enables the attacker to execute many other commands on the compromised machine.

 Going deeper into the network- The attacker may not stop at this local machine but

would want its malware to spread deeper into the connected network.

 Cleaning up the mess- To continue the stealth work, the system must not be left in an

unstable state and all memory must be repaired before proceeding further. Thus it

becomes imperative to clear one’s tracks and make the system ‘look’ like before.

4.2.2 Sandbox Evasion Techniques

A very powerful technique developed by antivirus and IDPS creators is sandbox

technique. Using this technique, the suspicious programs can be run in a simulated

environment called a sandbox. All programs, whether malicious or non-malicious would

show their true nature in this environment. Thus the anti-malware program would be

easily able to detect the malicious programs and weed them out of the system. However,

attackers have come up with sandbox evasion techniques. They employ various methods

to detect whether they are working in a simulated environment or the actual operating

system. Accordingly, if they detect a sandbox, they would lie dormant or do very

superfluous jobs. It’s only when they are sure they are running in the actual operating

system, would they show their true working and would launch an appropriate attack.

4.2.3 Polymorphic Blending Techniques

Anomaly based IDPS’, especially those that are byte frequency based, find out about the

presence of malware in the network stream by checking the payload behaviour anomalies

of the malware. The indicators they track are input and output bytes, number of

connections, number of packets, type of protocols used and the communication

destination. As an example, data exfiltration can be a powerful network statistic to detect

a malware. Say a system is baselines in the sense that it transfers data only to the internal

systems. If a large amount of data starts going out of the system to an external server on

the Internet, this change in behaviour can raise an alarm and alert the detection system.

Also, increase in the packet frequency may indicate a denial of service attack. For

detecting host level attacks, we detect protocols in the packets to see if they have

ambiguous options, are too small or violate some application layer protocols. Attackers,

can evade anomaly based detection systems by blending their traffic with normal traffic.

They prepare the payloads and the behaviours of their packets in such a manner that the

packets are indistinguishable from normal traffic. The message HTTP headers can be

spoofed to merge with legitimate traffic. For example instead of the name of a c&c

server, after connection, the host name can be given as google.com. Also TOR traffic can

be disguised to look like a normal HTTPS traffic. Such blending techniques can be used

to easily blend malware with normal traffic and evade anomaly based IDPS.

4.2.4 Conversion to Metamorphic code

Both polymorphic and metamorphic malwares can change their codes in each iteration as

they propagate. Although the code changes but its ability and functionality remains the

same. Even while the malware is in the system, it can change its code periodically and

this makes it difficult to detect by antivirus and IPS systems[36]. Polymorphic malwares

consist of two parts: VDR(Virus Decryption Routine) and EVB(Encrypted Virus Body).

When a malware is hidden in a legitimate code, it is in its encrypted form to remain

hidden from the AVs. To launch the attack, the VDR decrypts the encrypted virus body

back to its original form so that the virus can perform its actions. Now the virus

decryption routine VDR remains constant each time, though the key may keep changing.

This static part of the code makes it possible for an antivirus program to identify the

malware. Another problem is that when the decryption is over, the original code remains

naked in the memory. So although it is very complex for the cracker to understand and

debug polymorphic code which may have taken months to be written, he just has to wait a

few hours till a decrypted , clean and comprehensive code is visible to him.To get over

this problem, the attacker can divide the code into smaller parts and put each part into its

own polymorphic envelop. The cracker would never see the complete code at once but

still parts of original code would still be visible to him later. Thus comes metamorphism.

The principle difference between polymorphism and metamorphism is that polymorphism

doesn’t change the original code. It just hides it. However, metamorphism morphs or

changes the code body itself. In other words, metamorphic code is body polymorphic.

Thus the polymorphic code has to be changed to metamorphic code to evade detection

completely.

4.3 Working with Live Ransomware Samples- WannaCry and Petya

Here we are working with live ransomware samples, specifically the most recent ones to

attack the computer systems the world over-WannaCry and Petya. We do behavior analysis

of these samples and study their behavior in detail so that we know their attack strategies and

working. Through this study we try to understand the latest malware in a better manner so

that we can develop appropriate strategies to create defenses against them.

4.3.1 Recent Impact of Ransomwares

Ransomware pose a grave threat to an organization’s profitability as well as reputation. Not

only are security managers forced to pay the ransom, they sometimes lose their precious data

and most of the times are not even

in a position to make the loss public. In May 2017 WannaCry hit the global markets badly

and immediately after, Petya came into light. The impact that they made will be discussed in

the following sections.

4.3.1.1 WannaCry

Friday, May 12, 2017 was the day when about 40 hospitals of National Health Service in UK

had to shut down their operations because of a major attack on their computer systems by a

ransomware called ‘ WannaCry’. The entire data in these systems was encrypted and lives of

many patients were in danger. Similar was the case of ‘FedEx’ in US,‘Telefonica’ in Spain,

‘Deutsche Bahn’ in Germany and ‘Latam Airlines’ in South America. Ultimately 150

countries with 2,00,000 computers were attacked by WannaCry and by Monday, some

$50,000 were already paid to the attackers by various companies and individuals. However

not everyone’s data was recovered even after the ransom was paid. The reason for that is, one

cannot tie payment to who you are making it to. The malware goes by various names like

‘WannaCry’, ‘WannaCrypt’ and ‘WannaCryptor’. It is also called ‘EternalBlue’. Wannacry

exploits vulnerability in the Service Message (SMB) Block of Microsoft Windows Operating

System. After infecting, it encrypts files in the system and renders the system useless unless

ransom is paid. It can also spread across network, affecting all computers connected to that

network. Microsoft had released a patch earlier itself for this vulnerability. People who failed

to patch their system on time were affected. Also, a patch was not released for Windows XP,

which has stopped getting support from Microsoft three years back.

4.3.1.2 Petya:

Petya attacked in June 2017, just one month after WannaCry using almost the same SMB

vulnerability exploit and NSA’s Eternal Blue. However, since many systems were already

patched, its impact was very limited. The bitcoin payment system was very simplified and

traceable and not much money was earned in bitcoins. This makes one ponder about whether

the real purpose of the attack was actually monetary profit? Petya’s first target were the

Ukrainian systems, both local and government. It entered the systems through a poisoned

update for MeDoc accounting software. MeDoc is primarily used in Ukraine and Russia. It

affected Ukrainian banks, airports, power companies and even Chernobyl Nuclear Plant.

Outside Ukraine, it affected Danish Shipping company ‘Maersk’, French company ‘Saint

Gobain’, British advertising company ‘WPP’, Russian oil production company ‘Rosneft’ and

even ‘Jawaharlal Nehru port’ in Mumbai, India. Till June 28, less than 150 organisations in

Ukraine and less than 50 in US were affected. Thus Petya’s main focus was not a fast lateral

spread or financial gain but to destroy data, especially in Ukraine systems.

4.3.2 Reasons of Attack of Ransomware

There are many reasons why ransomwares like WannaCry and Petya are successful in

attacking the systems. Some of the reasons are:

1. Entering by social engineering: These ransomwares are normally delivered

via e-mails which will lure the recipient to click on malicious attachments to

open them. This will release the ransomware on the machine and then it would

start spreading across the network after infecting the first machine. The

ransomware can also enter the machine by downloading a bad app or getting

attachments from malicious sites.

2. Not updating systems regularly: All operating systems regularly release

patches for their updation after analysing different security threats. In the case

of WannaCry, Microsoft had already released a patch called MS17-010 after

realizing about the NSA leak. However, many people failed to update their

machines with this patch and were thus vulnerable to ransomware attack.

Three years ago Microsoft stopped supporting Windows XP systems. Thus

those were the firsts to be attacked. A patch was released for them also after

the attack.

3. Non-Updation withPatches: This security lapse was known earlier this year

and Microsoft had released a patch called MS17-010. However the attackers

chose Windows XP operating systems because Microsoft had stopped

supporting Windows XP three years ago. Also no patch was released for this

operating system. So all systems still using Windows XP or higher versions of

unpatched Windows systems were attacked. Therefore Microsoft released an

emergency patch over the weekend for Windows XP systems.

4. SMB vulnerability: In MS Windows, there are some ports which are open by

default[37]. One of them is the SMB(Service Message Block) port used for

file and printer sharing. WannaCry and Petya both spread using this open port.

SMB stand for Service Message Block. It runs as a thin layer on top of TCP

protocol. It provides file and printer sharing facilities between different

Windows machines. This is done using Inter Process Communication. It can

run either directly on TCP(port 445) or using NetBIOS protocol on UDP ports

(137,138) and TCP ports(137,139) or on legacy protocols like NBF and IPX or

SPX. It is also called CIFS- Common Internet File System. Another protocol

called ‘Samba’ was created for communication between Windows and non-

Windows systems. Samba is an open-source, free reimplementation of SMB

for non-windows systems like UNIX and Linux. Actually, Windows opens the

SMB and the NetBIOS ports by default for both local and outside access.

WannaCry scans for an open SMB port to enter into the system. After that, it

spreads just like any other worm[38]. Microsoft had released the second

version of SMB called SMB v.2.United States, National Security

Agency(NSA) had discovered the SMB vulnerability long time ago. However,

instead of reporting it to Microsoft, it created ‘EternalBlue’. EternalBlue is an

exploit based on this vulnerability. It was built to be used in future as a cyber-

weapon for NSA. Now, there is a group called ‘Shadow Brokers’. This group

leaked EternalBlue. After the leak, Microsoft released a patch for this.

However, companies and individuals who failed to update, were attacked. Not

only was EternalBlue leaked, which was used in WannaCry, but many other

NSA exploits like EternalChampion, EternalSynergy, EternalRomance,

EmeraldThread and EducatedScholar were also leaked. These can easily be

used for much bigger hacks. In fact, The Shadow Brokers have claimed to

have many more leaks under their belt waiting to be released.

5. No Network Segmentation: If the network is not properly segmented, the

ransomware spreads at a very fast rate. However, if the network is segmented

then the spread of the ransomware can be contained and the mitigation may

also be easily possible.

4.3.3 Behavioral analysis of WannaCry and Petya:

 Wannacry:

1. Attack Process: Once WannaCry enters the victim computer, it scans

heavily for the SMB port vulnerability. If the port is found open, an

SMB connection is set up. Then the patch MS17-010 is searched for. If

it is not found then an encrypted shellcode is prepared in Base64

encoding and is heap sprayed in the memory. Once found, the

shellcode looks for DoublePulsar. This backdoor changes permission

to remote access and calls a particular domain to see if it is registered.

This is done to find out whether the malware is working in a sandbox

or not. If the domain is not registered, SMB exploitation starts getting

performed. A file called ‘taskche.exe’ is created which will carry out

file encryption and will also help the malware spread across the

network. In the meantime, TOR is used for all communications, bitcoin

wallets are loaded, public and encryption key is prepared. The files

start getting encrypted. WannaDecryptor.exe is set up and

Please_Read_Me.txt file is created. The screen is locked and ransom

message is displayed.

2. File system analysis: The payload is ‘taskche.exe’ which is created from

the worm’s resource ‘1831’. It has a huge size because of bundled TOR

executables along with other tools and configuration files. The actual

name of this file is ‘DiskPart.exe’. This is a MS utility for disk

partitioning. WannaCry creates two DLL files in the memory- a 32 bit dll

and a 64 bit dll. Both of them contain an export called ‘PlayGame’. This

writes a copy of the original worm to C:\WINDOWS\mssecsvc.exe and

executes it. There are many files which are created in the process. B.wnry

is a bitmap image containing a ransom note in it. C.wncr is a binary

configuration file. It also has addresses of the TOR sites. R.wnry is a text

file with a ransom note in it. S.wnry is a zip file with TOR executable.

T.wnry is a dll. It is actually an encryption tool. Taskse.exe starts

@WannaDecrytor@.exe. It is a support tool. U.wnry is a decryptor

executable that opens GUI with a ransom note in it. Taskdl.exe is a

support tool for deleting temporary files. msg\m_*.wnry is a directory

with ransom note in different languages like English, Chinese, Bulgarian

etc.if WannaCry is launched ith less than 2 arguments, it installs a service

called mssecsvc.exe. This is Microsoft Security Center Service, version

2.0. It drops the WannaCry binary and runs it. If the malware was run with

two or more arguments, it enters the service mode. Files are encrypted

with the extension of .wncrypt. Some libraries are loaded at runtime like

kernel32, user32, advapi32.dll, shell32.dll, msvcrt.dll, mscp60.dll.

3. Persistence analysis: Persistenceensures that the malware will

continue to run even after the machine is rebooted, restarted or is

logged off. For persistence, entering into the run keys in the registry is

important. Two registry entries are required to ensure persistence:

 Key:HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\

Run\<Random> Value:<Full_path>\tasksche.exe . CU stands

for Current User. %Random is a pseudorandom name derived

from the current computer name. This is a user level entry.

 Key:HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\R

un\<Random>Value:<Full_path>\tasksche.exe. LM stands for

Local Machine. This is a system level entry. Full_path is the

path of the exe file.

 If the DiskPart.exe file finds that it was running without the ‘/i’ switch,

this means that the worm has not executed it. Therefore, the file

registers itself as a service so that it gains persistence so that the worm

is no longer required to run it.

4. Network analysis: The network analysis is obtained by observing the

pcap file. The important property of this ransomware which makes it

different from the previous ransomwares is that it does not need to call a

malicious server for encryption of the files. If the binary is in the system,

it does not need to be connected to the Internet for encryption of the files.

Other ransomwares before it, used to connect to the c&c servers to get the

encryption key. Wannacry starts its execution by trying to connect to a

domain ‘www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com’. If the

machine fails in making the connection, the exploitation continues.

However, if the connection is successful, the exploitation is stopped

immediately. Actually, this is a way of ’Sandbox Evasion’ technique.

Once WannaCry is sure that the domain is unregistered, the exploitation

begins. However, it searches for a backdoor called ‘DoublePulsar’ before

actual exploitation. So the attacker sends a SMB

‘trans2SESSION_SETUP’ request to the infected system. This is a

Transaction 2 Subcommand Extension. This is to find out whether the

system is already compromised with DoublePulsar or not. The system

responds with a “Not Implemented” message and a “Multiplex ID” is

returned as part of this message. This has a value of 65(0x41) for the

normal systems and 81(0x51) for infected systems. If the system is

infected, then SMB can be used as a covert channel to install

WannaCry. Then the exploitation starts by setting up Windows Socket

APIs. Wannacry uses MS17-010 exploit to laterally spread to other

machines through open NetBIOS ports[39]. Once it finds a machine with

an open NetBIOS port, it sends three NetBIOS session setup packets to it.

One contains IP address of the machine to be exploited and the other two

contain two IP addresses which are hardcoded in the malware only. It then

spawns 2 threads, the first thread enumerates the network adapters and

finds the address of the subnet of the compromised system. The first

thread then generates threads for each IP address on this subnet. Each of

these threads try to get connected to port 445 and if successful, the entire

process of exploitation starts again on the newly infected machine.128

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com/

instances of the second thread can be created within 2 seconds. This

explains the widespread of this malware within a short span of time.

WannaCry also downloads files from the dist.torproject.org and all further

communications for bitcoin transfer happens through Tor only.

 Petya:

1. Attack Process: Petya was a ransomware which came in March 2016.

The strain of this ransomware which came on 27 June 2017 was very

different from the original version. Thus it was called ‘NotPetya’. The

ransomware uses Eternal Blue exploit. The infection starts with a

poisoned update for the MeDoc accounting software[40]. Petya infects

the MBR and executes a malicious payload that encrypts the file

system of the hard drive and does not let Windows system to boot.

Like WannaCry takes the help of DoublePulsar for completing its

execution, in a similar manner, Petya has joined hands with a

traditional file-based ransomware called ‘Misha’. Petya needs to have

administrative privileges to carry out low-level encryption of files and

other malicious works. If those privileges cannot be obtained, Misha is

launched. A deep analysis of Petya shows it is actually a ‘Wiper’.

Normally files encrypted by Petya cannot be recovered. It wipes away

the files and they can never be found again.

2. File system analysis: Petya’s infection mechanism is to attack low

level structures. It overwrites the beginning of the disk which is the

Master Boot Record(MBR) by its own boot loader. This boot loader

then loads its 32 sector kernel which then starts the encryption process

of the files. AES-128 is used for encryption and the 128 bit key is

randomly generated. This key is again encrypted with RSA 20148

encryption algorithm. Petya starts with the file explorer.exe. Then

ezvit.exe affects the Medoc software. Then rundll32.exe is dropped

and unicryptC.exe is used for encryption.

3. Persistence analysis: MBR and NTFS boot record are the only

persistence mechanisms in case of Petya.

4. Network analysis: For lateral propagation, in addition to EternalBlue

exploit, WMI Commands, Mimikatz and PSExec were also used.

Unlike WannaCry which infected a small number of computers and

was designed to spread at a fast rate to the Internet, Petya is designed

mostly for lateral propagation in the local network. It infected a large

number of computers but the spread was slow and local rather than

global. The SMB ports were scanned. If they were found to be

unpatched for the EternalBlue exploit, this vulnerability was used to

compromise the systems. However , if a patch was found,

WMIC(Windows Management Instrumentation Command)was used

for stealing local machine credentials using Mimikatz and then finding

remote shares to spread. The WMI is a complete infrastructure for the

Windows operating system which does management and

administration of the operating system both locally and remotely. It is a

very powerful tool but the same power can be used by attackers for

remotely executing ransomware in target machines. There are various

WMIC commands which were used by Petya for several purposes like

detection of antivirus and virtual machines, persistence, theft of data,

lateral movement and execution of various commands[41]. Mimikatz

is used for stealing user credentials and through them executing Petya

on infected machines. One of the WMIC commands used by Petya for

executing powershell on a remote machine is:

 wmic /node: [IP Address] /user: “[user name]” /password:

“[password]” process call create “ cmd /c powershell.exe user”

4.3.4Workingof WannaCry

Once WannaCry enters the victim computer, it scans heavily for the SMB port vulnerability.

If the port is found open, an SMB connection is set up. Then the patch MS17-010 is searched

for. If it is not found then an encrypted shellcode is prepared in Base64 encoding and is

heapsprayed in the memory. Once found, the shellcode looks for DoublePulsar. This malware

downloader changes permissions to remote access and calls a particular domain to see if it is

registered. This is done to find out whether the malware is working in a sandbox or not. If the

domain is not registered, SMB exploitation starts getting performed. A file called

‘taskche.exe’ is created which will carry out file encryption and will also help the malware

spread across the network. In the meantime, TOR is used for all communications, bitcoin

wallets are loaded, public and encryption key is prepared. The files start getting encrypted.

WannaDecryptor.exe is set up and Please_Read_Me.txt file is created. The screen is locked

and ransom message is displayed.

 Continued on next page.

Install Double

Pulsar

Continued on next page.

Figure 4.3 Flowchart showing working of WannaCry

4.3.4.1 Components of WannaCry

WannaCry is made up of the following components:

4.3.4.1.1 DoublePulsar

DoublePulsar is a malware downloader. Its basic purpose is to download additional malwares

into the system. DoublePulsar is normally loaded into the machine before WannaCry and it is

running as a background process undetected. WannaCry, after getting loaded, searches for

DoublePulsar. After getting permission from WannaCry, DoublePulsar alters user mode

process permissions and sets up remote access. Once connected, DoublePulsar deletes itself.

DoublePulsar was originally developed by ’Equation Group’ and was leaked by ‘The Shadow

Brokers’ along with ‘EternalBlue’ in early 2017 [42]. So it was used with EternalBlue to

carry out WannaCry attacks. Also, once a system is rebooted, DoublePulsar does not persist.

DoublePulsar runs in kernel mode. However, this kernel payload does not load the actual

DLL(Dynamic Link Library). It actually sets up an Asynchronous Procedure Call(APC) to

another shellcode that performs the load. Since it does not make a LoadLibrary call, which is

a local call, therefore the DLL is not written to the disk. So there is no entry in the Process

Entry Block(PEB).Thus, it remains hidden.

4.3.4.1.2 TOR

TOR stands for ’The Onion Router’. It is a worldwide network of computers, initially

developed by the U.S. Navy that helps people to browse the Internet anonymously[43]. TOR

hides your identity because it moves your traffic across random TOR servers and encrypts the

traffic for many times including the next node address and sends it through a virtual circuit

comprising successive, randomly selected TOR relays. Each relay decrypts a layer of

encryption to reveal only the next relay in the circuit.

4.3.4.1.3 Domain Check

Just a few days after WannaCry was launched, a man who goes by the name @MalwareTech,

discovered a Kill Switch to stop the attack. This slowed down the destruction by the malware

to a large extent. Actually, before WannaCry starts the SMB exploitation, it tries to connect

to a domain addressed, ‘http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com’. If the

machine fails in making the connection, the exploitation continues. However, if the

connection is successful, the exploitation is stopped immediately. Actually, this is a way of

’Sandbox Evasion’ technique. Whenever a malware attacks a machine, it ensures it is not

running in a sandbox. A sandbox is a way employed by Antiviruses and IDPS systems. In

this, any suspected program runs in a protected, silo environment, detached from the main

operating system with limited resources. If any permissions for connections are asked for,

example in this case, the malware asked for permission to connect to a domain, the

permission is granted. This is to trick the malware into assuming that it is running in an actual

environment and not in a sandbox. Therefore, the registration of this domain acted as a kill

switch for Wannacry.

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com/

4.3.4.1.4Bitcoin Wallets

Bitcoin is cryptocurrency and a digital payment system invented by a programmer called

‘Satoshi Nakamoto’. It is an open software and was released in 2009. Wannacry asks it’s

victims to pay in bitcoins for getting the decryption key. Before that, Bitcoin wallets are

created in your system. It is a peer-to-peer system which takes place between users directly

without an intermediate person. The transactions are recorded and verified in a public

distributed ledger called ‘Blockchain’. Bitcoin is thus a decentralized digital currency.

4.3.5 Precautions to be safe from ransomware

After the huge destruction caused by WannaCry, some precautionary steps can be taken to

prevent such an outbreak in the future[44]. First of all, any ports which are not required to be

open at all times must be closed and opened only when that service is requested for. Second,

one must keep all her systems, completely updated using patches whenever they arrive.

Regular updation is likely to protect your systems from many vulnerabilities and malwares.

Third, network segmentation plays a key role in preventing an infection to spread across

other systems in the network thus protecting other systems and also containing the infection.

Preventive actions like not clicking on suspicious files in your mails and protecting your

system’s user id and password are anyday, very important. Lastly any individual or

organization which finds a vulnerability must make it public for larger interest of the society

and not hoard it for creation of cyber warfare.

1. Good AV or IDS solution: A good and reliable antivirus and IDS solution

goes a long way in protecting the network from known and unknown attacks.

Antiviruses keep updating themselves when new strains of malwares are

discovered. Most of the malwares are successfully blocked by good

antiviruses.

2. Backup and Restore: Always take a regular backup of your data so that even

if the ransomware attacks, you have the most current backup and are able to

restore your data without paying the ransom amount and becoming a victim to

the attacker.

3. Make a vulnerability public: As in the case of EternalBlue, the SMB

vulnerability was known to NSA but they chose not to disclose it to Microsoft,

rather, they made cyber weapons for them. These cyber weapons were leaked

by Shadowbrokers group and WannaCry and Petya were created out of them.

It is always in the interest of the public and government both that any

vulnerability in any operating system, if known by an individual or an

organisation, should be made public so that systems can be protected from it.

4.3.6 Remedy after ransomware attack

Though one can only take precautionary steps to get saved fully from WannaCry, however

once infected, one can recover the keys only till the time the system is rebooted. Actually for

encryption, WannaCry creates two keys -a ’public key’ and a ‘private key’. These are based

on prime numbers and are used for encryption and decryption of files. These keys remain

lingering in the memory and are not deleted till the system is rebooted. These can therefore

be recovered and be used for decryption.

4.4 Building PosDeF

There are various tools that we require to build the framework.For our virtualization need we

have used virtualbox with Windows 7 installed. Dynamic analysis is carried by Cuckoo

framework. Cuckoo framework makes it easy to carry dynamic analysis on malwares it

comes inbuilt with various packages like tcpdump which is used to extract network

communication between malwares and its author, volatility framework for extraction of

system calls during the execution , python pillow library for extraction of screenshot during

execution and also automating the clicks on various clickable items during the execution. All

these factors can contribute into prediction of type of file.

4.4.1 Building the Static Part of PosDeF

Static analysis refers to the act of extracting information based on file properties without

running it. This is the quickest way to classify the file but not always accurate. These are

metadata of a file. We have extracted a total of 52 parameters using a python module called

PE Analyzer 2. PE Analyzer is a tool which is used to analyze the portable executable

format of a file. Some technical indicators like file name, MD5 checksums or hashes, file

type, file sizeprovide the preliminary view of the file to determine whether it is malicious or

benign.

There are various steps involved in building the Static part of the framework:

1. Feature Extraction

2. Feature Selection

3. Feature Classification

4.4.1.1 Feature Extraction

Extract the static features from the binary files by using PE Analyzer. These are the

features, which distinguish between a malware and a benign file.

Figure 4.4 Snapshot of a part of the ‘data.csv’ file created for training and testing purpose

This is an example of the feature vector for a file:

 Feature vector:

Name|md5|Machine|SizeOfOptionalHeader|Characteristics|MajorLinkerVers

ion|MinorLinkerVersion|SizeOfCode|SizeOfInitializedData|SizeOfUninitiali

zedData|AddressOfEntryPoint|BaseOfCode|BaseOfData|ImageBase|Section

Alignment|FileAlignment|MajorOperatingSystemVersion|MinorOperatingSy

stemVersion|MajorImageVersion|MinorImageVersion|MajorSubsystemVersi

on|MinorSubsystemVersion|SizeOfImage|SizeOfHeaders|CheckSum|Subsyst

em|DllCharacteristics|SizeOfStackReserve|SizeOfStackCommit|SizeOfHeap

Reserve|SizeOfHeapCommit|LoaderFlags|NumberOfRvaAndSizes|Sections

Nb|SectionsMeanEntropy|SectionsMinEntropy|SectionsMaxEntropy|Section

sMeanRawsize|SectionsMinRawsize|SectionMaxRawsize|SectionsMeanVirt

ualsize|SectionsMinVirtualsize|SectionMaxVirtualsize|ImportsNbDLL|Impor

tsNb|ImportsNbOrdinal|ExportNb|ResourcesNb|ResourcesMeanEntropy|Res

ourcesMinEntropy|ResourcesMaxEntropy|ResourcesMeanSize|ResourcesMi

nSize|ResourcesMaxSize|LoadConfigurationSize|VersionInformationSize|leg

itimate/malicious

Legitimate File:

AcroRd32Info.exe|9afe3c62668f55b8433cde602258236e|332|224|290|9|0|40

96|7168|0|6751|4096|8192|4194304|4096|512|5|0|0|0|5|0|24576|1024|28316|2|

33088|1048576|4096|1048576|4096|0|16|5|4.14491201014|0.393689010804|

5.97744194837|2252.8|512|4096|2177.6|664|3880|3|61|0|0|4|5.09749900993|

3.43599300049|5.92981166069|616.5|94|1164|72|15|1

Malicious File:

VirusShare_a69e89bbf39a25966660881912ec1a84|a69e89bbf39a259666608

81912ec1a84|332|224|258|10|0|119808|385024|0|61532|4096|126976|419430

4|4096|512|5|1|0|0|5|1|528384|1024|564364|2|33088|1048576|4096|1048576|4

096|0|16|5|5.6663371314|4.18953861211|7.96311398057|100966.4|9728|330

752|102644.2|9418|339748|3|90|0|0|6|3.77675976631|2.45849222582|5.3175

5235629|2740.16666667|48|9640|72|15|0

4.4.1.2Feature Selection

The features that are chosen are of the type integers or floats. The text based features

are dropped. These are vectors because only computation on vectors can be used by

algorithms. These features are then used by our system. Out of 54, 14 features are

selected. Rest of the features which were not important for analysis was dropped.

In the pre training phase, some features have to be selected according to their

variance. Feature selection means selecting only those features in the data that

contribute most to the output in which one is interested. The ‘Skikit Package Tree

Classifier’ is used here. Tree classifier gives a simple set of rules to categorize data.

During training, a node-splitting criterion is utilized to partition the input space so as

to classify the training data points in each position. This process is applied recursively

within each resulting partition not meeting a stopping condition [45]. In the training

phase the Tree Classifier algorithm creates a decision tree by identifying patterns in

an existing dataset and using that information to create the tree.

When we select features, those which have a very high or a very low variance are not

useful in machine learning. These are rejected. Skikit package tree classifier is used to

select only those features which are helpful in the separation of two classes.

It is important to understand that all these features must vary for them to be selected.

Variance measures how a set of numbers is spread out. The features which are

selected according to their variance are as follows:

1. DllCharacteristics

2. Machine

3. ResourcesMaxEntropy

4. MajorSubsystemVersion

5. Subsystem

6. Characteristics

7. VersionInformationSize

8. ImageBase

9. SectionsMaxEntropy

10. MajorOperatingSystemVersion

11. SectionsMinEntropy

12. MinorSubsystemVersion

13. SizeOfOptionalHeader

14. SectionsMeanEntropy

4.4.1.3 Feature Classification

These features differ according to their variances. Therefore, these features are ranked

according to the feature showing the highest variance till the feature showing the

lowest.

Figure4.5: Features selected on the basis of their variance

Let us understand these features one by one:

1. DllCharacteristics: This field comes under ‘Optional Header Windows –

Specific Fields’ [46]. It contains information about dynamic linking and

loading behavior of a file. All information in DLL is encoded as flags which

are represented as on/off bits in 16 bits. For example, 0X0040 shows that the

DLL can be relocated at load time.

2. Machine: Architecture type of the computer.

3. ResourcesMaxEntropy: The increased entropy in a PE file is an indicator

that the file has been processed by a packager or a protector. It is most likely

to be malicious.

4. MajorSubsystemVersion: Tells the major subsystem version for a system.

5. Subsystem:This is a 16 bit value which tells the subsystem for the operating

system. For Eg. Windows 95 binaries will always use the Win32 subsystem.

6. Characteristics: Collection of flags valid for libraries and object files.

7. VersionInformationSize: Tells the size of the version information. Version

has information like file version, operating system version, original filename

etc.

8. ImageBase: This tells what is the preferred address of the first byte of image

when it is loaded into the memory.

9. SectionsMaxEntropy: Tells the maximum allowed entropy for a section.

10. MajorOperatingSystemVersion:The major version number of the required

operating system

11. SectionsMinEntropy: Tells the minimum allowed entropy for a section.

12. MinorSubsystemVersion: Contains the minimum subsystem version required

to run the executable. A typical value for this field is 3.10 (meaning Windows

NT 3.1).

13. SizeOfOptionalHeader: This is required for executable files and not for obje

t files. Its value is zero for oject files.

14. SectionsMeanEntropy: Tells the mean entropy for a section.

In the training phase we will test various algorithms and split the dataset into 80% for training

and 20% for testing. We have to test all the classification algorithms with the default

parameters and the results that we get are given in the screenshot below.

Figure 4.6 Screenshot showing performance of various classification algorithms for testing of

static analysis

Therefore, in this case, we find that RandomForest classification algorithm is giving us the

best result of a 99.35% success. This was being tested with default parameters. The False

positive/ False negative rate on the test data is as follows:

a. False positive: 0.568241

b. False negative: 0.830565

4.4.2Building the Behavior Part of PosDeF

Static analysis of malware is not enough because malwares have become very smart in the

recent decade. A polymorphic or a metamorphic malware changes its signature and behavior

at runtime. Therefore, in addition to checking the signature of the file to be analyzed, we need

to check its behavior also to determine whether it is malicious or benign. We will use various

tools in a simulated environment to discover the behavior of a particular file at runtime. After

discovering the behavior, we will use various machine learning algorithms to predict the type

of file. When we are considering self-modifying and polymorphic code, static analysis fails

and we have to move to dynamic analysis for the right detection.

Steps:

1) Files in binary format enter the Cuckoo system and are analyzed.

2) Based on the analysis results, API call sequences are extracted and a behavior report

is generated for each binary.

3) These reports are converted to MIST format.

4) This MIST format is converted into sequential data in a high-dimensional vector

space by N-gram algorithm.

5) Similarity of vectors is calculated and a sparse matrix is generated.

6) Many classification algorithms work on this sparse matrix and according to our

dataset; KNN (K nearest neighbor) algorithm shows best accuracy.

7) KNN is applied on this sparse matrix.

4.4.2.1 File Analyzed in Cuckoo Sandbox

Cuckoo is a very popular sandbox [47] which is free and open-source system, provided by the

Cuckoo Foundation. After analysis of the sample, it gives a detailed report of it. Not only

does Cuckoo help in reporting whether a sample is malicious or benign, but it also help a

researcher in understanding the way a malware operates, reasons for the breach and the final

motive. Cuckoo can analyze only malicious files under Windows, OSX, Linux and Android.

Operations that Cuckoo can perform are [48]:

1) Analyze a malicious file sample.

2) Trace all API calls and behavior of the sample.

3) Analyze even SSL/TLS encrypted traffic.

4) Do memory analysis of the infected system.

5) Can find IP addresses, domains, file hashes etc. which tell about network-related

compromises.

Cuckoo comes inbuilt with various packages like tcpdump, volatility framework and python

pillow. Tcpdump is a network sniffer which captures the traffic of the malware during

execution and dumps it into a file. Volatility Framework extracts system calls during

execution [49]. It starts working after we have dumped the memory. This memory is volatile

memory-RAM. Digital artifacts can be extracted from it. Rootkits can normally be detected

using Volatility framework [50]. Python pillow library is used for taking screenshots of the

OS desktop during execution.

Cuckoo Architecture:

The architecture of Cuckoo sandbox will typically consist of hosts and guests connected

together by a virtual network. A Cuckoo host takes care of guests and analysis management.

It starts analysis, dumps traffic and generate reports. A guest provides a clean environment

where a sample file can be run. The behavior of the analyzed sample is reported back to the

host. After submitting a sample to the host, the analysis is launched in a fresh and isolated

machine.

4.4.2.2 JSON Reports Generated

1) We have used virtual box with Windows 7 installed and dynamic analysis of samples

is carried out by the Cuckoo framework. Cuckoo is set upon Ubuntu host.

2) We have used 2000 sample size. 1000 files are extracted from virusshare_00302.zip

which is a collection of malwares. 1000 .exe files are extracted from a clean

installation of Windows 7.

3) We start submitting the samples to Cuckoo. Instead of submitting the 2000 samples

manually, we have created a small python script to automate the process. We have

created two directories- one for clean and the other for malicious files. Our code will

submit files one by one to Cuckoo from these directories.

4) After the analysis, Cuckoo generates a JSON (JavaScript Object Notation) file. A

JSON file is normally a 25-30 page file.

5) After we submit a sample in Cuckoo, it will open a VM (Virtual Machine) and

execute the file. Then it will start collecting stats about that file.

4.4.2.3 JSON Reports converted into MIST format

A JSON file, though human readable, but is very lengthy and will take plenty of resources to

be processed by a machine learning algorithm. This is because it is unstructured. The

behavior patterns are not recognizable. Also complex and lengthy textual representations

negatively impact the run time of analysis. Konard Reich at the University of Gottingen have

developed a method called ‘Malheur’[51] in which they have created MIST format which is a

very efficient format for representing Cuckoo generated JSON files. MIST stands for

‘Malware Instruction Set’. It is a feature generation technique that represents the behavior

analysis of a sample as a series of integers [52].They have used it to classify malware into

different families and equally good for binary classification i.e. benign and malicious

samples.

MIST creates a smaller file size for analysis and reduces the processing time. MIST format is

also not human readable but stores the same information in a structured manner in a very

limited space. It is like the instruction sets used in processor design [53]. For conversion of

the JSON file into MIST format, we have used an open source tool called ‘cockoo2mist’.

CATEGORY_OPERATION | ARG_BLOCK 1 | AB 2 | …….| AB N

 Level - 1

 Level - 2

 Level – 3

 ……….

Figure 4.7: Depiction of a MIST Instruction.

Understanding a MIST instruction

Level-1: Shows category and name of a monitored system call. For eg.

03 05

Here category is ‘filesystem’(03)and system call is ‘move_file’(05).

Operation – is a particular system call.

Arg_Block- arguments like file and mutex names.

The following figure represents a CWSandbox representation of a load_dll command being

converted into MIST format.

Figure 4.8 : Understanding a MIST Instruction with the help of an example.

Level -2: This level contains constant information, say file extension and file path.

Level -3: This level contains information which varies often. For example, file size and file

name are values which differ even when two variants of the same program are considered. So

this information is stored here.

Figure 4.9MIST Levels

4.4.2.4 MIST reports converted into N-Gram data

Unstructured Information: Random Forest and Tree Classifier algorithms would normally

work with structured data. However, if you have unstructured data, for eg. in our case, we

have JSON reports generated by Cuckoo sandbox. Now this data is in the text form and is

unstructured as per the requirements of most of the classifier algorithms. Therefore for such

unstructured data, we go in for N-Gram approach of classification.

MIST instructions give a feature representation report for each binary. There are typical

behavior patterns of malware like changing registry keys or modifying system files. These

behaviors are represented in a particular sequence in these reports and thus these are very

useful for malware detection.

However for analysis techniques of machine learning, this is not a suitable format. We need

to operate on vectors of real numbers[54]. So we apply a technique called n-gram to convert

MIST report into a vector space.

N-Gram approach- In our model we are using a 1-gram approach. Say we have 10 sentences.

We break all these sentences into single words. We remove duplicates and find out all unique

words. These are called tokens. Then we check the frequency of words in the sentence. This

gives us the count of unique tokens. Now say we have to find similar sentences in some other

Level 1

Level 2

Level 3

Increasing detail and

variability

Identical behavior

Fine difference in behavior

Huge differential behavior

file. If the same tokens occur in the other file also, we find the similarity index between these

two files. This is the basic concept of n-grams.

The same concept is used in our model also. Say we have some 10 malicious files. Let’s

assume that a ‘crypt API’ call of code 11007 is being called in all these 10 files. Then

according to the similarity with API calls, we can deduce that a file calling this particular

11007 API call can be a malicious file.

N-gram approach is based on the vector space and bag-of-words model. It finds shared

behavior patterns. For example, function calls can be extracted from each analysis report and

a sparse matrix can be generated.

Say we represent a feature set by S and a set of all behavior analysis reports generated by

MIST as M [55]. If there is a word s Є S and a report mЄ M, we have to calculate number of

occurrences n in m to calculate frequency

f=(m,s)

4.4.2.5 Sparse matrix Generated

N-gram breaks all available text into tokens. How we convert text into tokens depends upon

our application. In our case, we are using 1-gram. After extraction of tokens, n-gram converts

these tokens into sparse matrix. A sparse matrix is just the count of these tokens per file.

Bag of Words feature extraction technique: This technique represents a string as a vector of

token frequencies. For example- let’s take a sentence:

“The pencil is sharpened by the sharpener”

This is a string. It is represented as a vector:

{the:2, pencil:1, is:1, sharpened:1, by:1, sharpener:1}

Bag of words technique determines a token count for each string in isolation. Vectorization

assigns a unique index for each token observed in the dataset as a whole. For example:

File 1: a, x, c, d, a

File 2: b, a

Corpus: a, b, c, d, x

Sparse Matrix: [[2, 0, 1, 1, 1]

 [1, 1, 0, 0, 0]]

This matrix is created with respect to the corpus. Corpus is every unique word in every file in

the directory.

4.4.2.6 KNN Classification Algorithm applied

KNN is a machine learning classification algorithm which is:

 Simple

 Non-parametric

 Lazy

 Based on feature similarity

Simple: KNN is a simple whose purpose is to use a database in which the data points are

separated into several classes to predict the classification of a new sample point.

Non-parametric: KNN does not make any assumptions on the underlying data distribution.

Therefore in many real world problems for KNN can be used for classification if there is little

or no prior knowledge about the distribution data.

Lazy: KNN is not an eager algorithm. It does not use the training data points to do any

generalization. There is no explicit training phase or it is very minimal. This also means that

the training phase is very fast.

Based on Feature Similarity: KNN Algorithm is based on feature similarity. Feature

similarity means how closely out-of-sample features resemble our training set determines

how we classify a given data point.

KNN can be used for classification — the output is a class membership. An object is classified

by a majority vote of its neighbors, with the object being assigned to the class most common

among its k nearest neighbors.

4.4.3 Building Network Part of PosDeF

For creating the network part of the framework, we use a tool called Snort. Snort is an open

tool used for network traffic analysis. It combines signature, protocol and anomaly

inspection. It is both an IDS and an IPS. It can detect many variety of attacks and probes like

:

1) Buffer overflows

2) Stealth port scans

3) CGI attacks

4) SMB probes

5) OS fingerprinting attempts etc.

Snort allows creating rules for detecting malicious traffic and alerting the user. These rules

are used by SNORT functions for performing protocol analysis, content searching and

content matching on network traffic[56].

Policies-When these rules are implemented, these implementations are called policies.

Alerts- Snort raises alert in real time if a rule matches the content of a payload in the traffic.

Snort rule-

Snort rule header-

For example:

alert UDP 192.168.0.2 any -> any 80 (msg : “Twitter” ; content: twitter.com ; sid:20003)

Rule Header Rule Options

Action Protocol Source IP Source Port Direction Destination

IP Destination Port

alert: action

UDP: protocol

192.168.0.2: source IP

Any: source port

Any: destination IP

80: destination port

Msg: rule options

This rule header contains information which can send an alert for a packet in a UDP stream

whose source IP address is 192.168.0.2 towards any destination IP, having port number 80.

Rule Options tell the rule name and rule id and also the context that needs to be detected.

Snort will take the associated action when the rule header and rule options match the content

of the packet. In this example, if in the traffic a packet from the UDP stream contains the

twitter server name an alert will be generated.

4.4.3.1 Cuckoo generates dump.pcap file

PCAP stands for Packet Capture. PCAP files are created by Cuckoo when they dynamically

analyze any file as dump.pcap file and they contain network data which is created during a

live network capture [57]. These files are used for packet sniffing and analyzing the network

traffic. PCAP has an API for capturing network traffic from ports. It also monitors IP address

and other network related parameters. Protocols are also investigated.

4.4.3.2 Snort generates text file out of pcap file

Snort uses this dump.pcap file and converts it into a text file. Actually dump.pcap is a binary,

non-human readable file. Snort converts it into a readable format consisting of alert messages.

A tcpdump tool is used for this. Snort is supporting IPV6 format too.

tcpdump -n -tttt -r /snortLogFilePath/snortLogFileName > /pathWhereToStore/File.txt

-r reads a single pcap file.

A snort.conf file is the default configuration file which contains all configuration rules which

are to be matched. All rule sets are defined in it.

An alert file is generated from the pcap file. Below is a snapshot of such a file.

[**] [1:2010935:2] ET POLICY Suspicious inbound to MSSQL port 1543 [**]

[Classification: Potentially Bad Traffic] [Priority: 3]

06/20-20:31:31.817215 232.10.237.105:2000 -> 230.29.20.24:1543

TCP TTL:102 TOS:0x0 ID:260 IpLen:20 DgmLen:40

******S* Seq: 0x43EE0000 Ack: 0x0 Win: 0x4000 TcpLen: 20

[Xref =>http://doc.emergingthreats.net/2010935]

4.4.3.3 Text file converted into MIST format

This text files ha to be converted into the MIST format. MIST format is machine learning

compatible format and is required if we want to give this data to various machine learning

algorithms.

4.4.3.4 MIST file converted into sparse matrix

The MIST file again has to be converted to N Gram token sparse matrix for easy analysis.

Relevant tokens are identified and a sparse matrix is created so that machine learning

algorithms find these matrices efficient to operate upon.

4.4.3.5 KNN applied to sparse matrix

K Nearest Neighbor is the classification algorithm applied to this sparse matrix. When we

compared it to other algorithms, it was giving an accuracy of 80.7%. Therefore this was the

best algorithm to be applied with the current data. Also according to its confusion matrix, it

gave the least number of false positives and false negatives.

Confusion Matrix- A confusion matrix is a table which describes the performance of a

classification model based upon a set of data for which we already know the true values. For

example:

http://doc.emergingthreats.net/2010935

 Predicted:

NO

Predicted:

YES

Actual:

NO

78

TN

5

FP

83

Actual:

YES

3

FN

200

TP

203

 81 205

Figure 4.10A Sample Confusion Matrix

True Positive- Say in case of testing of files, the number of true positives was 200. What that

means is that out of 286 files, 200 were predicted by the model as malign and they were

actually malign.

True Negative- 78 predicted as benign were actually benign and not malicious.

False Positive (Type1 error)- 5 predicted as malicious but were actually non-malicious i.e.

benign.

False Negative (Type2 error)- 3 predicted by model as non-malicious but were actually

malicious.

Accuracy-Means how often is the classifier correct.

 (TP+TN)/Total=(200+78)/286=0.972

That means our model has a 97.2% accuracy.

4.4.4 BuildingSandbox Evasion Detection part of PosDeF

A very powerful technique developed by antivirus and IDPS creators is sandbox

technique. Using this technique, the suspicious programs can be run in a simulated

environment called a sandbox. All programs, whether malicious or non-malicious would

show their true nature in this environment.

Thus the anti-malware program would be easily able to detect the malicious programs and

weed them out of the system. However, attackers have come up with sandbox evasion

techniques. They employ various methods to detect whether they are working in a

simulated environment or the actual operating system. Accordingly, if they detect a

sandbox, they would lie dormant or do very superfluous jobs. It’s only when they are sure

they are running in the actual operating system, would they show their true working and

would launch an appropriate attack.

In our model, we would find out whether sandbox is being evaded by the sample or not.

Accordingly, a probability of 1 or 0 would be allocated if the sandbox is being evaded or

not respectively. This calculated value will be used in the final calculation of

maliciousness probability of the sample. A JSON file generated by Cuckoo has a sandbox

evasion parameter. It has a Boolean value of 0 or 1. By parsing this JSON file one can

find out whether the sample tried to evade the sandbox or not. If it tried to evade the

sandbox, there is a 100% chance that it can be a malware.

4.5 Distributive Execution of PosDeF

Over the last decade, with the advent of advanced malware which change their behavior and

structure at runtime, signature detection is no longer valid. For such polymorphic and

metamorphic malwares, one needs complex detection involving static analysis, dynamic

analysis, network analysis and sandbox evasion detection. Using machine learning for this

process is the only viable solution. However, this complete processing also requires large

computing power and resources.

Distribution of processing is thus required to achieve an optimized solution. In this paper we

have proposed Apache Spark as a distribution framework for machine learning malware

detection. We have used Amazon AWS as a platform for execution. Blockchain is used for

providing an immutable dataset of malware information to all nodes participating in the

distributed malware detection system. A comparative study is also conducted between

performance of non-distributive analysis and distributive analysis.

4.5.1Introduction

Malwares are as integral to the digital space as are normal applications. To counter every new

type of malware is necessary for the proper working of all applications.

 Malwares are evolving day by day and antivirus companies are finding it difficult to keep up

the pace. It is imperative that a check is put on malicious activities. The biggest threat, cyber

world if facing today is that of ‘Polymorphic and metamorphic malwares’. These are

advanced malwares which change their look (signature) but have the same behavior. In the

case of metamorphic malwares, they are capable of changing their signature a well as

behavior at runtime. This makes them difficult to detect by Signature based detection

systems. Thus Anomaly based detection systems also fail here.

All the current solutions existing today have some lacunas in common:

1. Signature Matching-Most of them focus on malware detection by signature matching

and pattern recognition. Malware authors are now smarter than ever before and

signature detection is of no use due to techniques like polymorphism, metamorphism

etc.

2. No behavioral analysis- Some of them do not take into consideration, file behavior,

network behavior and other dynamic behavior of the file to be analyzed.

3. Updating time-Another problem that current antiviruses face is that they take a lot of

time to analyze the malware and then update the definition of antiviruses into user’s

device.

4. Danger to user’s privacy- The antivirus companies are sometimes a danger to the

user’s privacy as they collect data from user on regular basis and use that to make

money. The normal user acts only as a data feeder so that these antivirus companies

can protect enterprises.

5. Centralized Antivirus Companies-All the antivirus organizations are centralized in

nature. This implies that a lot of computation power is required and very few

computers are available to provide it. If a distributed system could be designed where

all systems in the network contribute to the work of malware detection, things will

become faster and more efficient.

Note that the recent ransomware attacks by WannaCry and Petya can prove the above

statements, not to mention that none of them were actually polymorphic or metamorphic.

4.5.2 Proposed Distributive PosDeF

Our proposed framework will take care of all kinds of malwares including polymorphic and

metamorphic. We are analyzing static behavior, dynamic behavior, network behavior and

sandbox evasion behavior. Machine learning is incorporated at every step to make the work

more efficient and detect any new malware if current antivirus solutions label it as clean.

Decentralized currency was another incredible innovation recently and it led us to the new

system of bitcoins. Bitcoins are great but what makes them greater is the technology on

which it works. The technology is known as blockchain and it has so many other applications

other than just decentralized currency. Here we use this concept to harness distributive power

of all the systems in the network so that a large amount of computing power is gained with

very little cost and everyone in the network is benefitted.

Our work is highly significant both in the present and in the future. Hackers have recently

used shellcodes in WannaCry and Petya Malwares. The next step is to use polymorphic and

shellcode attack. We must be ready for them and our works makes us ready.

Figure 4.11 Proposed fraework for Decentralized Malware Detection.

Let’s understand how the framework works. When a file which is to be tested enters the

system, we have to profile the file. We check it using already existing antivirus solutions like

Clam AV and Yara, which use VirusShare database. All these technologies are open source.

If the file is detected by the antiviruses as malicious, we straight away label it as a malware

and log it in the database as not-clean. However, if the file is claimed to be clean by the

antiviruses, we do not completely believe them and run it through our model.

Now after scanning about one lakh files from a balanced dataset of malicious and clean files,

the model (through machine learning algorithms), automatically finds out the feature set

which distinguishes between clean and malicious files. We calculate a threshold value for

maliciousness in a file in the form of probability. Now we calculate this probability in our test

sample. If it is more than the threshold value, we label it as malicious. If it is less than the

threshold value, we label it as clean. If it is equal to the threshold value, we label it as

unknown and make it run through the model again for reanalysis. The results are stored in the

form of an immutable ledger called Blockchain.

Our framework uses various machine learning algorithms of clustering and classification like

KNN, Random Forest, N-Gram, Tree classifier etc. Also for the training phase a huge dataset

is required for the model to become viable and give correct results. The model is iterative so

that it improves as more and more samples enter the system even during testing phase. Thus a

great amount of computing power and data storage is required to run this model. Therefore,

running on a single node is not an effective solution.

We use Amazon AWS Cloud services to run the framework in a distributed environment.

Apache Spark framework is used for distributing the load between participating nodes.

Blockchain not only maintains details about clean and malicious files on individual nodes but

is also used for rewarding users according to the amount of computing power they donate for

the detection model. This reward is in the form of tokens mined by the users.

4.5.3 Centralized versus Distributive Computing

There is a huge performance benefit that can be achieved using distributed computing [58].

Let’s take an example. Say we have 10,000 requests to be served. The processing time per

request is say 1 second. Therefore, after the first response, the last response will come after

100000/3600 = 27.7 hours. However, if we have 1000 nodes working in parallel, the same

response is going to come in 100000/6000 = 1.6 minutes. This is a great performance benefit.

Centralized System

 Processing time=1 sec

Request 1

Response 100000

(Time=27.7 hours)

Distributive System

 Processing time=1 sec

Request 1

Response 100000

(Time=27.7 hours)

Figure 4.12 Comparison of performance between a centralized and a distributive system

4.5.4 Role of Apache Spark in PosDeF

Apache Spark is a framework used for cluster or distributed computing. It is an open source

framework [59]. Since our model will run on all networked nodes, Spark will make them run

parallel and will also give fault-tolerance. Therefore, even in the case of failure of any node,

the system is not going to breakdown and will continue operating properly. Spark gives to its

users speed, easy usage and complex analytics.

For distributive computing, we had many technologies like Hadoop, MapReduce and Storm.

Now Hadoop normally runs in batch mode and cannot handle real time data [60]. Apache

Spark, however gives us real-time data analysis in a distributive environment. The other

advantage of Spark is that it gives a unified framework for a variety of datasets like text

dataset, graph dataset etc. It also supports data from both real time and batch sources [61].

One Machine

One Master

Machine

Machine 1

Machine 2

Machine n

Spark also enables one to write applications in a variety of languages like Java, Scala and

Python. Also, in addition to Map Reduce, it also lets a user use SQL queries, streaming data,

machine learning and graph data processing. In an experiment done by the company

‘DataBricks’ [62] in October 2014, a new world record was set for sorting 100 TB of data by

Apache Spark on 207 EC2 virtual machines in 23 minutes. Apache Spark runs everywhere on

Hadoop Mesos, Kubernetes, standalone or in the cloud. It can work with diverse data sources

like HDFS, Cassadara, HBase and S3 [63].

In our model, after testing it on a single node, we need to test it on thousands of nodes

because we will have petabytes of data. For our testing purpose, we have leveraged AWS M3

RAM medium instance that contains 3.75 GB, 1 core CPU and 410 GB of SSD. We have

stored our data in HDFS which is designed for large storage only.

4.5.4.1 AWS M3- M3 is an instance of AWS. M3 is a second generation, general-purpose

EC2 instance type[64]. We are using a medium M3 instance.

4.5.4.2 M3 medium- It has a RAM of 3.75 GiB with an instant storage (SSD) of 1X4 GB

cache. M3 instances have high frequency Intel Xeon E5-2670(Sandy Bridge or Ivy

Bridge) processors. M3 medium is a general purpose instance family. It has only one

vCPU.

4.5.4.3 Amazon EC2- EC2 is an Elastic Compute Cloud. It is a web service that gives

secure, resizable compute capacity on the cloud. It is designed to make web-scale

cloud computing easier for developers. New service instances can be added or

removed within minutes to scale both up and down as one’s computing requirements

change.

Amazon EC2 gives users a wide choice of instance types to suit their needs. Instance

types give various combinations of CPU, memory, storage and networking capacity

to give one the right mix of resources to choose from. Each instance type includes

one or more instance sizes to scale your resources as per your workload[65].

4.5.4.4SSD- Solid State Drives. These deliver high random IO performance. SSD is used as

memory for persistent storage of data. SSD uses interfaces compatible with traditional IO

and Hard Disk Drives which help in simple replacement in many applications. In our model,

410 GB of SSD is used.

4.5.4.5HDFS- Hadoop Distributed File System. This is a fault-tolerant system and is

designed to be deployed on low cost hardware. It is specifically suitable for large data

sets. Since our model will handle data in petabytes, HDFS is suitable for it. It can scale to

hundreds of nodes in a single cluster. Hadoop is actually a data warehousing system and

it needs MapReduce to process the data.

 Spark is designed to write and read data from and to HDFS as well as from other

storage systems like HBase and Amazon’s S3.

4.5.4.6 HDFS Architecture- HDFS has a master-slave architecture [66]. An HDFS

cluster has one NameNode which is a master server managing the file system

namespace. It also regulates access to files by the clients. Also there are a number of

DataNodes which are one per node in the cluster which store data. A file is split into

one or more blocks and these are stored in DataNodes. The NameNode manages

opening, closing and renaming of files and directories. It also tells about the mapping

of blocks to DataNodes. The DataNodes fulfill the request to read and write from the

clients. The DataNodes are also involved in block creation, deletion and block

replication.

4.5.4.7 Non-Computational Data Locality- We need processing and data storage in

the same node. With databases, we had computational and data locality. What that

means is that we had data in one machine and processing in the other. So normally, data

is stored on multiple machines but processing is done on the server. This results in huge

amount of data transfer. Thus traditional MapReduce is not successful for efficient data

sharing. Basically, Hadoop is used for data storage. It is not successful for analysis.

However, Spark increases speed of analysis in real time.

4.5.4.8 Data and Processing on each machine- In a Hadoop cluster, data which is in

the form of HDFS and the MapReduce system, both are present in each machine in

the cluster. This has two advantages; first it introduces redundancy in the system.

Therefore, fault-tolerance increases. Also since data and data processing software

resides on the same machine, therefore information retrieval speed increases.

Machine1

 Server

Machine 2

Machine 3

Fig 4.13 Traditional Database Processing Structure

Processing

Software

Data

Data

Data

Data Node 1

 Master Node

Data Node 2

Data Node 3

Figure 4.14 Hadoop Cluster

4.5.5 Working of the Hadoop Cluster

File

System

Metadata

Job Tracker

Name Node

Blocks Task

Of Data

 Tracker

(HDFS (Map

Layer) Reduce

 Layer)

Blocks Task

Of Data

 Tracker

(HDFS (Map

Layer) Reduce

 Layer)

Blocks Task

Of Data

 Tracker

(HDFS (Map

Layer) Reduce

 Layer)

The Hadoop cluster works in a modular fashion and the work is divided between master and

slave nodes. Detailed working is as follows:

1) Start.

2) Client requests for a file.

3) JobTracker receives the request.

4) NameNode which stores metadata tells which DataNodes store the blocks that make

up that file.

5) Client directly reads the blocks from the individual DataNodes.

6) JobTracker schedules the Map and Reduce tasks on the appropriate TaskTrackers in a

rack-aware manner.

7) JobTracker monitors for any failing tasks that need to be rescheduled on a different

TaskTracker.

8) TaskTracker spawns JVMs to run Map and Reduce tasks and report back to the

TaskTracker.

Stop after the process completes.

Figure 4.15 Hadoop Master-Slave Architecture

HDFS

Client

Master Node

Job Tracker

Slave Node 1

Task Tracker

Data Node

Map Redu

ce

Slave Node 1

Task Tracker

Data Node

Map Redu

ce

Slave Node 1

Task Tracker

Data Node

Map Redu

ce

CHAPTER 5 FINDINGS AND CONCLUSIONS

5.1 Execution for a clean sample on the Framework…………………. 155

 5.1.1 Static Analysis…………………………………………... 155

 5.1.2 Dynamic Analysis……………………………………….. 155

 5.1.3 Snort Analysis…………………………………………… 161

5.2 Execution for a malicious sample on the Framework…………….... 162

 5.2.1 Static Analysis……………………………………………. 162

 5.2.2 Dynamic Analysis………………………………………… 163

 5.2.3 Snort Analysis…………………………………………….. 167

 5.2.4 Sandbox Evasion Detection………………………………. 170

5.3 Final Results………………………………………………………... 170

 5.3.1 Results obtained from the Framework

 after all four steps…………………………………………… 171

 5.3.2 Comparison with the existing Centralized systems……….... 175

 5.3.2.1 Working of the Distributed Framework…………... 177

 5.3.2.2 Blockchain for Records and Rewards…………….. 177

 5.3.2.3 Using Ethereum for maintaining Blockchains……. 180

5.4 Conclusions……………………………………………………………. 182

5.5 Limitations of the Study………………………………………………. 182

5.6 Further Research Potential…………………………………………….. 183

CHAPTER 5

FINDINGS AND CONCLUSIONS

After successfully training the model, we will test the model with about 40 files. Below first

we will show the screenshots of actual execution first with a clean file and then with a

malicious file. Then we show an excel document of the complete results with a dataset of 40

files.

5.1 Execution for a clean sample on the Framework:

Say we have a file named ‘1.exe’.

5.1.1 Static Analysis

First we do static analysis for the file. When we get the result, the static analysis gives a

probability of only 26% that this file is a malicious file.

On the command prompt we can write:

$./checkpe.py ../finalresult/clean/1.exe

The result that we get is:

[0.26 0.74]

5.1.2 Dynamic Analysis

This is the dynamic analysis for the file. Dynamic analysis or behavior analysis is done using

‘Cuckoo Sandbox’. After setting up Cuckoo on Ubuntu host we will start submitting samples.

Submitting of sample can be done using simple command:

$ cuckoo submit /path/to/binary

Because it would be cumbersome to go and submit every file manually here is a small python

script that makes the work very simple.

Import os

from subprocess import call

directory_in_str=”/home/varnit/Downloads/clean_files”;

directory = os.fsencode(directory_in_str)

for file in os.listdir(directory):

 filename = os.fsdecode(file)

 call([“cuckoo”, “submit”,”/home/varnit/Downloads/clean_files/”+filename])

Figure 5.1 Python Script for submitting files to Cuckoo

Above script will fetch every other file into clean directory and submit it to cuckoo. There is

a similar directory named malicious and we can run the same script for that as well.

This is how Cuckoo runs and analyzes the file.

Figure 5.2 Analysis of files by Cuckoo

This screenshot shows Cuckoo processing file in the sandbox which is actually an Oracle VM

VirtualBox here.

Figure 5.3 Cuckoo processing the file in a virtual sandbox

This is the JSON report generated for the file.

Figure 5.4 A JSON report for the file analyzed by Cuckoo

Now, this JSON file is human readable but it’s a lengthy file and it will be very difficult for a

machine learning algorithm to process it. A man called Konrad Rieck at the University of

Göttingen created a method name Malheur which has created a new format called mist

format. MIST format represents JSON files very efficiently. They have used it to classify

malwares into different families i.e. multiclass classification but it’s equally good for binary

classification ie. malware or benign sample.

Now we need to convert this JSON format into MIST format to make it more understandable

for machine learning algorithms.

Figure 5.5. Conversion of JSON report to MIST format

Now though this MIST format is better than JSON format, however, it is still not appropriate

for the machine learning algorithms. Therefore, the MIST format has to be converted into

http://user.informatik.uni-goettingen.de/~krieck
http://www.sec.informatik.uni-goettingen.de/
http://www.sec.informatik.uni-goettingen.de/

sparse matrix format (‘transformed_mat’) for feeding into the machine learning algorithms.

The 31 stored elements here show the 31 unique NGram tokens. We use ‘vectorizer’ which is

an object provided by the Scikit-Learn library. The vectorizer object converts the MIST

format file into sparse matrix. It splits the MIST file into unique tokens. It then assigns

weight to each token proportional to the frequency in which it occurs in the MIST file. Then

it creates a sparse matrix in which each row represents a document and each column

represents a token.

A sample ngram sparse matrix which is made of 16 files is of dimension -

Figure 5.6 N Gram Sparse Matrix

As visible in the above screenshot our matrix is of 16 by 7255 dimensions.

Figure 5.7 A 16 X 7255 Dimension Sparse Matrix

Figure 5.8 Explanation of a sample Sparse Matrix.

Figure 5.9 Commands to show the formation of Sparse Matrix for our data.

Various algorithms like KNN, Perceptron, Random Forest, Passive-Aggressive, L2 Penalty

etc. are compared. Out of these, KNN showed the best accuracy.

The KNN (K Nearest Neighbor) machine learning algorithm is applied on the sparse

matrix(transformed_mat) to predict probability of maliciousness. The result below shows that

there is only 20% chance of the file being a malware.

Figure 5.10 KNN algorithm used to predict probability on the transformed matrix.

5.1.3 Snort Analysis

A snort analysis done on the file gives its network characteristics. After submission to

Cuckoo, a dump.pcap file is generated which gets converted into N Gram sparce matrix.

 This is the screenshot of dump.pcap which is generated by Cuckoo.

Figure 5.11 Snapshot of dump.pcap file

The sparse matrix is called ‘transformed_mat’. Random Forest algorithm is used for

predicting the probability of maliciousness of the file. It predicts that there is only 35%

chance of the file being malicious. There is 65% chance of it being clean according to Snort

analysis.

Figure 5.12 Predicting probability of maliciousness using Random Forest Algorithm

The sample does not evade the sandbox. Therefore there is no sandbox evasion screenshot.

5.2 Execution for a malicious sample:

Now, when we run the model with a malicious file, it is easy to see a stark comparison.

5.2.1 Static Analysis

Firstly let’s start with static analysis. In the training phase we will test various algorithms and

again we split the set of data into 80% training and 20% testing. The graph below shows the

result obtained from that. So we have found that Random Forest is the winner in classifying

malwares based on static analysis.

Figure 5.13 Comparison of various machine learning algorithms to show that Random Forest

is the best

Below one can clearly see that static analysis gives a 1 probability that the file is malicious.

Figure 5.14 Result of a file showing malicious behavior

5.2.2 Dynamic Analysis

This is the dynamic analysis for the sample. Dynamic analysis or behavior analysis is done

using ‘Cuckoo Sandbox’. This is how the sample is submitted to cuckoo for analysis.

Figure 5.15 Same file submitted to Cuckoo for dynamic analysis.

The sample runs in a sandbox which is actually an Oracle VM VirtualBox.

Figure 5.16 Sample running in a VM virtual box.

JSON report is generated for the sample.

Figure 5.17 A JSON report generated for the sample

Now, this is the sample JSON file extracted from a malicious sample. We have omitted most

of the file and only included those portions through which we can get some idea of how

malicious behaviour can be predicted by the help of a JSON report.

Process Tree -> In the process tree it is visible that it's calling Internet Explorer. Now a

malware may be trying to download some malicious payload in to the system or trying to

inject itself into system through various processes like java applets, flash player or plain

javascript.

antisandbox_sleep -> A process attempted to delay the analysis task.

antivm_virtualpc -> Tries to detect VirtualPC.

antisandbox_unhook ->Tries to unhook Windows functions monitored by Cuckoo.

DLL-loaded -> its visible through the JSON file that the malware is trying to load some dll

which look suspicious.

DNSAPI.dll-> This API is used to manipulate dns cache in windows. A malware can hijack

this file to redirect users to any advertisement or it may start downloading payloads.

sspicli .dll-> This is a security support library for windows and is used to play with

certificates. This library can be hijacked to manipulate security certificates in Windows.

Rpcrt4.dll -> This is remote procedure call library which is used to call remote procedures

i.e. functions that are deployed on remote computer. A malware can use this file to contact its

master.

cryptbase.dll-> this is the core cryptography library for Windows. A malware can use it to

encrypt files and later ask for ransoms or for some other purposes.

Strings -> This portion contains the extracted strings during the execution phase of a file. In

our case we can see some suspicious strings for example tor. Tor urls are mostly used for

anonymous communication and are definitely suspicious.

The JSON report is converted into MIST format using a cuckoo2mist converter function in

python.

Figure 5.18 JSON report converted to MIST format using cuckoo2mist converter

This is the screenshot for the MIST report.

Figure 5.19 MIST report for the sample.

For prediction of maliciousness of the sample, the best algorithm has to be found out. We

compare all algorithms and according to the highest score, we find KNN to be the best.

Figure 5.20 Graph comparing all algorithms and finding that KNN is best suited for analysis

This MIST report is converted into an N Gram sparse matrix using vectorizer.transform()

function of python. Then it is converted into an array. KNN classifier algorithm is applied to

this array to predict behavior maliciousness of this sample. It is predicted that there is 60%

chance that this sample is malicious and 40% chance that it is clean.

Figure 5.21 KNN Algorithm predicting maliciousness of the sample from transformed matrix

5.2.3 Snort Analysis

Cuckoo generates a dump.pcap file. Snort converts this pcap file into a text file. A screenshot

of that file is shown below.

Figure 5.22 A dump.pcap file generated by Cuckoo

We find Random Forest to be the best in this case by comparing it with all other algorithms.

So KNN is being used for behavior analysis while Random Forest for Snort analysis in this

case. We have calculated which algorithm scores best. The choice of algorithm may vary

according to the data. Though the graph below shows that a lot of time is taken for training

and testing for Random Forest, but the score is good and our main aim is to reduce the

number of false positives and false negatives.

Figure 5.23 Graph comparing all algorithms and showing Random Forest to be the best for

analysis

A text report generated by Snort is converted into a sparse matrix called ‘transformed_mat’.

Random Forest classifier is used for predicting the probability of network maliciousness of

this sample. The Random Forest classifier predicts the sample to be 74% malicious and 26%

clean.

Figure 5.24 Random Forest algorithm predicts maliciousness of the sample to be 74%

5.2.4 Sandbox Evasion Detection

The screenshot below shows that this sample tries to evade the sandbox. Therefore this

definitely is a malware.

Figure 5.25 Evasion of sandbox by the sample

5.3 Final Results

For the final testing we have taken 40 samples. Some of them are considered clean and some

malicious by standard anti-virus software. For every malicious file that we find, we

quarantine it after logging. Following are the benefits of our model as compared to standard

models present in the market today:

 Our model has been successfully able to detect all malware with 100% accuracy.

 Our model is free as compared to standard antivirus software and Intrusion Detection

Prevention Systems which are costing as high as thousands of dollars.

 Our model is non-proprietary and non-central. Therefore it is free from bias. It is also

free from illegitimate profit making where companies would float their self-created

malware and then propose paid solutions for them.

 Our model has an instant update facility. It is updated at all times. The moment a new

malware hits the Internet, its entire signature and behavior reaches the model and it

updates its database accordingly.

 It is a fast model as compared to other models in the system. Its complexity is log n.

the work is distributed and divided among all nodes. Thus it is never resource-heavy

and always fast no matter now heavy the analysis of the sample is.

 In our model everyone benefits. Both consumers and companies. Consumers get

efficient anti malware facilities for free and companies get latest malware signatures

which were previously undetected.

5.3.1 Results obtained from the PosDeF after all four steps

After the final calculation, we have also categorized the malware according to the

level of severity. Informational means it has very less malware behavior and is not a

big threat. Low means the severity is more than Informational but still the threat is not

great. High means it poses a great threat to the system. Finally, Critical means the

highest level of threat and this type of malware must be dealt with immediately.

 Level of Severity Combined Probability Color

 Clean <0.5000

 Informational 0.5000-0.5500

 Low 0.5500-0.6000

 Medium 0.6000-0.6500

 High 0.6500-0.7000

 Critical >0.70

serial

no. File md5

static

probability

malicious

cuckoo

probability

snort

probability

Sandbox

evasion

expected

result

combined

probability

Level

 of

Severity

1

8f7cffcaee650d8354e109a02c

446ab5 0.22 0.2 0.25 0 Clean 0.1675

2

bdfabedacd6f18b5efb14b7529

f3ed3e 0.00 0.2 0.25 0 Clean 0.1125

3

849a4f51bd705d66e89777461

a387bec 0.00 0 0.25 0 Clean 0.0625

4

e91b86766137a96b110579fd0

375140f 0.00 0.2 0.25 0 Clean 0.1125

5

7a85072003bac69bf5d7b4864

d18468b 0.00 0.2 0.26 0 Clean 0.115

6

3d07c3d2c72dba175cb37d690

bd668e5 0.28 0.2 0.25 0 Clean 0.1825

7

ddb88d0bb116d468b2b3efbb6

e3d6d06 0.00 0.1 0.27 0 Clean 0.0925

8

3290d6946b5e30e7041499057

4883ddb 0.00 0.2 0.26 0 Clean 0.115

9

212bd731ad0a24112b902219b

f5df492 1.00 0.2 0.25 0 Clean 0.3625

10

0e5bc786206a3762ce47a0a2d

bd01d7b 0.00 0.2 0.25 0 Clean 0.1125

11

ffb142b184585cb9535499751

6f050e4 0.54 0.4 0.72 1 Malicious 0.665

12

ff889fc4c0e946969a216da6c0

0bc9e7 1.00 0.5 0.71 0 Malicious 0.5525

13

ff976b8cecd95e189c710b1e70

a4cce2 0.96 0.2 0.79 1 Malicious 0.7375

14 ffdf8eb73c7e506d8e1006cf57

3bd76e

1.00 0.6 0.72 0 Malicious 0.58

15

fff8783b7567821cec8838d075

d247e1 1.00 0.5 0.66 0 Malicious 0.54

16

fff71367aec8f4985fb1071aad9

bb677 1.00 0.5 0.77 0 Malicious 0.5675

17

ffaf901cce614413547e4ff5a3a

d105d 0.96 0.3 0.73 1 Malicious 0.7475

18

ffac33bb85018d70153a36bf39

ff1406 1.00 0.4 0.75 1 Malicious 0.7875

19

ffaf901cce614413547e4ff5a3a

d105d 0.96 0.3 0.7 1 Malicious 0.74

20

ffb142b184585cb9535499751

6f050e4 0.54 0.4 0.8 1 Malicious 0.685

21

4087f52a17eb28592a7dc0d84

40a980e 0.26 0 0.26 0 Clean 0.13

22

f7b53b4bd50c13d17f5c54f82c

de7836 0 0.2 0.25 0 Clean 0.1125

23

81418288d97ad8fddee1a9153

8a85a6b 0 0 0.25 0 Clean 0.0625

24

ba4e1a60bd20ca7978c76d79f

19e37f0 0.22 0.3 0.27 0 Clean 0.1975

25

fe2b659d941440294ab90559a

cf69f11 0.22 0.2 0.25 0 Clean 0.1675

26

3da66ef520d45081dcffdaecd3

de17c8 0 0 0.22 0 Clean 0.055

27

0f498e1e332f1c1fbf32b55880

5ed0d5 0.36 0.1 0.25 0 Clean 0.1775

28

ad61f7afe913b2642650504df2

0

0.2

0.26

0

Clean

0.115

83aa63

29

44daf0a410ab80e7cab7c12ede

5ffb34 0.28 0.2 0.25 0 Clean 0.1825

30

b2f75222e51d1e896951787ae

9de8bb6 0.23 0.1 0.14 0 Clean 0.1175

31

b82466f58fd7776c135890485f

d119a1 0.78 0.7 0.62 0 Malicious 0.525

32

73c5a538151abc30d7d4c164f

ca14131 0.69 0.4 0.34 1 Malicious 0.6075

33

e26ce823eb40720c2ec9c5334

d578369 0.96 0.7 0.77 0 Malicious 0.6075

34

03fff11a415b7026c1fc01e45d

771c93 0.87 0.5 0.79 0 Malicious 0.54

35

5effd66560365ded439d209f4d

493ece 1.00 0.6 0.72 0 Malicious 0.58

36

f428a574e9f26745fb70ee3128

daf876 0.92 0.4 0.66 0 Clean 0.495

37

03b9ab193fb9c0a4d57365cb0

80bc88b 0.96 0.5 0.77 0 Malicious 0.5575

38

a14df5a55c2f3b760c37953f36

d5f459 0.79 0.5 0.73 0 Clean 0.505

39

6d7cbfd1a6f527df4546da1f68

87a339 1.00 0.3 0.75 1 Malicious 0.7625

40

718e0121fb212ea4448e67648

def9fb9 1.00 0.6 0.7 1 Malicious 0.825

41

ca80332eaa27a9a97327b4e78

ade9574 0.77 0.62 0.70 1 Malicious 0.7725

42

a44f2d1a832aa9aba551d552c6

9f44da7b02ff7a126c3a6eb4b1

0.62

0.78

0.77

0

Malicious

0.5425

Table 5.1 : Final Results obtained by testing sample files

5.3.2 Comparison with the existing Centralized systems

In the existing frameworks commonly used today, centralised technologies are used. These

technologies are allow and inefficient. We have used decentralised technologies like Apache

Spark on Amazon AWS Cloud for implementation of the model. The graph below shows the

result of training on Spark. It shows that as the number of nodes increase, execution time

decreases. From 140 when running our program on a single node and reduces to 40 seconds

when run on 3 or 4 nodes.

Figure 5.26 Graph showing training on Apache Spark.

22a32265c34b

43

c9cfdc43448980fcd17066bc00

b73baa 0.61 0.53 0.71 1 Malicious 0.7125

Time in

seconds.

Number of nodes.

The next graph shows that the distribution is successfully done on all four nodes and all of

these are used by the program for distributed execution. Here we have taken 4 machines with

IP Addresses:

172.31.29.19

172.31.23.172

172.31.28.58

172.31.25.122

We have tested all four nodes for an aggregated load of one hour. The X-axis shows time and

the Y-axis shows distribution of load.

Figure 5.27 Distribution of load on 4 nodes aggregated for 1 hour.

When we launch an instance of AWS, it is given a hostname. Our Amazon EC2 private DNS

name looks like this:

ip-173-31-23-172.us-west-2.compute.internal.

ip-173-31-23-172 is IPV4 address which is the internal domain.

Compute is the service and west is the region. This name is for a Linux instance.

5.3.2.1 Working of the Distributed Framework

1) We create a sample Amazon EMR cluster by using the AWS Management Console.

2) After going to the AWS Management Console, we select Elastic MapReduce Service.

Amazon EWS gives a managed Hadoop framework. Thus it becomes easy, fast and

cost-effective to prove huge volumes of data across dynamic, scalable Amazon EC2

instances. It also lets you run other distributed frameworks like Apache Spark.

3) Then we select the number of nodes required to run our model. Here we select first

one, then two, then three and then four nodes to find out the effectiveness of

distribution.

4) We also select the tools required for processing i.e. ‘Apache Spark’ and ‘Hadoop’.

Spark for distributed data processing and Hadoop for in-node data processing.

5) After that, an Apache Zeppelin Notebook is exposed to us. Here we write our program

and execute it in a distributed manner using Hadoop and Apache Spark. Zeppelin is a

web based notebook for interactive data exploration. It is used for data ingestion,

discovery, analytics, visualization and collaboration.

5.3.2.2 Blockchain for Records and Rewards

Blockchain is a data structure that distributes trust among many nodes instead of one. It’s like

a single link list that lives on everybody’s computer (miner) on the network. It is a huge chain

of transactions. It’s more like a distributive ledger. It grows continuously as more and more

transactions are added to the network [67]. A blockchain is an immutable list of transactions

that have ever occurred in the network that all the nodes have to store a copy of. Each block

contains address to the next block. It also has the complete record of the transaction including

timestamp and transactional data.

Rewards: are a way to recognize nodes and their users who give their CPU speed and

execution power and their storage for the running of this system. The rewards are in the form

of recognitions. They can take any form. Say a person contributes his resources to our

framework. Now he becomes instrumental in discovering a new malware in the process. Then

his contributions can be recognized by putting his name in CVE database along with the

name of the malware to appreciate that he helped in discovering that malware.

 The blockchain is verifiable. The transaction is represented as a 25 character hash. This hash

is a string of letters and numbers. All the miners in the network will validate the transaction

for it to be added to the blockchain. All these miners have to vote on the validity of each

transaction. Before they can vote, they have to provide a proof that they have computed this

random mathematical problem. This is the proof of their computational work. This is called

‘Proof of work’ algorithm.

Figure 5.28 A part Blockchain of five blocks generated by Implemented model.

1. Nonce - Nonce is a 32-bit (4-byte) field in Bitcoin network. It is used to decide

how hard it would be to mine a new block for the transaction to proceed.

2. Hash- Hash is an alphanumeric value that is calculated for the data present in

each block. This is the digital fingerprint of this data. It is because of the hashes

why Blockchain can be trusted. If the data is modified in some way, its hash value

changes and is rejected by other blocks in the chain.

3. Md5sum- This is the message digest of the file being profiled. It is a calculated

checksum. The Hash field gives hash value for the entire block whereas Md5sum

gives the hash value of the file present in the block.

4. Previous Hash- Is used for maintaining the integrity of the chain. This contains

hash of the previous block.

5. Status- Tells whether the tested sample is malicious, clean or unknown.

6. Timestamp- is the Unix timestamp format. It stores the time when the block

was created. This is there in case we want to scan the available files again and

change the status.

5.3.2.3 Using Ethereum for maintaining Blockchains

 Initially Bitcoins were used as a payment system which is digitized and has no

central regulatory system. It is a peer to peer currency. Ethereum is an

infrastructure in addition to being a payment system. It provides Smart Contracts

and even Crowdsourcing. It provides developers with expanded functionality

because it is written in a Turing Complete language. A Turing complete language

enables you to do anything with it provided you have enough time and computing

power.

The database in both Bitcoin and Ethereum is stored in every node. Now this

increases the storage requirement of every node participating in the detection

mechanism. Therefore we build the Ethereum blockchain on top of our Hadoop

Cluster in an indexed manner.

Figure 5.29 Comparison of Ehereum Blockchain database architecture without Indexing and

with Indexing on top of Hadoop.

5.4 Conclusions

 Polymorphic shellcodes can be detected by the above mentioned framework. This is

an organized manner through which most of the polymorphic shellcodes can be

correctly identified and the risks can be mitigated. Our model was accurately able

to detect all the malwares. In line 38 of the final results table, the sample was

expected to be clean but our model showed it to be malicious of a mild kind. We ran it

on NoDistribute and no antivirus was able to declare it as malicious. This can be a

case when the existing antivirus solutions were not able to detect the malware because

of several reasons, maybe it was of a mutating kind or it evaded the sandbox.

Whatever may be the case, our model was able to prove that it was indeed a malicious

sample with maliciousness probability of 0.505.

 Similarly on line number 31, the present models, predicted the probability of the

sample to be clean. But our model declared it as malicious with maliciousness

probability of 0.525. This can be the case that the sample was new therefore the

existing solutions could not detect its maliciousness. Since our model takes a 360
0

approach to detection therefore our model was successful in detecting the malware.

 In line 41, 42 and 43, we have details of advance malware that we had created on our

own using Metasploit, AdmMutate, Clet and other techniques and inserted them in

legitimate coode using Shellter. In NoDistribute, only 1 out of 36 popular antimalware

solutions were able to detect them but our framework detected them accurately.

 This Machine learning framework is used for the detection of all types of malwares.

The model is iterative, thus self- improving. It is made efficient and scalable using

Amazon AWS cloud technologies. The load distribution is carried out by the

framework of Apache Spark which uses Hadoop and HDFS architecture. Immutable

dataset is stored in a secure manner through Blockchain. All nodes are rewarded for

providing their computing power through tokens in the Blockchain. The complete

model is in the execution stage and is running fine in a lab environment. It can be

scaled easily to the real world implementation by increasing the number of nodes in

the cloud.

5.5 Limitations of the Study

There are some limitations to this study.

 Distributive environment- The framework has to work in a distributive environment

so as to be resource efficient. In a centralized environment, the framework can

become slow and ineffective and the identification of malicious shellcode may take

lot of time.

 High data requirement- More the data for the training of the model, more accurate

will the model be. Thus one more limitation is the amount of dataset we use for

training and testing purposes as there is a chance of false positives wherein a benign

code may be identified as malicious and vice-versa because of paucity of enough data.

Also deep learning will be more accurate if it has more iterations and that cn happen

with a large dataset.

 Dependence on ancillary technologies- the framework depends on Ethreum

blockchain and cloud technologies. The Ethereum blockchain can be replaced with

any other blockchain and Amazon cloud also can be replaced by other cloud

platforms. But the overall efficiency of the framework is somewhat dependant on

these ancillary technologies also. So when they imrove, our framework improves too.

5.6 Further Research Potential

There is a lot of scope for further research in this subject. There may be more efficient ways

to detect the polymorphic shellcodes. Those ways may take less time and may have very less

chance of false positives. We tried the Neural Network approach also because of cheap

GPUs. This approach works very well in a distributive environment. However, the score that

this algorithm gave was less than the other algorithms. Therefore, we had to leave this

approach. In future, when this algorithm is developed further, we may get a better score and

use this algorithm. The model will improve as dataset increases. More the data means better

trained the machine. Therefore as we get more samples for training our machine, the accuracy

of the machine will start increasing further. Also when more users get attached in the block

chain, more and more people will be giving their data for analysis, thus enhancing the dataset.

Also, since all the systems participating in the blockchain are voluntarily giving their CPU

services also thus as more block increase, the efficiency of the blockchain and thus the entire

system will also shows an increase. Cloud technology is used to carry out distributed

services. As Cloud services become more efficient and cheap, the system improves further.

184 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

REFERENCES

[1]Bazrafshan, Z., Hashemi, H., Fard, S. M. H., & Hamzeh, A. (2013, May). “A survey on heuristic malware

detection techniques”. In Information and Knowledge Technology (IKT), 2013 5th Conference on (pp. 113-

120). IEEE.

[2] Mathur, K., & Hiranwal, S. (2013). “A survey on techniques in detection and analyzing malware

executables”. International Journal of Advanced Research in Computer Science and Software Engineering, 3(4).

[3] Carson, M. (2016). “Evaluating the Ability of Anti-Malware to Overcome Code Obfuscation”. Selected

Computing Research Papers, 9.

[4]Adeyinka, O. (2008, May). “Internet attack methods and internet security technology”. In Modeling &

Simulation, 2008. AICMS 08. Second Asia International Conference on (pp. 77-82). IEEE.

[5]Martin, R. A. (2001). “Managing vulnerabilities in networked systems”. Computer, (11), 32-38.

[6]Mell, P., & Grance, T. (2002). “Use of the common vulnerabilities and exposures (cve) vulnerability naming

scheme” (No. NIST-SP-800-51). National Institute of Standards and Technology Gaithersburg MD Computer

Security Div.

[7] Tsyganok, K., Tumoyan, E., Babenko, L., & Anikeev, M. (2012, October). “Classification of polymorphic

and metamorphic malware samples based on their behavior”. In Proceedings of the Fifth International

Conference on Security of Information and Networks (pp. 111-116). ACM.

[8]Baysa, D., Low, R. M., & Stamp, M. (2013). “Structural entropy and metamorphic malware”. Journal of

computer virology and hacking techniques, 9(4), 179-192.

[9] Rieck, K., Trinius, P., Willems, C., & Holz, T. (2011). “Automatic analysis of malware behavior using

machine learning”. Journal of Computer Security, 19(4), 639-668.

185 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

[10]Santos, I., Devesa, J., Brezo, F., Nieves, J., & Bringas, P. G. (2013). “Opem: A static-dynamic approach for

machine-learning-based malware detection”. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12

Special Sessions(pp. 271-280). Springer, Berlin, Heidelberg.

[11] Oktavianto D, Muhardianto I. “Cuckoo malware analysis”. (2013 Oct 16) Packt Publishing Ltd.

[12] Blasing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A., & Albayrak, S. (2010, October). “An android

application sandbox system for suspicious software detection”. In 2010 5th International Conference on

Malicious and Unwanted Software (MALWARE 2010) (pp. 55-62). IEEE.

[13] Prayudi, Y., & Riadi, I. (2015). “Implementation of malware analysis using static and dynamic analysis

method”. International Journal of Computer Applications, 117(6).

[14] Zolkipli, M. F., & Jantan, A. (2011, March). “An approach for malware behavior identification and

classification”. In Computer Research and Development (ICCRD), 2011 3rd International Conference on (Vol.

1, pp. 191-194). IEEE.

[15] Bhardwaj, A., Avasthi, V., Sastry, H., & Subrahmanyam, G. V. B. (2016). “Ransomware digital extortion:

a rising new age threat”. Indian Journal of Science and Technology, 9(14), 1-5.

[16] Shinde, R., Van der Veeken, P., Van Schooten, S., & van den Berg, J. (2016, December). “Ransomware:

Studying transfer and mitigation”. In Computing, Analytics and Security Trends (CAST), International

Conference on (pp. 90-95). IEEE.

[17] Dwivedi, K., & Dubey, S. K. (2014, September). “Analytical review on Hadoop Distributed file system”.

In Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International

Conference- (pp. 174-181). IEEE.

[18] Correia, R. C., Spadon, G., Eler, D. M., Olivete, C., & Garcia, R. E. (2018). “Teaching Distributed Systems

Using Hadoop”. In Information Technology-New Generations (pp. 355-362). Springer, Cham.

[19]Jangra, A., & Bala, R. (2011). “Spectrum of cloud computing architecture: Adoption and avoidance

issues”. International Journal of Computing and Business Research, 2(2), 5.

[20] Sareen, P. (2013). “Cloud computing: types, architecture, applications, concerns, virtualization and role of

it governance in cloud”. International Journal of Advanced Research in Computer Science and Software

Engineering, 3(3).

186 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

[21] MacDonald, T. J., Allen, D. W., & Potts, J. (2016). “Blockchains and the boundaries of self-organized

economies: Predictions for the future of banking”. In Banking Beyond Banks and Money (pp. 279-296).

Springer, Cham.

[22] Davidson, S., De Filippi, P., & Potts, J. (2018). “Blockchains and the economic institutions of

capitalism”. Journal of Institutional Economics, 1-20.

[23] Tschorsch, F., & Scheuermann, B. (2016). “Bitcoin and beyond: A technical survey on decentralized digital

currencies”. IEEE Communications Surveys & Tutorials, 18(3), 2084-2123.

[24] Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). “Bitcoin: Economics, technology, and

governance”. Journal of Economic Perspectives, 29(2), 213-38.

[20]Kong, Deguang, et al. "SAS: semantics aware signature generation for polymorphic worm detection."

International Journal of Information Security 10.5 (2011): 269-283.

[21]Loh, Peter KK, and Brian WY Loh. "Cells—A novel IOT security approach." Region 10 Conference

(TENCON), 2016 IEEE. IEEE, 2016.

[22]Chouchane, Radhouane, et al. "Detecting machine-morphed malware variants via engine attribution."

Journal of Computer Virology and Hacking Techniques 9.3 (2013): 137-157.

[23]Austin, Thomas H., et al. "Exploring hidden Markov models for virus analysis: a semantic approach."

System Sciences (HICSS), 2013 46th Hawaii International Conference on. IEEE, 2013.

[24]Rad, Babak Bashari, Maslin Masrom, and Suhaimi Ibrahim. "Camouflage in malware: from encryption to

metamorphism." International Journal of Computer Science and Network Security 12.8 (2012): 74-83.

[25] Denzin, N. K., & Lincoln, Y. S. (1994). “Handbook of qualitative research”. Sage publications, inc.

[26] Nasrabadi, N. M. (2007). “Pattern recognition and machine learning”. Journal of electronic imaging, 16(4),

049901.

 [27] Hastie, T., Tibshirani, R., & Friedman, J. (2009). “Unsupervised learning”. In The elements of statistical

learning (pp. 485-585). Springer, New York, NY.

187 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

[28] Cavnar, W. B., & Trenkle, J. M. (1994, April). N-gram-based text categorization. In Proceedings of

SDAIR-94, 3rd annual symposium on document analysis and information retrieval(Vol. 161175).

[29] “x86 Instruction Sequence”. Article. Accessed: 24 July 2017. Available via:

http://x86.renejeschke.de/html/file_module_x86_id_217.html

[30] Akritidis, P., Markatos, E. P., Polychronakis, M., & Anagnostakis, K. (2005, May). Stride: Polymorphic

sled detection through instruction sequence analysis. In IFIP International Information Security Conference (pp.

375-391). Springer, Boston, MA.

[31] Haugsness K. ”IDFAQ: What is polymorphic shell code and what can it do?”Article, SANS. Accessed: 10

July 2017. Available via: https://www2.sans.org/security-resources/idfaq/what-is-polymorphic-shell-code-and-

what-can-it-do/2/19

[32]Johansson K., ”Re:pen testing & obfuscated shellcode(more neat stuff)”, Article, Accessed: 9 July 2017,

Available via: http://seclists.org/pen-test/2004/Feb/69

[33] CourseHero, “Trampolining despite the fact that nop sledding makes”, Article, Accessed: 26 June

2017, Available via: https://www.coursehero.com/file/p2o51ar/Trampolining-Despite-the-fact-that-NOP-

sledding-makes-stack-based-buffer

[34] Polychronakis, M., Anagnostakis, K. G., & Markatos, E. P. (2007, September). Emulation-based detection

of non-self-contained polymorphic shellcode. In International Workshop on Recent Advances in Intrusion

Detection (pp. 87-106). Springer, Berlin, Heidelberg.

[35] Wang, S. J., & Kao, D. Y. (2007). Internet forensics on the basis of evidence gathering with Peep

attacks. Computer Standards & Interfaces, 29(4), 423-429.

[36] Fuchsberger, A. (2005). Intrusion detection systems and intrusion prevention systems. Information Security

Technical Report, 10(3), 134-139.

[37] Christodorescu, M., & Jha, S. (2006). Static analysis of executables to detect malicious patterns.

Wisconsin Univ-Madison dept of Computer Sciences.

[38] Song, Y., Locasto, M. E., Stavrou, A., Keromytis, A. D., & Stolfo, S. J. (2010). On the infeasibility of

modeling polymorphic shellcode. Machine learning, 81(2), 179-205.

188 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

[39] Li, X., Loh, P. K., & Tan, F. (2011, September). Mechanisms of polymorphic and metamorphic viruses.

In 2011 European intelligence and security informatics conference (pp. 149-154). IEEE.

[40] Borello, J. M., & Mé, L. (2008). Code obfuscation techniques for metamorphic viruses. Journal in

Computer Virology, 4(3), 211-220.

[41] Crandall, J. R., Su, Z., Wu, S. F., & Chong, F. T. (2005, November). On deriving unknown vulnerabilities

from zero-day polymorphic and metamorphic worm exploits. In Proceedings of the 12th ACM conference on

Computer and communications security (pp. 235-248). ACM.

[42] Nakashima, E., & Timberg, C. (2017). NSA officials worried about the day its potent hacking tool would

get loose. Then it did. Washington Post.

[43] Syverson, P., Dingledine, R., & Mathewson, N. (2004). Tor: The second generation onion router. In Usenix

Security.

[44] Popoola, S. I., Ojewande, S. O., Sweetwilliams, F. O., John, S. N., & Atayero, A. A. (2017). Ransomware:

Current Trend, Challenges, and Research Directions.

[45] Du, W., & Zhan, Z. (2002, December). Building decision tree classifier on private data. In Proceedings of

the IEEE international conference on Privacy, security and data mining-Volume 14 (pp. 1-8). Australian

Computer Society, Inc..

[46] Sung, A. H., Xu, J., Chavez, P., & Mukkamala, S. (2004, December). Static analyzer of vicious executables

(save). In 20th Annual Computer Security Applications Conference (pp. 326-334). IEEE.

[47] Ferrand, O. (2013). How to detect the Cuckoo Sandbox and hardening it?. In EICAR Annual Conf.,

Hannover, Germany.

[48] Qiao, Y., Yang, Y., He, J., Tang, C., & Liu, Z. (2014). CBM: free, automatic malware analysis framework

using API call sequences. In Knowledge engineering and management (pp. 225-236). Springer, Berlin,

Heidelberg.

[49] Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., & Lee, W. (2011, May). Virtuoso: Narrowing the

semantic gap in virtual machine introspection. In 2011 IEEE Symposium on Security and Privacy (pp. 297-312).

IEEE.

189 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

[50] Hejazi, S. M., Talhi, C., & Debbabi, M. (2009). Extraction of forensically sensitive information from

windows physical memory. digital investigation, 6, S121-S131.

[51] Qiao, Y., Yang, Y., Ji, L., & He, J. (2013, July). Analyzing malware by abstracting the frequent itemsets in

API call sequences. In 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing

and Communications (pp. 265-270). IEEE.

[52] Chandramohan, M., Tan, H. B. K., & Shar, L. K. (2012, November). Scalable malware clustering through

coarse-grained behavior modeling. In Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering (p. 27). ACM.

[53] Rieck, K., Trinius, P., Willems, C., & Holz, T. (2011). Automatic analysis of malware behavior using

machine learning. Journal of Computer Security, 19(4), 639-668.

[54] Jain, S., & Meena, Y. K. (2011, August). Byte level n–gram analysis for malware detection.

In International Conference on Information Processing (pp. 51-59). Springer, Berlin, Heidelberg.

[55] Trinius, P., Willems, C., Holz, T., & Rieck, K. (2009). A malware instruction set for behavior-based

analysis.

[56] Roesch, M. (1999, November). Snort: Lightweight intrusion detection for networks. In Lisa (Vol. 99, No.

1, pp. 229-238).

[57] Kaur, N., Bindal, A. K., & PhD, A. (2016). A complete dynamic malware analysis. International Journal

of Computer Applications, 135(4), 20-25.

[58] Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice: the Condor

experience. Concurrency and computation: practice and experience, 17(2‐4), 323-356.

[59] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., ... & Ghodsi, A. (2016). Apache

spark: a unified engine for big data processing. Communications of the ACM, 59(11), 56-65.

[60] Lam, C. (2010). Hadoop in action. Manning Publications Co..

[61] Shanahan, J. G., & Dai, L. (2015, August). Large scale distributed data science using apache spark.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (pp. 2323-2324). ACM.

190 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

[62] Armbrust, M., Bateman, D., Xin, R., & Zaharia, M. (2016, June). Introduction to spark 2.0 for database

researchers. In Proceedings of the 2016 International Conference on Management of Data (pp. 2193-2194).

ACM.

[63] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big

data” on cloud computing: Review and open research issues. Information systems, 47, 98-115.

[64] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. (2009, October). A

performance analysis of EC2 cloud computing services for scientific computing. In International Conference on

Cloud Computing (pp. 115-131). Springer, Berlin, Heidelberg.

[65] Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B. P., & Maechling, P. (2009,

December). Scientific workflow applications on Amazon EC2. In 2009 5th IEEE International Conference on

e-science workshops (pp. 59-66). IEEE.

[66] Luo, Y., Luo, S., Guan, J., & Zhou, S. (2013). A RAM Cloud Storage System based on HDFS:

Architecture, implementation and evaluation. Journal of Systems and Software, 86(3), 744-750.

[67] Zyskind, G., & Nathan, O. (2015, May). Decentralizing privacy: Using blockchain to protect personal data.

In 2015 IEEE Security and Privacy Workshops (pp. 180-184). IEEE.

191 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

APPENDIX 1: PUBLICATION DETAILS

Sr.

No.

Journal Name Title of the Paper Conference Name Indexing

1. Advances in Intelligent Systems
and Computing (AISC),
Computational Intelligence:
Theories, Applications and Future
Directions, Springer Verlag,
Singapore, ISBN-10:
981131134X , ISBN-13: 978-
9811311345, 17 September 2018

‘Behavioural Analysis
of Recent
Ransomwares and
Prediction of Future
Attacks by
Polymorphic and
Metamorphic
Ransomware’

(DOI: 10.1007/978-
981-13-1135-2_6)

International
Conference on
Computational
Intelligence:
Theories,
Applications and
Future Directions

December 6th -
8th, 2017,
Indian Institute of
Technology
Kanpur, India,

 SCOPUS

 ISI
Proceedings

 DBLP-Ulrich’s

 EI-Copendex

 Zentralblatt
Math

 MetaPress

 Springerlink

 Google
Scholar

2. Journal of Advance Research in
Dynamical & Control
Systems(JARDCS),
 U.S.A,
Vol. 10, 12-Special Issue, 2018,
ISSN 1943-023X,

‘Employing
Decentralized
Technologies for
Machine-Learning
Detection of
Advanced Malware’

(*Best Paper Award
and First prize in
the Track)

International
Conference,
‘TeLMISR 18’
21, 22 May 2018,
Vivekananda
School of
Information
Technology, Delhi,

 SCOPUS

 Elsevier

 MathSciNet

 Computers
and Applied
Sciences

3. MERI-Journal of Management &
IT
(UGC approved journal) ,
 Volume 11,
ISSN: 0974-2093, October-2017

‘PMASCE-
Polymorphic and
Metamorphic
Shellcode Creation
Engine’

(DOI:10.25089/MERI/
2017/v11/i1/164011)

 J-Gate

 Root

Indexing

 i-Scholar

4. MERI-Journal of Management &
IT
(UGC approved journal),
Volume 10,
ISSN: 0974-2093, April-2017.

‘Wannacry Malware
Analysis’

(DOI :
10.25089/MERI/2017
/v10/i2/151167)

 J-Gate

 Root

Indexing

 i-Scholar

5. 1. ABS Journal of Management,
Volume 5, Issue 1,

2. ISSN: 2319-684X, January-2017.

3.

‘Harmful Effects of
Cybercrime in
Business and
Economic
Sustainability’

4. International
Conference on
Technological
Revolution for
International

192 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

Business and
Economic
Sustainability
(TRIBES- 2017),
ABS Business
School, Noida,

6. 1. MERI Conference Proceedings,
ISBN:978-93-84871-07-9, 22-23
February- 2017.

‘Digital Economy-
Some Advancements
in the Modes of
Digital Payments’

International
Conference on
Digital Economy:
Challenges and
Opportunities,
MERI College

7. 2. MERI Conference Proceedings,
ISBN:978-93-84871-07-9, 22-23
February- 2017.

‘Digital Economy:
Dieasy India(Making
Village as a Smart
Village)’

International
Conference on
Digital Economy:
Challenges and
Opportunities,
MERI College

8. 3. MERI Conference Proceedings,
ISBN:978-93-84871-07-9, 22-23
February- 2017.

‘Machine Learning-A
Game Changer in
Digital Economy’

International
Conference on
Digital Economy:
Challenges and
Opportunities,
MERI College

9. NCDM Conference Proceedings,
ISBN:978-93-85777-37-0
February-2016.

1.

‘Cloud Security is
Important for Health
Information
Systems’-

Third National
Conference on
Data Mining and
ICT (NCDM 15-16),
Allana Institute of
Management
Sciences, Camp,
Pune

Was a reviewer at ICIM’19 (International Conference on Intelligent Machines)

sponsored by Springer held on 15th and 16th March 2019 , Baba Farid Group of

Institutions, India.

193 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

APPENDIX 2 : COMPANY LETTERS AND MAIL

CONVERSATIONS

1. ISACA CPE Letter for speaking in the 03
rd

 April 2015 session on the topic

“Cyber Crimes and Cyber Forensics”.

2. ISACA CPE Letter for speaking in the 09
th

 July 2016 session on the topic

“Polymorphic Shellcode Detection”.

3. ISACA CPE Letter for speaking in the 10
th

 June 2017 session on the topic

“Advanced Malware and Ransomware, Case Study: WannaCry, Live

Demo”.

4. ISACA Letter for speaking in the 19
th

 March 2019 , ‘SheLeadsTech’ event on

the topic “AI and ML- New Innovations in Cybersecurity” .

5. Letter from the Company “Reinova Biz Consultant” for implementation of

the framework.

6. Mail conversations with “virusshare.com” for data acquision for malicious

files.

7. Reviewer Certificate for International Conference.

194 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

ISACA CPE Letter for speaking in the 03
rd

 April 2015

session on the topic “Cyber Crimes and Cyber Forensics”.

195 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

ISACA CPE Letter for speaking in the 09
th

 July 2016 session on the

topic “Polymorphic Shellcode Detection”.

196 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

ISACA CPE Letter for speaking in the 10
th

 June 2017 session on the

topic “Advanced Malware and Ransomware, Case Study:

WannaCry, Live Demo”.

197 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

ISACA Letter for speaking in the 19
th

 March 2019 ,

‘SheLeadsTech’ event on the topic “AI and ML- New

Innovations in Cybersecurity” .

198 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

Letter from the Company “Reinova Biz Consultant” for

implementation of the framework.

199 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

Mail conversations with “virusshare.com” for data

acquision for malicious files(1/3).

200 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

Mail conversations with “virusshare.com” for data

acquision for malicious files(2/3).

201 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

Mail conversations with “virusshare.com” for data

acquision for malicious files(3/3)

.

202 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

Reviewer Certificate for International Conference

203 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

APPENDIX 3

Screenshots of NoDistribute malware detection of

self created malwares

204 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

205 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

206 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

207 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

208 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

209 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

210 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

211 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

212 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

213 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

214 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

215 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

APPENDIX 3 : PROGRAMMING CODES USED FOR COMPLETE

EXECUTION

Static analysis code

Training code

import pandas as pd
import numpy as np
import pickle
import sklearn.ensemble as ske
from sklearn import cross_validation, tree, linear_model
from sklearn.feature_selection import SelectFromModel
from sklearn.externals import joblib
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix

data = pd.read_csv('data.csv', sep='|')
X = data.drop(['Name', 'md5', 'legitimate'], axis=1).values
y = data['legitimate'].values

print('Researching important feature based on %i total features\n' % X.shape[1])

Feature selection using Trees Classifier
fsel = ske.ExtraTreesClassifier().fit(X, y)
model = SelectFromModel(fsel, prefit=True)
X_new = model.transform(X)
nb_features = X_new.shape[1]

X_train, X_test, y_train, y_test = cross_validation.train_test_split(X_new, y ,test_size=0.2)

features = []

print('%i features identified as important:' % nb_features)

indices = np.argsort(fsel.feature_importances_)[::-1][:nb_features]
for f in range(nb_features):
 print("%d. feature %s (%f)" % (f + 1, data.columns[2+indices[f]], fsel.feature_importances_[indices[f]]))

XXX : take care of the feature order
for f in sorted(np.argsort(fsel.feature_importances_)[::-1][:nb_features]):
 features.append(data.columns[2+f])

216 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

#Algorithm comparison
algorithms = {
 "DecisionTree": tree.DecisionTreeClassifier(max_depth=10),
 "RandomForest": ske.RandomForestClassifier(n_estimators=50),
 "GradientBoosting": ske.GradientBoostingClassifier(n_estimators=50),
 "AdaBoost": ske.AdaBoostClassifier(n_estimators=100),
 "GNB": GaussianNB()
 }

results = {}
print("\nNow testing algorithms")
for algo in algorithms:
 clf = algorithms[algo]
 clf.fit(X_train, y_train)
 score = clf.score(X_test, y_test)
 print("%s : %f %%" % (algo, score*100))
 results[algo] = score

winner = max(results, key=results.get)
print('\nWinner algorithm is %s with a %f %% success' % (winner, results[winner]*100))

Save the algorithm and the feature list for later predictions
print('Saving algorithm and feature list in classifier directory...')
joblib.dump(algorithms[winner], 'classifier/classifier.pkl')
open('classifier/features.pkl', 'wb').write(pickle.dumps(features))
print('Saved')

Identify false and true positive rates
clf = algorithms[winner]
res = clf.predict(X_test)
mt = confusion_matrix(y_test, res)
print("confusion matrix %s" % mt)
print("False positive rate : %f %%" % ((mt[0][1] / float(sum(mt[0])))*100))
print('False negative rate : %f %%' % ((mt[1][0] / float(sum(mt[1]))*100)))

Static analysis prediction code

#! /usr/bin/python2
import pefile
import os
import array
import math
import pickle
from sklearn.externals import joblib
import sys
import argparse

def get_entropy(data):
 if len(data) == 0:
 return 0.0

217 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 occurences = array.array('L', [0]*256)
 for x in data:
 occurences[x if isinstance(x, int) else ord(x)] += 1

 entropy = 0
 for x in occurences:
 if x:
 p_x = float(x) / len(data)
 entropy -= p_x*math.log(p_x, 2)

 return entropy

def get_resources(pe):
 """Extract resources :
 [entropy, size]"""
 resources = []
 if hasattr(pe, 'DIRECTORY_ENTRY_RESOURCE'):
 try:
 for resource_type in pe.DIRECTORY_ENTRY_RESOURCE.entries:
 if hasattr(resource_type, 'directory'):
 for resource_id in resource_type.directory.entries:
 if hasattr(resource_id, 'directory'):
 for resource_lang in resource_id.directory.entries:
 data = pe.get_data(resource_lang.data.struct.OffsetToData,
resource_lang.data.struct.Size)
 size = resource_lang.data.struct.Size
 entropy = get_entropy(data)

 resources.append([entropy, size])
 except Exception as e:
 return resources
 return resources

def get_version_info(pe):
 """Return version infos"""
 res = {}
 for fileinfo in pe.FileInfo:
 if fileinfo.Key == 'StringFileInfo':
 for st in fileinfo.StringTable:
 for entry in st.entries.items():
 res[entry[0]] = entry[1]
 if fileinfo.Key == 'VarFileInfo':
 for var in fileinfo.Var:
 res[var.entry.items()[0][0]] = var.entry.items()[0][1]
 if hasattr(pe, 'VS_FIXEDFILEINFO'):
 res['flags'] = pe.VS_FIXEDFILEINFO.FileFlags
 res['os'] = pe.VS_FIXEDFILEINFO.FileOS
 res['type'] = pe.VS_FIXEDFILEINFO.FileType
 res['file_version'] = pe.VS_FIXEDFILEINFO.FileVersionLS
 res['product_version'] = pe.VS_FIXEDFILEINFO.ProductVersionLS
 res['signature'] = pe.VS_FIXEDFILEINFO.Signature
 res['struct_version'] = pe.VS_FIXEDFILEINFO.StrucVersion

218 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 return res

def extract_infos(fpath):
 res = {}
 pe = pefile.PE(fpath)
 res['Machine'] = pe.FILE_HEADER.Machine
 res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader
 res['Characteristics'] = pe.FILE_HEADER.Characteristics
 res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion
 res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion
 res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode
 res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData
 res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData
 res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint
 res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode
 try:
 res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData
 except AttributeError:
 res['BaseOfData'] = 0
 res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase
 res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment
 res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment
 res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion
 res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion
 res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion
 res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion
 res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion
 res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion
 res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage
 res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders
 res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum
 res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem
 res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics
 res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve
 res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit
 res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve
 res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit
 res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags
 res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes

 # Sections
 res['SectionsNb'] = len(pe.sections)
 entropy = map(lambda x:x.get_entropy(), pe.sections)
 res['SectionsMeanEntropy'] = sum(entropy)/float(len(entropy))
 res['SectionsMinEntropy'] = min(entropy)
 res['SectionsMaxEntropy'] = max(entropy)
 raw_sizes = map(lambda x:x.SizeOfRawData, pe.sections)
 res['SectionsMeanRawsize'] = sum(raw_sizes)/float(len(raw_sizes))
 res['SectionsMinRawsize'] = min(raw_sizes)
 res['SectionsMaxRawsize'] = max(raw_sizes)
 virtual_sizes = map(lambda x:x.Misc_VirtualSize, pe.sections)
 res['SectionsMeanVirtualsize'] = sum(virtual_sizes)/float(len(virtual_sizes))
 res['SectionsMinVirtualsize'] = min(virtual_sizes)

219 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 res['SectionMaxVirtualsize'] = max(virtual_sizes)

 #Imports
 try:
 res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT)
 imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], [])
 res['ImportsNb'] = len(imports)
 res['ImportsNbOrdinal'] = len(filter(lambda x:x.name is None, imports))
 except AttributeError:
 res['ImportsNbDLL'] = 0
 res['ImportsNb'] = 0
 res['ImportsNbOrdinal'] = 0

 #Exports
 try:
 res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols)
 except AttributeError:
 # No export
 res['ExportNb'] = 0
 #Resources
 resources= get_resources(pe)
 res['ResourcesNb'] = len(resources)
 if len(resources)> 0:
 entropy = map(lambda x:x[0], resources)
 res['ResourcesMeanEntropy'] = sum(entropy)/float(len(entropy))
 res['ResourcesMinEntropy'] = min(entropy)
 res['ResourcesMaxEntropy'] = max(entropy)
 sizes = map(lambda x:x[1], resources)
 res['ResourcesMeanSize'] = sum(sizes)/float(len(sizes))
 res['ResourcesMinSize'] = min(sizes)
 res['ResourcesMaxSize'] = max(sizes)
 else:
 res['ResourcesNb'] = 0
 res['ResourcesMeanEntropy'] = 0
 res['ResourcesMinEntropy'] = 0
 res['ResourcesMaxEntropy'] = 0
 res['ResourcesMeanSize'] = 0
 res['ResourcesMinSize'] = 0
 res['ResourcesMaxSize'] = 0

 # Load configuration size
 try:
 res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size
 except AttributeError:
 res['LoadConfigurationSize'] = 0

 # Version configuration size
 try:
 version_infos = get_version_info(pe)
 res['VersionInformationSize'] = len(version_infos.keys())
 except AttributeError:
 res['VersionInformationSize'] = 0

220 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 return res

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description='Detect malicious files')
 parser.add_argument('FILE', help='File to be tested')
 args = parser.parse_args()
 # Load classifier
 clf = joblib.load(os.path.join(
 os.path.dirname(os.path.realpath(__file__)),
 'classifier/classifier.pkl'
))
 features = pickle.loads(open(os.path.join(
 os.path.dirname(os.path.realpath(__file__)),
 'classifier/features.pkl'),
 'r').read()
)

 data = extract_infos(args.FILE)

 pe_features = map(lambda x:data[x], features)

 res= clf.predict_proba([pe_features])[0]

 print(res)

Behaviour analysis code

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer =TfidfVectorizer(min_df=5,
 max_df = 0.8,
 sublinear_tf=True,
 use_idf=True,decode_error='ignore')

files = [open("reports_mix/report ({}).mist".format(x),'r') for x in range(1,200)]
corpus = []
for x in range (0,197):
 {
 corpus.append(files[x].read())
 }

x = vectorizer.fit_transform(corpus)

y=[]
for i in range(1,100):
 y.append(0);
for i in range(101,199):

221 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 y.append(1);

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.6, random_state=42)
from sklearn.neighbors import KNeighborsClassifier
import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.extmath import density
from sklearn import metrics

def benchmark(clf):
 print('_' * 80)
 print("Training: ")
 print(clf)
 t0 = time()
 clf.fit(X_train, y_train)
 train_time = time() - t0
 print("train time: %0.3fs" % train_time)

 t0 = time()
 pred = clf.predict(X_test)
 test_time = time() - t0
 print("test time: %0.3fs" % test_time)

 score = metrics.accuracy_score(y_test, pred)
 print("accuracy: %0.3f" % score)

 if hasattr(clf, 'coef_'):
 print("dimensionality: %d" % clf.coef_.shape[1])
 print("density: %f" % density(clf.coef_))

222 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 print("classification report:")
 print(metrics.classification_report(y_test, pred
))

 print("confusion matrix:")
 print(metrics.confusion_matrix(y_test, pred))

 print()
 clf_descr = str(clf).split('(')[0]
 return clf_descr, score, train_time, test_time

results = []
for clf, name in (
 (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
 (Perceptron(n_iter=50), "Perceptron"),
 (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
 (KNeighborsClassifier(n_neighbors=10), "kNN"),
 (RandomForestClassifier(n_estimators=100), "Random forest")):
 print('=' * 80)
 print(name)
 results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
 print('=' * 80)
 print("%s penalty" % penalty.upper())
 # Train Liblinear model
 results.append(benchmark(LinearSVC(penalty=penalty, dual=False,
 tol=1e-3)))

 # Train SGD model
 results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
 penalty=penalty)))

Train SGD with Elastic Net penalty
print('=' * 80)
print("Elastic-Net penalty")
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
 penalty="elasticnet")))

Train NearestCentroid without threshold
print('=' * 80)
print("NearestCentroid (aka Rocchio classifier)")
results.append(benchmark(NearestCentroid()))

Train sparse Naive Bayes classifiers
print('=' * 80)
print("Naive Bayes")
results.append(benchmark(MultinomialNB(alpha=.01)))

223 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

results.append(benchmark(BernoulliNB(alpha=.01)))

print('=' * 80)
print("LinearSVC with L1-based feature selection")
The smaller C, the stronger the regularization.
The more regularization, the more sparsity.
results.append(benchmark(Pipeline([
 ('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False,
 tol=1e-3))),
 ('classification', LinearSVC(penalty="l2"))])))

make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in range(4)]

clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)

plt.figure(figsize=(12, 8))
plt.title("Score")
plt.barh(indices, score, .2, label="score", color='navy')
plt.barh(indices + .3, training_time, .2, label="training time",
 color='c')
plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange')
plt.yticks(())
plt.legend(loc='best')
plt.subplots_adjust(left=.25)
plt.subplots_adjust(top=.95)
plt.subplots_adjust(bottom=.05)

for i, c in zip(indices, clf_names):
 plt.text(-.3, i, c)

plt.show()

Snort analysis code

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer =TfidfVectorizer(min_df=5,
 max_df = 0.8,
 sublinear_tf=True,
 use_idf=True,decode_error='ignore')

files = [open("/home/varnit/projects/shellcode/snort_mix_reports/{}.txt".format(x),'r') for x in range(1,200)]
corpus = []

224 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

for x in range (0,197):
 {
 corpus.append(files[x].read())
 }

x = vectorizer.fit_transform(corpus)
y=[]
for i in range(1,100):
 y.append(0);

for i in range(101,199):
 y.append(1);

from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.6, random_state=42)

import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.extmath import density
from sklearn import metrics

def benchmark(clf):
 print('_' * 80)
 print("Training: ")
 print(clf)
 t0 = time()
 clf.fit(X_train, y_train)
 train_time = time() - t0
 print("train time: %0.3fs" % train_time)

 t0 = time()

225 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

 pred = clf.predict(X_test)
 test_time = time() - t0
 print("test time: %0.3fs" % test_time)

 score = metrics.accuracy_score(y_test, pred)
 print("accuracy: %0.3f" % score)

 if hasattr(clf, 'coef_'):
 print("dimensionality: %d" % clf.coef_.shape[1])
 print("density: %f" % density(clf.coef_))

 print("classification report:")
 print(metrics.classification_report(y_test, pred
))

 print("confusion matrix:")
 print(metrics.confusion_matrix(y_test, pred))

 print()
 clf_descr = str(clf).split('(')[0]
 return clf_descr, score, train_time, test_time

results = []
for clf, name in (
 (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
 (Perceptron(n_iter=50), "Perceptron"),
 (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
 (KNeighborsClassifier(n_neighbors=10), "kNN"),
 (RandomForestClassifier(n_estimators=100), "Random forest")):
 print('=' * 80)
 print(name)
 results.append(benchmark(clf))

#for penalty in ["l2", "l1"]:
print('=' * 80)
print("%s penalty" % penalty.upper())
 # Train Liblinear model
results.append(benchmark(LinearSVC(penalty=penalty, dual=False,
tol=1e-3)))

 # Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
penalty=penalty)))

Train SGD with Elastic Net penalty

226 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune.

#print('=' * 80)
#print("Elastic-Net penalty")
#results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
penalty="elasticnet")))

Train NearestCentroid without threshold
print('=' * 80)
print("NearestCentroid (aka Rocchio classifier)")
results.append(benchmark(NearestCentroid()))

Train sparse Naive Bayes classifiers
print('=' * 80)
print("Naive Bayes")
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))

print('=' * 80)
#print("LinearSVC with L1-based feature selection")
The smaller C, the stronger the regularization.
The more regularization, the more sparsity.
#results.append(benchmark(Pipeline([
('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False,
tol=1e-3))),
('classification', LinearSVC(penalty="l2"))])))

make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in range(4)]

clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)

plt.figure(figsize=(12, 8))
plt.title("Score")
plt.barh(indices, score, .2, label="score", color='navy')
plt.barh(indices + .3, training_time, .2, label="training time",
 color='c')
plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange')
plt.yticks(())
plt.legend(loc='best')
plt.subplots_adjust(left=.25)
plt.subplots_adjust(top=.95)
plt.subplots_adjust(bottom=.05)

for i, c in zip(indices, clf_names):
 plt.text(-.3, i, c)

plt.show()

	01_title
	Thesis final 21 Aug 2019.pdf

	02_certificates
	Thesis final 21 Aug 2019.pdf

	03_acknowledgements
	Thesis final 21 Aug 2019.pdf

	04_abstract
	Thesis final 21 Aug 2019.pdf

	05_contents
	Thesis final 21 Aug 2019.pdf

	06_list of tables & figures
	Thesis final 21 Aug 2019.pdf

	07_abbreviations
	Thesis final 21 Aug 2019.pdf

	08_chapter 1
	09_chapter 2
	10_chapter 3
	11_chapter 4
	12_chapter 5
	13_references
	Thesis final 21 Aug 2019.pdf

