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ABSTRACT 

 
 The Internet world is ridden with all kinds of malware and hackers are constantly trying out new innovative 

techniques to evade detection mechanisms. When shellcodes became the choice of attack, antiviruses were 

quick to come up with signature detection mechanisms to catch them. Hackers went one step ahead and created 

the so called ‘Polymorphic shellcodes’. These shellcodes have different signatures for the same shellcode. Thus 

it becomes impossible for a signature detection system to detect them. In our study, we are going to create a 

framework for the detection and mitigation of untraced polymorphic shellcode.  

In May 2017, when WannaCry ransomware attacked, 150 countries with 2,00,000 computers all over the world 

were affected and some $50,000 was already paid to the attackers by various companies and individuals. The 

base of this ransomware was shellcode. In early 2017 when Donald Trump won the US elections, power shells 

were injected in mails which were sent to Hillary Clinton’s aide John Podesta. Once the shellcode entered the 

machine, it infected all the systems in the network and exposed all emails of Hillary, which caused a great 

reputational loss to her campaign and she paid the price by losing the elections. In 2016, the game PokemonGo 

was found to be carrying shellcodes which caused clicking frauds and millions of dollars were earned by the 

attackers by gaining root access to the phones and clicking all kinds of ads and sometimes stealing network 

bandwidth and sensitive data from the compromised machine. HummingBad, another kind of shellcode 

malware, affected ten million phones worldwide and got admin access to the phone and used that for generating 

fraudulent advertising revenue up to $300,000 per month -- through the forced downloading of apps and 

clicking of ads. 

Shellcodes are tiny programs which look like legitimate code and are inserted in code-caves in a program code. 

Once executed, they provide a shell to the hacker with root privileges. Eg.’Win32/ShellCode.gen!V’is a 

shellcode exploit for the Windows system. The most common shellcode instruction is to execute a shell such as 

/bin/sh, or cmd.exe. The only possible reason for launching such commands is to take control or exploit a 

compromised machine. When the exploit code causes what would normally be a critical error in the targeted 

program, the program jumps to the shellcode and is tricked into executing the attacker's commands. There are 

many harmful effects of shellcode. A shellcode can connect itself with internet, can display promotional adverts 

and fake messages, can corrupt secured system programs and files and can affect internet speed and system 

performance. It can install more malwares and fake programs, can show unwanted pop-ups, can crash the 

system, can help view others desktop, can sniff data from the network, can dump password hashes or use the 

owned device to attack hosts deeper into the network. 



 

 
 

 

Shellcodes have typical structures which can be detected through pattern - matching by the IDPS software. 

Thus hackers have come up with a new type of shellcodes called ’Polymorphic Shellcodes’. Some algorithms 

are executed on the shellcodes which make them ‘look’ very different, say by changing their commands, 

encryption, code transposition, dead code insertion, register reassignment etc. However, the polymorphic 

shellcode still performs the same functionality that the original shellcode did. Pattern matching fails here and 

increases worries of IDPS and Antivirus developers.  

We basically have to design a framework which can attack a shellcode from four different angles. We have to 

do a static analysis of shellcode, then a dynamic (behavior) analysis, then study its network footprint and finally 

try to see if it evades the sandbox. Then we aggregate the result obtained from these four stages and give the 

final result. It is imperative that a check is put on malicious activities. The biggest threat, cyber world if facing 

today is that of ‘Polymorphic Shellcodes’. These are shellcodes which are polymorphic in nature, meaning that 

they change their look but have the same behavior. This makes them difficult to detect by Signature based 

detection systems. Some polymorphic shellcodes are also capable of changing their behavior at runtime. Thus 

Anomaly based detection systems also fail here.  

 

All the current solutions which are exiting today have some lacunas in common: 

 

1. Signature Matching-Most of them focus on malware detection by signature matching and pattern 

recognition. Malware authors are now smarter than ever before and signature detection is of no use 

due to techniques like polymorphism, metamorphism etc.  

2. No behavioral analysis- Some of them do not take into consideration, thebehavior of malware, like 

file behavior, network behavior and other dynamic behavior of the file to be analyzed. 

3. Updating time-Another problem that current antiviruses face is that they take a lot of time to analyze 

the malware and then update the definition of antiviruses into user’s device.  

4. Danger to user’s privacy- The antivirus companies are sometimes a danger to the user’s privacy as 

they collect data from user on regular basis and use that to make money. The normal user acts only 

as a data feeder so that these antivirus companies can protect enterprises. 

5. Centralized Antivirus Companies-All the antivirus organizations are centralized in nature. This 

implies that a lot of computation power is required and very few computers are available to provide 

it. If a distributed system could be designed where all systems in the network contribute to the work 

of malware detection, things will become faster and more efficient. 

 



 

 
 

 

Note that the recent ransomware attacks by WannaCry and Petya can prove the above statements, not to 

mention that none of them were actually polymorphic or metamorphic. 

 

Benefit of the Study 

 

Our proposed model will take care of all kinds of polymorphic shellcodes. It consists of the snapshot 

technique and the revert-back model. It takes snapshots of the memory and processes and keeps them in the 

database to understand the working of the malware. Next time when the same malware shows up, we have 

the list of its behaviors and thus can easily detect it. After that we restore the memory and the processes back 

to their original state. Machine learning and artificial intelligence are further incorporated to make the work 

more efficient and detect any new malware also. Decentralized currency was another incredible innovation 

recently and it led us to the new system of bitcoins. Bitcoins are great but what makes them greater is the 

technology on which it works. The technology is known as blockchain and blockchain has so many other 

applications other than just decentralized currency. Here we use the blockchain concept to harness 

distributive power of all the systems in the network so that a large amount of computing power is gained 

with very little cost and everyone in the network is benefitted. 

 

Our work is highly significant both in the present and in the future. Hackers have recently used shellcodes in 

WannaCry and Petya Malwares. The next step is to use polymorphic shellcode attack. We must be ready for 

them and our works makes us ready. Also we are proposing a framework of policies for Intrusion Detection 

and Prevention Systems against such malware to harden them so that they can tackle any kind of threat.     

 

 

 Conceptual Model Framework 

 

Our conceptual model framework is a design created with the aim to identify and remove risks of polymorphic 

shellcodes. It uses advance machine learning algorithms for detection. It is going to attack a shellcode, in fact 

any type of malware from 4 sides-static, behavior, network and sandbox evasion: 

 

1) Static analysis: Means that we will study the signature of the sample and match it with already given 

signatures in our existing databases. If the signature matches with a malware we calculate the static 

probability of the sample for maliciousness. The machine learning model will be trained and tested with 

huge, ever increasing data. 



 

 
 

 

 

2) Behavior Analysis: There are advance malware like polymorphic and metamorphic malware which 

change their signatures quite often. In that case, we generally study the behavior of the sample to see if it 

matches with the behavior that normally malware families show. If it does, we again calculate the 

behavior probability of the sample for maliciousness.  

 

3) Network Analysis: Now we will see the network behavior of the sample to match it with the alerts that 

network monitors generate. If we see significant number of alerts, we again calculate the network 

probability of the sample for maliciousness. 

 

4) Sandbox Evasion Detection: Normally, an intrusion detection system will run a doubtful program in a 

controlled environment which is normally a sandbox. This environment will have all the resources 

required got the sample to run and all permissions are also given to the file. However, it is not allowed to 

run in an actual system, it is only run in a virtual system. This is a smart way to know the true 

characteristics of the sample and judge whether the file is malicious or benign before it enters the actual 

system environment. However, there are advance malware which are created to stay dormant whenever 

they detect that they are running in a virtual environment. There are many techniques which are applied 

for the detection of sandbox. Thus they try to evade a sandbox whenever they experience one. Therefore 

it is with surety one can declare a sample as a malware if it tries to evade a sandbox. This detection will 

give us a Boolean value of 0 or 1. 

 

5) Final Detection: From all the above four steps, we are going to get four probabilities. An average of 

these four probabilities is calculated to get the final detection probability. A threshold probability is 

calculated for the model according to the amount and variance of the data it currently has. A sample is 

declared as malicious if its combined average probability is above the threshold probability of the model. 

It is benign if the probability is lower. However, if the probability is equal to the threshold value, the 

sample is termed as unknown and is sent to the model again for further analysis. The model is cyclic in 

nature and every new sample is used as data for training of the model to make it more effective. 

Therefore it will always be in an updated state.  It will have information about all new malwares all the 

time. 

 

6) Decentralized Environment: The whole model is going to work in a decentralized environment. Thus the 

model is very resource efficient. Also because the detection mechanism is completely decentralized, 



 

 
 

 

therefore, every node is master node in the network and there is no central authority which can work for 

selfish gains or unrealistic profits. 

 

7) Blockchain network: All the transactions for detection of malware are logged in Blockchain network and 

the data about the malwares which is stored in each node is stored in the form of blocks in the block 

chain. Thus this database is immutable, secure, reliable, distributed and always updated. Thus every 

node participating in the malware detection model gets an always updated data at a very cost effective 

rate with the latest of machine learning technology. 

 

8) Balancing the model: the model has to be always in a balanced state so that is never biased with more of 

clean or more of malicious data. Whenever we find such a bias in the model according to our 

calculations, we either increase the clean samples or malicious samples for training of the model. 

 

 

Objectives of the Framework: 

 

1) To identify and the mitigate risk factors occurring due to the execution of polymorphic shellcode.  

2) Injecting the binaries in the code caves of existing (PE) application by using binding, embedding and 

stubs methodology. This will create polymorphic shellcodes for our study. 

3) Understanding polymorphic and metamorphic techniques of creating advanced malware. 

4) Understanding the working of polymorphic shellcode including the attack methodology, hiding 

methodology replication methodology and metamorphosis. 

5) Working with live ransomware samples to understand their behavior and attack methodology. 

6) The static analysis, behavior analysis, network analysis and sandbox evasion detection of polymorphic 

shellcode on the host as well as on the network.  

7) Proposing the framework for the detection and mitigation of untraced polymorphic shellcodes using 

advanced machine learning techniques.  

8) Proposing how this framework would work best in a decentralized environment. 

9) Proposing blockchain network usage for recording and logging all transactions to make them secure, 

updated and reliable.   

10) Training the framework with already known samples. 

11) Testing the framework with live samples from the wild. 

12) Analysis of the proposed framework with its limitation and future scope.  



 

 
 

 

▪ Static analysis -static analysis here refers to the act of extracting information based on 

file properties without running it. This is the quickest way to classify the file but not 

always accurate. We have extracted a total of 52 parameters using a python module called 

PE Analyzer 2. 

 

▪ Behavior analysis -Behavior analysis refers to the act of extracting information at 

runtime. We have extracted api call graphs, files created and affected at runtime etc. We 

did this using a very powerful tool ‘Volatile Framework’. 

 

▪ Packet analysis - In this module we are doing the analysis of network traffic of a 

particular file using tcpdump and snort. 

 

▪ Sandbox Evasion Analysis – If the sample is trying to evade the sandbox, we consider 

that this is a sort of malware behavior.  

In our approach, we first use supervised learning. We have a machine learning algorithm. It would be given 

some binary files as a training data set. Although most of our dataset will be contributed by the users of 

network, we have provided some initial dataset which comprises of malicious data from virus-share database , 

all .exe files from clean windows installation and .exe files of popular software from filehippo database as a 

clean source of data . After getting trained, the algorithm would be given an unknown sample. Through the 

knowledge it has attained, it would be able to recognize the malicious file. The algorithm is fine-tuned with 

better training samples. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 Introduction To the Study 

 

 The Internet world is ridden with all kinds of malware and hackers are constantly trying 

out new innovative techniques to evade detection mechanisms. When shellcodes 

became the choice of attack, antiviruses were quick to come up with signature detection 

mechanisms to catch them. Hackers went one step ahead and created the so called 

‘Polymorphic shellcodes’. These have different signatures for the same shellcode. Thus 

it becomes impossible for a signature detection system to detect them. In our study, we 

are going to create a framework for the detection and mitigation of untraced 

polymorphic shellcode.  

In May 2017, when WannaCry ransomware attacked, 150 countries with 2,00,000 

computers all over the world were affected and some $50,000 was already paid to the 

attackers by various companies and individuals. The base of this ransomware was 

shellcode. In early 2017 when Donald Trump won the US elections, powershells were 

injected in mails which were sent to Hillary Clinton’s aide John Podesta. Once the 

shellcode entered the machine, it infected all the systems in the network and exposed all 

emails of Hillary, which caused a great reputational loss to her campaign and she paid 

the price by losing the elections.  

In 2016, the game PokemonGo was found to be carrying shellcodes which caused 

clicking frauds and millions of dollars were earned by the attackers by gaining root 

access to the phones and clicking all kinds of ads and sometimes stealing network 

bandwidth and sensitive data from the compromised machine. HummingBad, another 

kind of shellcode malware, affected ten million phones worldwide and got admin 



 

 
 

 

access to the phone and used that for generating fraudulent advertising revenue up to 

$300,000 per month  through the forced downloading of apps and clicking of ads. 

 

Figure 1.1 Estimate of most and least cyber-vulnerable countries. 

 

 According to the ‘Global Cybervulnerability Report’ of 2017 by UMIACS, Figure 1.1 

 (http://terp.umd.edu/what-nations-are-most-vulnerable-to-

cyberattacks/#.XVFrpvIzapo, March 29, 2016)  shows a rough estimate of which 

countries are most and least cyber-vulnerable. The global average loss  per cyber-attack is 

$32,20,000. Out of this a major contribution is that of shellcodes. Thus it  becomes 

imperative that research may be done on the working and successful detection of shellcodes 

 and polymorphic shellcodes. 

 

1.2 Malware Detection Mechanism 

 

Computer security, also known as cyber security or IT security means the protection 

of information systems from theft or damage to the hardware, the software, or to 

https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Software


 

 
 

 

the information on them. It also means protecting the systems against denial of 

services or misdirection of service of any kind. 

The computer security field is growing in importance because of our increasing 

reliance on computer systems as well as the exponential growth of "smart" devices, 

including smartphones, televisions and 

 

 tiny devices as part of the Internet of Things (IOT) and of wireless 

networks like Bluetooth and Wi-Fi. 

There are various ways in which malwares can be detected, chiefly: Signature based 

detection, Anomaly based detection and Behavior Based detection mechanisms.   

 

1.2.1 Signature based systems 

 

In this type of detection mechanism, the opcode pattern is extracted from the 

executable file, called the signature of the file. This signature is then matched with a 

database of already stored signatures. If it matches a malware signature, it is flagged 

as malicious otherwise it is declared as clean. This technique is fast and accurate and 

raises very low number of false alarms. However, a new virus cannot be detected. The 

signature has to be in the database for it to be detected. The database is huge and 

needs constant updating. Therefore the detection is slow. Also a new virus signature 

needs 7 hours to get updated in the database. 

1.2.2 Anomaly based systems  

 

This type of detection mechanism monitors various processes on systems for any 

abnormal activity. It detects a malware based upon any anomalous activity it 

performs. It is quite reliable and can detect even new, previously unknown malware. 

However it raises large number of false alarms which can be quite cumbersome to 

deal with. 

 

1.2.3 Emulation/Behavior based systems  

 

https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Smart_devices
https://en.wikipedia.org/wiki/Smartphones
https://en.wikipedia.org/wiki/Television
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Wi-Fi


 

 
 

 

These systems make the malware execute in a virtual environment and observe all its 

behavior-includingabnormal activity, connection failures, network telescopes, pattern 

of destination addresses, and causation. They are able to identify encrypted malware 

like those of polymorphic and metamorphic nature but are very expensive to 

implement. 

 

 

Detection Technique 

Strengths  Weaknesses  

Signature Based  Fast and accurate. 

 Low chance of fast 

positives. 

 Cannot detect 

mutated virus like 

polymorphic or 

metamorphic. 

 Cannot detect new 

and previously 

unknown malware. 

 Slow because of 

huge database. 

Anomaly Based  Can detect new 

malware whose 

signatures are 

missing in the 

database. 

 Can detect 

abnormal activity 

quickly. 

 

 High chance of false 

positives. 

 Expensive to 

implement.  

Emulation/Behavior Based  Can detect 

polymorphic and 

metamorphic 

(encrypted) 

malware 

 Expensive to 

implement. 

 The malware may 

detect the virtual 

environment and stay 



 

 
 

 

 Can show the 

severity of 

malware based on 

behavior 

dormant till it is in 

the sandbox, not 

showing its actual 

behavior. 

 

Table 1.1 Comparative analysis of various Malware Detection Techniques. 
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Figure 1.2 : Classifications of Malware Families According to their Detection Techniques. 

 

1.3 Types of Malicious Attacks 

Our computers and systems are always under attack from malicious components. 

Attackers continue planning different ways to enter into systems and do their nefarious 

activities. They keep developing different kinds of malware which choose different 

routes, different attack mechanisms and different ways to remain hidden from prying 

eyes of antimalware software.  

There are various types of malicious attacks which are jeopardizing our computer systems 

everyday like: 

 

● Viruses 

● Worms 

● Trojans 

● Rootkits 

● Botnets  

● Ransomware 

● Zombies 

● Rats  

● Shellcodes 

 

1.3.1 Viruses 

 



 

 
 

 

A computer virus is a type of malicious piece of code which propagates by inserting a 

copy of itself into and becoming part of another program. It spreads from one system 

to the next, leaving infections as it travels. A virus can be an Overwriting virus, 

Appending virus, Prepending virus or a Cavity virus depending upon where it attaches 

its code in the normal program. A virus will normally attach itself to an executable 

file. Thus, it will be in a system but will not be active or will not spread until a user 

runs or opens the executable to which it is attached. When that file executes, the virus 

executes as well. 

 

1.3.2 Worms 

Worms are just like viruses because they can replicate functional copies of themselves 

and damage the systems just like viruses do but they do not require a host. Worms are 

standalone pieces of malicious code which do not require a host program to 

propagate. 

 

1.3.3 Trojans 

 

A Trojan is another type of malware named after the wooden horse used by the 

Greeks used to infiltrate the city of Troy. It is a malicious piece of software which 

looks perfectly legitimate. It uses social engineering to trick users to get downloaded 

into their systems. The various functions Trojans can perform are- deleting files, 

changing desktops, pop-up windows, activating or spreading other malware, stealing 

data etc. They more often create backdoors but do not self-replicate. They spread by 

user interaction like opening e-mail attachments or running a file from the Internet.  

 

1.3.4 Rootkits 

 

Rootkits are a collection of tools and programs designed to give administrator-level 

access of computer or network to the attacker. Root means administrator in UNIX and 

Linux systems. The software components of rootkits are associated with different 

malwares like Worms, Trojans, Viruses etc. These malware hide their actions and 

existence from users. 



 

 
 

 

 

1.3.5 Bots 

 

Bot is an automated process normally used for gathering information. Bots are 

actually Internet robots which automate repetitive tasks which may be malicious like 

launching Dos attack, relaying spam, logging keystrokes or providing information to a 

c&c(command and control) center. They can form a botnet which is a network of 

compromised computers to perform these malicious tasks in a very effective and fast 

manner. They can be self-propagating. They can also work as spiders or crawlers. 

 

 

1.3.6 Ransomware 

 

Is a type of malware which infects a system and encrypts its data till the required 

amount of ransom is paid. Thus a system is locked and is only unlocked and the data 

only decrypted when the ransom is paid. The ransomware is normally loaded into the 

system using a trojan typically using social networking. Different ransomwares work 

in different fashion but all of them would work by first getting the admin rights of the 

shell. The payment is mostly made using bitcoins. Some ransomwares may work as 

wipers and may not decrypt the system even after the ransom has been paid. 

 

 

1.3.7 Zombies 

 

Zombie is a computer system which is compromised by an attacker and works for 

him, unaware that it is working for the attacker. Normally, a system which is used as a 

zombie will show decreased performance for the unaware users. A network of 

zombies can be used to perform mass illegal activities. They can be used to send 

massive amount of spam , Dos attacks or attacking other computers or websites. 

 

1.3.8 Rats  

 



 

 
 

 

RAT stands for Remote Access Trojan. RATs are malwares that provide a backdoor 

to the attacker for his administrative control. Thus they are also called ‘Creepware’. 

These are installed invisibly without the user’s knowledge and can enable the attacker 

to monitor behavior, modify system configuration, use Internet connection or perform 

some criminal activity. 

 

1.3.9 Spyware 

 

Spyware is type of malware which does espionage. It takes search history and sends 

personalized advertisements and tracks user activities to send them to third parties. 

 

 

1.3.10  Shellcode 

 

Shellcodes are tiny programs which look like legitimate code and are inserted in code-

caves in a program code. Once executed, they provide a shell to the hacker with root 

privileges. Eg.’Win32/ShellCode.gen!V’is a shellcode exploit for the Windows system. 

The most common shellcode  

instruction is to execute a shell such as /bin/sh, or cmd.exe. The only possible reason 

for launching such  

commands is to take control or exploit a compromised machine. When the exploit code 

causes what would normally be a critical error in the targeted program, the program 

jumps to the shellcode and is tricked into executing the attacker's commands. There are 

many harmful effects of shellcode. A shellcode can connect itself with internet, can 

display promotional adverts and fake messages, can corrupt secured system programs 

and files and can affect internet speed and system performance. It can install more 

malwares and fake programs, can show unwanted pop-ups, can crash the system, can 

help view others desktop, can sniff data from the network, can dump password hashes 

or use the owned device to attack hosts deeper into the network. 

 

1.3.11  Polymorphic Shellcodes 

 



 

 
 

 

Shellcodes have typical structures which can be detected through pattern - matching by 

the IDPS software. Thus hackers have come up with a new type of shellcodes called 

’Polymorphic Shellcodes’. Some algorithms are executed on the shellcodes which 

make them ‘look’ very different, say by changing their commands, encryption, code 

transposition, dead code insertion, register reassignment etc. However, the 

polymorphic shellcode still performs the same functionality that the original shellcode 

did. Pattern matching fails here and increases worries of IDPS and Antivirus 

developers.  

Suppose we have a malware say: 

[NNNN] 

If we use it in its original form, its signature may get detected. Therefore, we encrypt it 

and it becomes: 

[LLLL] 

But to use it, we have to put the decryption routine, D with it because it has to be 

deciphered before it can be executed. So now the signature looks like: 

[DLLLL]   

 

Now we can change the key and we get a different signature each time 

 [DLLLL]  with key K1 

 [DFFFF]   with key K2 

 [DAAAA]   with key K3 

 [DBBBB] with key K4 

 

Now the key is different each time but there is a static part ‘D’ which is constant in 

each signature. Over a period of time, because of this weakness, a malware may be 

detected.  

Therefore, advanced polymorphic malwares change this decryption routine too, each 

time a signature has to change: 

[D1LLLL]  with K1 

[D2FFFF]  with K2 

[D3AAAA]  with K3 

[D4BBBB]  with K4 

The polymorphism may be caused by: 



 

 
 

 

 Register renaming 

 Code permutation 

 Code expansion 

 Code shrinking 

 Garbage code instruction etc. 

 

1.3.12  Metamorphic Shellcodes 

These shellcodes are BODY POLYMORPHIC. They do not have a decryptor. They 

create a new malware which looks completely different from the original signature. 

There is no decryption algorithm or a key involved. Following are the differences 

between Polymorphic and Metamorphic malware: 

 

Polymorphic Malware Metamorphic Malware 

They need to return back to their original 

form for execution. 

They do not need to return to their original 

form for execution. 

There is a decryption routine which uses a 

key, embedded in the mutated code. 

The mutated code has no decryption routine 

or any key. 

It is less difficult to write as compared to 

metamorphic shellcode 

It is more difficult to write. 

Their body is constant. Their body is polymorphic, though 

functionally same. 

Eg.  W32/Coke, W95/HPS and W95/Marburg Eg. Simile, ZMist 

 

Table 1.2 Differences between Polymorphic and Metamorphic malwares 

 

 

 

1.3.13  Advance Malware- Beyond Polymorphic and Metamorphic 

Shellcodes 

 

 Polymorphic shellcodes change their signatures with same or different decryptor 

routines. Metamorphic  malware change their body even without decryptor 



 

 
 

 

routines or keys. The changed signatures are functionally equivalent to the original 

ones. However, a new family of advance malwares is coming up in the wild. This type 

of malware is not only polymorphic or metamorphic but can change their behaviors 

also in every iteration.  Say in one instance, the malware may delete files, in other, it 

may open network ports, in still other, it may try to get remote access. 

There already are some malwares which use ‘dynamic programming’. Say we have a 

malware which has infected a system. Now it tries to use an IP address and a specific 

port, say IP1, P1. If these are blocked by a firewall, the malware has a pool of IP 

addresses and ports to choose from. It keeps trying other IP addresses and ports till it 

can get past the firewall. In this manner a different behavior is shown by the malware.  

 

 

Figure 1.3 : Malware using dynamic programming with a pool of IP addresses and 

ports. 

 

However more advance behavior mutations are possible in malware in addition to 

them employing polymorphic and metamorphic techniques. 

 

 

 

 
 



 

 
 

 

 

F1 can be: Delete files. 

         F2 can be:Open network 

ports. 

         F3 can be: Get remote 

access etc…... 

 

Figure 1.4 Difference between Polymorphic, Metamorphic and Advance Malware.  

 

 

1.4 Shellcode Infection Mechanisms 

There are several ways in which shellcodes can attack a host and take control of it. 

The two most common ways are Buffer overflow and Code Injection. 

1.4.1 Buffer Overflow 



 

 
 

 

There are many possible avenues that would allow a shellcode to take over a remote 

host, but by far the most common is exploiting a buffer overflow. Despite this style of 

attack having been a known vector for worm propagation for many years, buffer 

overflow vulnerabilities continue to show up frequently in software. The essence of a 

buffer overflow attack is to write more data to a buffer than it has allocated space for. 

The excess data will then overwrite adjacent memory addresses, and when this is done 

properly, the overwritten memory areas can be used to execute arbitrary code. Buffer 

overflow attacks must be targeted specifically at an architecture and operating system. 

The buffers that are overwritten can be either on the heap or the stack, with different 

exploitation requirements for the two options. The heap is the pool of free memory 

that is allocated dynamically to the running program. It is typically referenced 

indirectly. The call stack stores the information about the execution of the program, 

but varies greatly with operating system and machine environment.  

1.4.2 Code Injection 

A second form of attack is known as code injection. It is typically found in web 

applications. In this attack, a server accepts posted data from a client, and if it doesn't 

properly sanitize the data for code markers, it can end up executing the posted data as 

code. This allows the client the opportunity to execute arbitrary code on the server, 

allowing the client to compromise it and infect it with a worm. 

 

1.5 Machine Learning used for Malware Detection 

 

There are various ways in which Shellcodes can be detected, chiefly: Content Based 

and Behavior Based detection mechanisms.  However, to detect the advance malware 

that we are predicting, which is polymorphic, metamorphic and functionally different, 

machine learning algorithms are the only viable choice. 

 

1.5.1 Introduction to Machine Learning 

 

Machine learning is an upcoming field in computer science. It is an application of 

artificial intelligence that gives the system, a capability to automatically learn and 



 

 
 

 

improve from experience without being explicitly programmed. It is basically a 

collection of programs meant to learn from examples, also called  

as ‘data set’. Say we want to teach an application to recognize handwritten characters. 

Now there are two ways of doing it. First is to write down a set of rules for each 

character specifying all different shapes and styles a character can have. Add to it huge 

variations in human handwriting. Also there would be separate rules for printed and 

cursive characters. Writing of such programs would be a humongous task for a 

programmer and it would also require tremendous computing power. 

 

The second way is to prepare a data set having many different examples of handwritten 

characters and the computer, by itself learns the rules that best identify a character. 

This way of learning is called supervised learning. Machine learning is of two types: 

supervised Learning and Unsupervised Learning.  

 

1.5.2 Reasons for Using Machine Learning for Malware Detection  

 

Computer science is changing very fast and according to some statistics, Artificial 

intelligence has arrived 10 years prior to the expected time. Researchers have shown 

an incredible success rate of detecting malwares using machine learning although the 

problem with machine learning is that no matter how much data you train the machine 

learning algorithm with, it’s not sufficient and also it takes huge amount of time to 

train a large dataset using machine learning. However recent innovations like deep 

learning and cheaply available GPUs have made machine learning really fast but still 

the time to train the model increases linearly as the size of dataset increases.  

 

1.5.3 Supervised v/s Unsupervised Machine Learning   

 

Supervised Learning: Here labeled training data is provided to the system and then it 

tries to classify the unknown sample. 

 

Unsupervised Learning: Here we do not provide labeled training data and ask the 

system to cluster the sample in n number of clusters. Unsupervised learning is quite 



 

 
 

 

difficult as it is very hard to analyze how system classifies data as it does not output 

the parameters on which it clusters the data.  

 

1.6 Motivation for the Study 

Among the various malware families, the general malwares and shellcodes are detected 

using signature detection mechanisms. Polymorphicmalwares can be detected using 

Anomaly based detection mechanisms. Metamorphic malwares can be detected using 

Behavior/Emulation based detection mechanisms. However, advance malwares which 

not only change their signatures, but also their behavior are the most difficult to detect. 

Thus one defense mechanism is not enough for these malwares. They have to be detected 

using a multidimensional approach. No current mechanism attacks a malware from all 

sides so as to perfectly detect it. A framework is required for IPS and IDPS systems 

which takes care of static analysis, dynamic analysis, network analysis and sandbox 

evasion analysis. 

 

Many current solutions fail to detect a new variant of malware for which they have no 

prior information. WannaCry and Petya are the most recent examples. The advance 

malwares can show a new signature and behavior every time which makes logging 

impossible. 

 

Malware detection is an ever growing industry where, it is said that antivirus companies 

makes malwares first and then give patches later. The rich keep getting richer and safety 

and security seems to be slipping out of the hands of ordinary citizens. Our framework is 

designed to give safety and security features to every common man in the cheapest 

possible manner. 

 

The solutions which claim to be able to detect even advance malware require large CPU 

capacities and very high speeds. Our framework will achieve the same performance 

using distributive architecture so that the load is shared by all the nodes participating in 

the detection process. 

 

The database of the malware information will be updated in an instant and the current 

copy of the database would be available to all the nodes at all times. It is seen that at 



 

 
 

 

times, it takes about seven days for an update to reach all systems across the world. Till 

that time, the malware is easily able to perform its dirty work.  

 

1.7 Scope and Contribution of the study 

The framework covers the security domain and will detect malwares of all types in an 

efficient, timely and cost effective manner. The range of people benefitted out of this 

system is unlimited. Big organizations need not spent millions of rupees on expensive 

detection systems. This framework does the same job in the least expensive manner 

using distributive framework. The latest malware can be detected as soon as  

possible and the information travels to all the nodes participating in the process in a very 

quick manner. The common man on the Internet who is sometimes bluffed by the 

security agencies will be saved. The latest and the most current detection mechanism will 

be available to him at the lowest cost possible. Governments, schools, colleges, hospitals, 

all small, medium or big organizations stand to benefit from this study. The study will 

not only aim at detecting general malwares like virus, Trojans, rats, worms etc., but will 

also aim at ransomware, polymorphic, metamorphic and advance malwares.  

 

1.8 Research Methodology used in the Study 

 

A series of interviews were conducted with industry professionals, security auditors, 

ethical hackers, bankers, developers, database administrators, senior managers, HR 

professionals, university lecturers, students, and many other people in various 

organizations, serving at different positions. Their security problems were analyzed. 

There were a few important findings which are stated below: 

 

1. Many of them have quite often suffered from a ransomware threat. If the organization is 

big, these threats are not brought to light because of prestige issues. 

2. These people are often under risk from a new, previously unknown malware. 

3. They are spending huge amount of resources on maintaining security within the company 

and still do not feel completely secure. 

4. They are often worried about losing important organization data and resources to puny 

hackers. 



 

 
 

 

5. The entire security system is centralized thus is expensive to maintain and sometimes 

slow to counter fat spreading attacks.  

 

The hypothesis was developed by taking a number of malwares from the wild and testing 

them against popular anti malware solutions. Some were able to detect these malwares 

and some were not. All these malwares were of general families. Therefore, we 

developed some polymorphic malwares ourselves and then tested them against these 

solutions. To our surprise, many of these solutions were unable to detect them. All these 

malwares were able to do all kinds of malicious activities like installing keyloggers, 

capturing screens, deleting and sometimes encrypting files and data etc. Any such 

malware, if launched can be a big threat to the world. Popular ransomwares like 

WannaCry, Petya, Misha etc. were studied in detail to understand their structure, 

behavior and attack pattern.  

 

Therefore it was concluded that the present solutions are no match for advance 

technologies that hackers have at their disposal. So a framework has to be developed 

which takes care of all these threats effectively. It has to be fast and affordable. It should 

de distributive and power should be in the hands of common man and not centralized in 

the hands of anti-malware companies. 

 

The research methodology is experimental in nature and of quantitative type. We would 

create the framework and would try to verify its working by testing it against various 

malwares. The model will be trained first by giving it known samples so that it self learns 

the factors required for detection. Then it would be tested to check whether it is giving 

correct results or not. Finally, it would be tested by taking random samples from the wild 

to analyze its effectiveness and performance.  

 

1.9 Structure of the Thesis 

 

Chapter 1. Introduction 

 

The first chapter gives introduction of the study. We classify the malware families based 

on their detection techniques. We find out about polymorphic and metamorphic 



 

 
 

 

shellcodes which cannot be detected by signature detection alone. Advance malware 

which can change their behavior also cannot be detected by all present techniques. We 

understand the scope and contribution of the study and the research methodology used. 

Chapter 2. Literature Review 

 

In the second chapter, we do a literature review of the work done till now in various 

areas like malware detection techniques, working of common antimalware solutions and 

the concept of CVE’s, polymorphic and metamorphic malware, machine learning for 

malware detection, working of emulators like Cuckoo, studying static and dynamic 

behavior of malware, studying various ransomware, studying distributive technologies 

like Hadoop, understanding cloud architecture and working, understanding Blockchains, 

studying digital currencies like Bitcoins and Ethereum. 



 

 
 

 

 

Figure 1.5 : Structure of the Thesis 
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Chapter 3. Research Methodology 

The third chapter describes the research approach undertaken for proposal and 

development of the model. The objective, scope and contribution of the study is also 

understood, gauged and analyzed. Hypothesis is built based upon interviews, testing with 

malware samples from the wild and self-created advance malwares. The framework is 

designed and all the steps of the proposed model are understood in detail. Algorithms for 

all the steps are built and formulae generated for calculations like threshold, 

maliciousness probability and severity. 

 

Chapter 4. Analysis and Interpretation 

The fourth chapter deals with analysis and interpretation. The process of creation and 

attack of advance malwares is studied in detail. We have worked with live ransomware 

samples like WannaCry and Petya and understood their impact, attack process and 

behavior. We have built every part of the framework starting from the static part to 

behavior, network and sandbox evasion part. We have shown hoe the entire model works 

in a distributive manner and how the blockchain concept can be used for logging the 

database and also as a means for rewards and recognition. 

 

Chapter 5. Findings and Conclusions 

The fifth chapter deals with findings and conclusions of the study. We have executed 

every part of the trained model with clear and malicious malware samples and found out 

whether the model is giving correct results or not. The severity is analyzed according to 

the calculated probability. The concept of alerts is built which gives message to the user 

about the threat. The study is concluded and limitations are enumerated. Further scope of 

the study is also analyzed and more research potentialof the study is observed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 

2.1 Analysis of Literature Survey:  

 

The purpose of literature survey is to understand the previous work done in the chosen 

topic. Many papers were read and analyzed to understand in which directions other 

researchers have moved in this field. When we started to do research on this topic, 

there were many areas, of which we had little or no knowledge. The concept of 

polymorphic, metamorphic and advance malware had to be studied. We had to 

understand the detection techniques that researchers have been using till now. What are 

the benefits of these techniques and what are the gaps that these techniques are not able 

to fill. We had to understand the behavior of different kinds of malwares and know 

their attack methodologies to counter them better. We had to know about centralized 

and distributive detection methodologies to gauge what are the advantages and 

disadvantages of each. We divided the literature review in the following sections: 

 

1. Malware detection techniques,  

2. The various threats and Working of common antimalware solutions  

3. Concept of CVE’s,  

4. Polymorphic and metamorphic malware,  

5. Machine learning for malware detection,  

6. Working of emulators like Cuckoo,  

7. Studying static and dynamic behavior of malware,  

8. Studying various ransomware,  

9. Studying distributive technologies like Hadoop,  

10. Understanding cloud architecture and working,  

11. Understanding Blockchains,  



 

 
 

 

12. Studying digital currencies like Bitcoins and Ethereum. 

 

2.2   Malware detection techniques  

 

2.2.1 In the paper, “A Survey on Heuristic Malware Detection 

Techniques”[1], Z. Bazrafshan explains the widely used methods of 

malware detection Signature based, Behavioral based and  Heuristic based. 

The signature based and Behavior based methods are explained in detail 

 with their advantages and shortcomings. Heuristic methods gain an 

advantage over the other  two methods because of various disadvantages 

that they have. The various techniques used in  Heuristic methods involve 

API Calls, OpCodes, N-Grams etc. The working, advantages and 

 shortcomings of Heuristic methods is also explained in detail. 

 

2.2.2 In the paper, “A Survey on Techniques in Detection and Analyzing 

Malware  Executables”[2], K. Mathur explains Static, Dynamic and 

Hybrid analysis of Malware  executables, comparing the techniques in terms 

of where they can be used and how  effectively. The paper also discusses the 

ways of creation of obfuscated malwares. Their technique uses Bi-feature 

analysis rather than Mono-feature analysis thus reducing the number  of 

false-positives.  

 

2.3  The Various Threats and Working of Common Antimalware 

Solutions  

 

2.3.1 In the paper, “Evaluating the Ability of Anti-Malware to Overcome 

Code Obfuscation”[3], M. Carson, discusses the various anti malware 

technologies like Binary file checking, classifying packed and Polymorphic 

malware, understanding static system calls etc. The paper understands and 

compares the various techniques in terms of their strong and weak points. 

Various other related works have also been studied to know the points they 



 

 
 

 

did not cover. The concept of code obfuscation is studied well and the 

techniques which can handle it are analyzed. 

 

2.3.2 In the paper, “Internet Attack Methods and Internet Security 

Technology”[4], O. Adeyinka, investigates the various Internet attack 

methods like viruses, system and boot record infectors, eavesdropping, 

hacking, worms, Trojans, IP Spoofing, DOS, spam, email bombing and 

phishing. Many security techniques to counter these threats like 

cryptographic systems, firewalls, IDS, IPSec, SSL etc. are discussed. Their 

merits and demerits are also analyzed.  

 

2.4   Concept of CVE’s 

 

2.4.1 In the paper,”Managing vulnerabilities in networked systems”[5],R. A. 

Martin, explains  what are the common vulnerabilities and exposures database 

and classifies the parts of the  database as Vulnerability scanner database, 

Software vendor patches and updates, Intrusions   system detection 

signature database , Software vendor alerts etc.  The paper describes how 

 CVEs  work and how the CVE list is built and what are the benefits of 

CVE  compatibility. 

 

2.4.2 In the paper, “Common vulnerability scoring system”[6],P.Mell, 

explains the recommendations of the National Institute of Standards and 

Technology(NIST) regarding the CVE naming system. It provides 

guidelines for use and acquisition of CVE databases. It explains that CVEs 

contain a list of publicly know vulnerabilities, authenticates newly 

published vulnerabilities and gives a unique name to each vulnerability. The 

paper explains how CVEs can be used by federal organizations and how 

they can make their security systems CVE compatible. 

 

2.5   Polymorphic and metamorphic malware 

 



 

 
 

 

2.5.1 In the paper,“Classification of polymorphic and metamorphic malware 

samples based on their behavior”[7], K Tsyganok, classifies malware on 

the basis of their behavior characteristics like WinAPI calls, files which are 

handled by the program, arguments taken by them etc. Clustering technique 

is used for classification of the samples. The work is tested using actual 

malware files. 

 

2.5.2 In the paper, “ Structural entropy and metamorphic malware“[8], D. 

Baysa, explains that metamorphic malware is able to change their internal 

structure without changing their  

 functionality. Thus they cannot be detected using Signature Detection 

Methods. Thus they use Structural Entropy to find differences in 

complexity of data in a sample file. They first segment the file using 

entropy measurements and then find the similarity between samples by 

finding the edit distance between sequence segments.   

 

2.6  Machine learning for malware detection  

 

2.6.1 In the paper,“ Automatic analysis of malware behavior using machine 

learning“[9], K. Rieck, propose a framework for incremental detection of 

malware using automatic clustering and classification of novel malware 

samples based on dynamic behavior analysis. A malware sample is 

projected in a vector representation and machines learning techniques 

work in this vector space. 

 

2.6.2 In the paper, “ Opem: A static-dynamic approach for machine-

learning-based malware detection “[10], I. Santos, proposes the first 

hybrid machine learning based malware detector that combines both static 

opcode frequencies with dynamic execution trace of the binaries to reach 

to a conclusion whether they are malicious or clean. The files are executed 

in a sandbox environment to know their behavior. Also a vector of 

frequency of opcode frequencies is generated to determine maliciousness. 



 

 
 

 

 

2.7  Working of emulators like Cuckoo 

 

2.7.1 In the book, “Cuckoo malware analysis”,D. Oktavianto, explains working 

of the Cuckoo  sandbox. He explains that a sandbox is used to analyze 

a malware without the user worrying about the changes which will happen 

in the system during the process. Sandboxes work using snapshot technique 

which saves the virtual state of the machine while it runs. One can revert to 

the original state after analysis. Cuckoo was started as Google Summer of 

code project and it is open software. It analyses files like generic windows 

executables, DLL files, PDF documents etc. As results it produces traces of 

win32 API calls, memory dumps, screenshots and network traffic trace in 

PCAP format. 

 

2.7.2 In the paper,“An android application sandbox system for suspicious 

software detection”[12],T. Blasing, explains that a sandbox will work by 

monitoring system and library calls and logging them. It also generates 

pseudo-random streams of user events like clicks, touches, or gestures, and 

also some system-level events. The sandbox is placed in the kernel. The 

entire system state is recorded so that no malicious activity can be hidden. 

All the logs are kept in a separate file. 

 

2.8  Studying static and dynamic behavior of malware 

 

2.8.1 In the paper,“Implementation of malware analysis using static and 

dynamic analysis method”[13], Y. Prayudi, uses two methods of malware 

analysis: static and dynamic. Static analysis is done without running the 

malware and dynamic analysis is done while running the malware in a 

secure environment. Both basic and advance static and dynamic malware 

analysis is done and finally a malware analysis report is generated. Various 

analysis tools like Anubis, Wireshark, VirusTotal, BinText and OllyDbg are 

used. 



 

 
 

 

 

2.8.2 In the paper,“An approach for malware behavior identification and 

classification”[14], M Zolkipli, solves various threats like polymorphic and 

metamorphic malware threat in the paper. He first does behavior analysis of 

malware and then classification into families is done. The resulting 

framework identifies and classifies malwares based on behavior analysis. 

The malware classification is also optimized using AI techniques. 

 

2.9  Studying various ransomware 

 

2.9.1 In the paper, ”Ransomware digital extortion: a rising new age 

threat”[15], A. Bhardwaj, studies Crypto and Locker ransomware, their 

propagation, attack techniques and new emerging threat vectors like screen 

lock, Windows and browser lock, encryption ransomware, pop 

advertisements and URL redirections. The reports generated give 

ransomware behavior analysis, code analysis and classification. Anti 

ransomware elastic cloud based platforms were used. 

 

2.9.2 In the paper, “Ransomware: Studying transfer and mitigation”[16], R. 

Shinde, conducts interviews and surveys with victims of ransomware and 

tries to find the relation between ransomware attacks and victims age, 

education, company etc. Various methods of transfer of different kinds of 

ransomware are studied. Many mitigation strategies are analyzed and ways 

to spread awareness to protect and mitigate from these ransomwares are 

also suggested. 

 

2.10 Studying distributive technologies like Hadoop 

 

2.10.1 In the paper, “Analytical review on Hadoop Distributed file 

system”[17],K. Dwivedi,explains a step by step process of handling large 

amount of unstructured data using Hadoop and its Map Reduce algorithm. 

The paper explains how Hadoop Distributed File System-HDFS, is rapidly 



 

 
 

 

growing and is being used in a variety of different applications. The 

working of HDFS and Map Reduce is explained in detail along with its 

various applications. 

 

2.10.2 In the paper,“Teaching Distributed Systems Using Hadoop”[18],R. 

Correia,develops a teaching method using benchmark tests for students 

using Hadoop framework. Students study complex databases, various 

network infrastructures and system architectures on cloud based Hadoop 

systems. The framework proves very effective in this teaching 

methodology. 

 

2.11 Understanding cloud architecture and working  

 

2.11.1 In the paper, “Spectrum of cloud computing architecture: Adoption 

and avoidance issues”[19],Jangra A., explains the set of technologies 

used in cloud computing. The architecture of cloud is explained in detail 

along with the working details and various deployment and service 

models. Advantages of cloud computing like elasticity, flexibility and 

scalability are explained in detail. The paper ends with handling cloud 

deployment and use issues like security, privacy, internet dependency and 

availability. 

 

2.11.2 In the paper, “Cloud computing: types, architecture, applications, 

concerns, virtualization and role of it governance in cloud” [20], 

P.Sareen, defines Cloud architecture, various cloud providers, compares 

cloud computing with grid computing, 

 explains cloud virtualization, applications and concerns regarding cloud 

computing and detailed working of a cloud. The role of I.T. governance in 

cloud computing is also discussed. 

 

2.12 Understanding Blockchains 

 



 

 
 

 

2.12.1 In the chapter,“Blockchains and the boundaries of self-organized 

economies: Predictions for the future of banking” [21],T.J. 

MacDonald, explains how distributed Blockchains give a self-organized, 

autonomous economy. The chapter explains that Blockchains are resilient, 

transparent and distributed public ledger. This decentralized solution is 

cost effective and more innovative as compared to centralized solutions. It 

is an open and a dynamic system. It is also robust, flexible and secure. The 

chapter explains that Blockchains are crypto economic mechanisms which 

overcome difficulties in the existing economic systems. 

 

2.12.2 In the paper,“Blockchains and the economic institutions of 

capitalism”[22], S.Davidson, explains that Blockchains are a digital 

technology which uses peer-to-peer network computing and combines it 

with cryptography to create an immutable and decentralized public ledger. 

The entries in the ledger can record not only money but other data 

structures like contracts, certifications, identities, property titles etc. The 

paper explains the working of Blockchain in detail. 

 

2.13 Studying digital currencies like Bitcoins and Ethereum 

 

2.13.1 In the paper, “Bitcoin and beyond: A technical survey on decentralized 

digital currencies” [23], F.Tschorsch, explains the Bitcoin protocols 

and its building blocks. The paper also discusses the various applications 

and impacts of Bitcoins. It explains how the purpose of banks is taken 

over by these decentralized currencies. Mining of bitcoins is also 

explained in detail. The various types and chain of transactions is also 

talked about. 

 

2.13.2 In the paper,“Bitcoin: Economics, technology, and governance” [24], 

R.Böhme, explains that Bitcoins are based on transactionallogs in a 

distributive computing environment where  

 



 

 
 

 

 participating computers are rewarded according to the level of honest 

participation.  

 This mechanism is against concentration of power. It is designed using 

irreversible transactions and a public record ledger. It is free to use and 

very flexible. The paper explains the design principles of Bitcoins, its 

uses and risk and regulatory features. 

 

 

2.14 Gap Analysis 

 

After going through many research papers and books related to the subject, we have 

found gaps in the research done till now.  

 Some papers talk about only signature detection of shellcodes, however, they 

fail when dealing with polymorphic shellcodes.  

 Many of the techniques like Network Emulation are a high resource-consuming 

technique. Many models have just been proposed in theory but have not come 

into practice because of their complexity.  

 Some techniques deal with static and some with dynamic analysis, however, an 

approach of hybrid analysis is required for the most effective solution. 

 The techniques which are dealing with polymorphic signatures are not dealing 

with polymorphic blending attacks. These attacks merge the malware traffic 

with normal traffic so that even anomaly based IDPS systems are not able to 

detect them.  

 A multi staged attack where a small malware enters first and shows not much 

action initially but later calls bigger malwares, is also not tackled by many 

papers.  

 Some papers deal with obfuscation of the NOP sled and some with obfuscation 

of the rest of the code. What is required, however is that both type of 

obfuscations must be dealt with for true detection.  

 Some papers fail to take into consideration that the malware will stop showing 

its true behavior once it detects a sandbox. Various sandbox evasion techniques 

are being followed by malwares to evade detection.  



 

 
 

 

 Also, considering that only signature detection is not the solution, we need 

behavior analysis, network analysis and sandbox evasion analysis.  

 We can consider using machine learning tools and decentralized computing for 

this framework.  

Some papers have taken a machine learning approach to malware detection. 

However, some have taken only static analysis approach and some are only 

analyzing the API calls that the malware is making. No paper discusses a four 

pronged approach of attacking the malware from four sides, static, dynamic, 

network and sandbox evasion based.  

 Also, many of them are training their models on one or the other specific 

machine learning algorithms. We propose to create a framework where the 

algorithm is not fixed. We will calculate the score of each machine learning 

algorithm based on the training and the test data that we have and based on the 

score we will decide which algorithm to finalize for the framework.  

 Also since the machine learning approach is resource-heavy, thus it is 

imperative that a distributive way is used for implementing the entire system. 

This also most of the papers have not taken into consideration. Therefore, 

without the distributive approach, many machine learning algorithms fail to 

work when dealing with huge amount of data.  

 Thus a comprehensive solution is required which takes into consideration, all 

the above mentioned points and thus become a strong detection mechanism. 

Therefore, we propose a framework for the detection and mitigation of untraced 

polymorphic shellcode which takes into consideration all these points and thus 

becomes a hard detection mechanism. 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

  

 

In this section, we will give an overview on the different types of research methodologies. 

This will be followed by the rationale behind selecting a particular method for this thesis. 

 

 

3.1 Introduction: Research Approach 

 

Research approaches are plans and the procedures for research that spans from broad 

assumptions to detailed methods of data collection, analysis, and interpretation. There are 

three approaches to research which are as follows: 

 

1.  Qualitative 

2.  Quantitative, and  

3.  Mixed methods  

 

 

Qualitative research is an approach for exploring and understanding a social or human 

problem as described by individuals. It is aimed at gaining in-depth understanding of a 

specific organization or event, rather than surface description of a large sample of a 

population. This type of research puts more focus on how people feel, think and make their 

choices.  

 

This research is largely managed with discussion around the concepts with some open 

questions. Respondents are asked to explain the reasons for their responses. This can reveal 

underlying motivations, associations and behavioural triggers [25]. 

 



 

 
 

 

Common data collection methods that are used in this research are focus groups, in-depth 

interviews, uninterrupted observation, bulletin boards, and ethnographic 

participation/observation 

 

Quantitative research is an approach for testing objective theories by examining the 

relationship among variables. This type of research is a more logical approach that provides a 

measure of what people think from a statistical point of view. For example, if you wanted to 

know how many students use Android phone or services and how strongly they support it, 

you would do a quantitative research. 

 

This research largely uses methods such as questionnaires and surveys with multiple choice 

questions where respondents are asked to select one or more of the given options. Answer 

options may include acceptance scale (strongly agree to strongly disagree), Likert scale, 

ranking in order of priority, etc. 

 

This type of research can be conducted via telephone, web or with the help of paper 

questionnaires. The only constraint is that the number of respondents should be significant 

enough to be able to generate directional results.  

 

Following Table 3.1 illustrates key differences between qualitative and quantitative research  

 

Criteria Qualitative Quantitative 

Data Data is in the form of words, 

pictures or objects. 

Data is in the form of 

numbers and statistics. 

Method used Methods include focus groups, 

in-depth interviews, and 

reviews of documents for non-

numeric information 

Surveys, structured 

interviews & observations, 

and reviews of records or 

documents for numeric 

information 

Process of Research Inductive approach used to 

formulate theory or hypotheses 

Deductive approach used to 

test pre-specified concepts, 



 

 
 

 

constructs, and hypotheses  

Response options Unstructured or semi-structured 

response options 

Fixed response options 

Statistical test No statistical tests are 

performed 

Statistical tests are 

performedfor analysis 

Time required Time spend at the time of 

planning is lower than that 

spent during the analysis phase 

Time spend at the time of 

planning is higher than that 

spent during the analysis 

phase 

Objectivity/subjectivity Highly subjective Highly objective 

Result Results depend on skill and 

accuracy of the researcher 

Results depend on the 

measuring device / 

instrument  

 

Final Report  
 

Report contains textual 

details&verbatim from 

research participants 
 

Report contains statistical 

analysis of data.  
 

 

Table 3.1: Qualitative versus quantitative research 

 

3.2 Method of Data Collection 

 

1) Semi- structured interview technique: was used for data collection. The respondents 

chosen were from ISACA. I have a long association with an organization known as 

ISACA. ISACA stands for Information Systems Audit and Control Association. 

ISACA is an international organization which works for IT governance and auditing 

controls. It was formed in 1967 in USA by a group of people working as auditors and 

computer security personnel who wanted to have a centralized agency which could 

provide information and guidance in this field. Today it has its branches in 180 

countries. It has more than 200 chapters. ISACA members include Information 

security auditors, Information security professionals, educators, consultants, 

regulators, CIOs, internal auditors etc. These chapters give education, provide for 

resource sharing, networking, advocacy etc. ISACA has a CPE- Continuing 

Professional Education Policy. All certified ISACA personnel have to attain a 



 

 
 

 

minimum of 20 CPE hours for attaining knowledge about the latest technology and 

advancements in the IT security industry. This can be achieved by webinars, 

conferences, online and offline trainings etc. I was called as a speaker four times at 

these conferences to talk about my ongoing research on polymorphic shellcode. In 

other conferences, I attended as a participant. In all these conferences, I got a chance 

to interact with security professionals, auditors, CTOs and regulators. Sample size 

was 30.  

 

 

 These were conducted at every conference. There were not many formalized 

questions. More open  ended questions enabled me to gauge the present security scenario and 

reach to my final research topic.  The discussions allowed me to get clear understanding 

of the security risks that these professionals deal  with every day, how they tackle these 

risks, what is the cost of applying anti malware solutions, what  problems the current anti 

malwares systems can solve and more importantly what they cannot. They  were also 

asked about their biggest security fears and what is it that is at the most risk. A sample 

 question sequence was: 

 

Q) What is the biggest security risk that you face as security personnel? 

A) Fear of a malware, particularly ransomware attacking the organization’s systems and 

encryption of all data. 

Q) Which anti malware solutions do you use? 

A) We use the latest anti malware solutions. 

Q) Aren’t those capable of handling these attacks? 

A) They are quite efficient in handling known attacks but have sometimes failed in handling 

new, previously unknown malwares. 

Q) What do you think is the reason for that? 

A) Well maybe they are feigned by new malwares into assuming they are clean files. 

Q) Is the security model centralized or distributive? 

A) Well it is centralized. 

. 

2) Surveys: were conducted using both Google online forms and hard copy printed 

forms. Some 361 respondents filled these forms. Some were qualified security 



 

 
 

 

professionals while some were not so qualified. Some were directly responsible for 

security in their organisations while others were not directly responsible. Variety of 

organisations was selected. Time was from Jan 2016 to Dec 2016.    

3)  In-Depth interview technique was used with either individual people or a focused set 

of interviewees. This technique was used because it helps in exploring the 

respondent’s detailed perspective on a particular idea, program or solution. It is very 

useful when we want to explore new issues and ideas in depth.  Laddering technique 

of question asking was used wherein one question led to another. This technique is 

particularly useful in the early stages of research as it provides a direction to the 

researcher. 

 

These types of interviews and surveys helped me a lot in topic finalization and data 

collection. Each interview was roughly of 15-20 minutes. It would either be an individual 

interview or a focused group interview. The sample size was of about 25-30 people and 

snowball technique of sampling was used for sample selection where participants of an 

interview were asked to identify other potential participants and the chain goes on until the 

right sample size was found. Snowball sampling is particularly useful where the researcher is 

not able to find the required number of participants and also a situation where potential 

participants may be wary of disclosing their identities. Some security people may not want to 

accept that they were actually attacked by ransomware and they did pay the ransom to 

recover their encrypted files and data. Here the company’s reputation is at risk.  

 

3.3 Research Methodology used  

 

Our research is exploratory in nature till the time we are finding the WHAT of the problem. 

It is also descriptive where we describe the WHY of the problem and experimental where 

we give the SOLUTION to the problem.Therefore, the study covers all aspects of research. 

Thus it is a mixed research methodology. We are trying to collect information regarding the 

problem which is being faced by the security industry today. The information is collected 

through in-depth interview techniques.  

 

We also create our own advance malware and test it under common anti malware solutions to 

verify our hypotheses that common anti malware solutions are not able to detect advance 



 

 
 

 

malware. Then we study the behavior of common ransomwares and advance malware to see 

their build, attack patterns and anti-detection strategies. Then we study different techniques 

used to create advance malwares because we cannot give a solution until we know the 

problem well.  

 

We also study why common anti malware solutions are not able to detect advance malware 

and what are the reasons of their failure. The research is quantitative because we propose a 

framework which can detect these advance malware. We build the framework and test it 

against known and unknown samples. We first train the model and then test the model. We 

also run the model in a distributive environment and find out that the model is very efficient 

and cost effective as compared to the models existing in the industry today. 

 

Since the respondents are a mixed bag of primary responsible, secondary responsible and not 

responsible (for cyber security) employees therefore, these are perceived notions rather than 

actual ones. 

 

 

  



 

 
 

 

 

 

Fig. 3.1: Research Methodology 
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Fig.3.2: Survey Questionnaire(1/4) 

 



 

 
 

 

 

Fig.3.2: Survey Questionnaire(2/4) 

 



 

 
 

 

 

Fig.3.2: Survey Questionnaire(3/4) 

 



 

 
 

 

 

Fig.3.2: Survey Questionnaire(4/4) 

3.4 Analysis Report of Data Collected  



 

 
 

 

The following table shows the companies covered for interviews and surveys, their locations 

and role of respondents. 

S. No. Organizaition Location Role 

1 IBM 
Gurgaon, Noida, 
Bangalore Security Delivery Lead 

2 HCL New Delhi Manager information Security 

3 Punjab National Bank New Delhi Ex. IT Auditor 

4 IT Birbal New Delhi CIO 

5 EY (Ernst & Young) Trivandarum, Kerala Information Security Analyst 

6 BHEJONA powered by Stadhawk Group Gurgaon 
Head, Information Security 
Operations 

7 Tipping Edge Consulting Pvt Ltd. Noida CIO 

8 MERI College New Delhi Vice President 

9 Sedulity Solutions Pvt Ltd New Delhi, Pune CEO 

10 Deloitte Gurgaon Director 

11 Internet & Mobile Association of India Noida Cyber Security Consultant 

12 Network Solutions Pvt Ltd Bangalore IT Security Lead 

13 Mother Dairy Fruit & Vegetable Pvt Ltd New Delhi CIO 

14 Cvent Gurgaon Senior Manager, Information Security 

15 Blue Pi Consulting Pvt Ltd Gurgaon Software Engineer 

16 Dalmia Bharat Group New Delhi Head - SAP Audits and IT Controls 

17 Axis Risk Consulting New Delhi Manager information Security 

18 Goldman Sachs Bangalore Internal Auditor 

19 Canara Bank Bangalore Chief Information Security Officer 

20 Supreme Court Of India New Delhi Advocate and Cyber Evangelist 

21 WestSide New Delhi Operations Manager 

22 Concentrix 
Gurgaon, Noida, 
Bangalore Head Operations 

23 TCS Mumbai IT Security Lead 

24 Tech Mahindra Pune Senior Manager, Information Security 

25 Mindtree Bangalore Manager information Security 

26 Mphasis Bangalore Internal Auditor 

27 Rolta Mumbai Information Security Analyst 

28 Hexaware Technologies Mumbai IT Security Lead 

29 Cognizant Hyderabad Internal Auditor 

30 Sonata Software Bangalore CIO 

 

Table 3.2: Companies Covered, location and role of respondents during Data Collection and 

Analysis 

 

 

 



 

 
 

 

3.4.1 Type of Organisation 

Among all the respondents, the companies that are majorly targeted are Telecommunications, 

Technology and Financial/Banking services. Though malicious attacks affect all types of 

organisations, however, the above type of organisations offer lucrative resources to the 

attackers. Thus these organisations form 77% of our respondent organisations.  

 

       Type of Organisation Count 

Telecommunication 9 

Technology Services 8 

Financial/Banking 6 

Education 1 

Healthcare 3 

Government 1 

Retail 2 

Total 30 

 

Table 3.3: Type of organisations of respondents 

 

  

Fig.3.3: Companies Covered, location and role of respondents during Data Collection and 

Analysis 

 

3.4.2 Location of oranisations 

Though malicious attacks affect entire India, but Delhi, Gurugram and Bengaluru are prime 
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of the respondents are from Delhi, 

 

Gurugram and Bengaluru. Some respondents were given online questionnairs to fill, some 

filled them in hard copy, printed formats. Some values were taken during interviews.  

 

Location Count 

New Delhi 123 

Gurugram 113 

Bengaluru 77 

Mumbai 44 

Pune 24 

Hyderabad 11 

Total 392 

 

Table 3.4: Count of locations of respondents 

 

 

                                 Fig.3.4 Location of organisations 

 

3.4.3 Title level held in the organization 

Out of all the respondents, 45% were senior level personnel. 35% were middle level and 16% 

were executive level. These were decision makers in the organisation and were most affected 

during a malicious attack. Also, they were primarily responsible for making security policies 

and compliances to be followed by the entire organization. 
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Title level Count 

Executive Level 63 

Senior Level 176 

Middle Level 138 

Lower Level 15 

Total 392 

 

Table 3.5: Count of title level of respondents 

 

 

 

                                Fig.3.5: Title level held in the organisation 

3.4.4 Degree of security responsibility  

Out of all the respondents, 49% were primary responsible for security in their organisations. 

46% held seconadary responsibility while only 8% were those who were not always 

responsible for security but only at some times.  

Degree of responsibility Count 

Primary responsibility 194 

Secondary responsibility 167 

Sometimes responsible, whenever needed 31 

No responsibility 0 

Total 392 
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Table 3.6: Count of degree of responsibilities of respondents 

 

 

 

 

 

                                          Fig.3.6: Degree of security responsibility 

3.4.5 Types of malicious activities 

There are many types of malicious activities which are encountered in an organization. Out of 

these, 53% are hacking activities. 51% of the times, ransomware attacks happen which are 

primarily for financial gains. Only 10% damage the software whereas 18% damaged software 

and applications. Three years mean 2013, 2014 and 2015 

 

Type of malicious activity Count 

Denial of service 9 

Damage to hardware 38 

Loss of intellectual property 56 

Online identity theft 61 

Damage to software and applications 66 

Ransomware attack 186 

Hacking 191 

Total 607 

 

Table 3.7: Count of type of malicious activities in respondents organisations 
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Fig.3.7: Type of malicious activities 

 

3.4.6 Origin of malicious activity 

Most of the malicious activity originates through emails either by infiltration(56%) or by 

phishing(27%). Ransomware accounts for 52% malicious activity whereas insiders do not 

normally breach security. 

 

Origin Count 

Insider breach 2 

Web browser infiltration 23 

Social media phishing 89 

Email infiltration 201 

Ransomware 188 

Email phishing 99 

Total 602 

 

Table 3.8: Count of origin of malicious activities in oranisations 
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Fig.3.8: Origin of malicious activity 

 

3.4.7 Percentage of Overall IT budget allocated to cyber security 

Mostly companies (74%) allocate less than 10% of the overall IT budget to security. Only 

20% companies allocate 10-20% buget to security and in all the respondents there was not a 

single company allocating more than 30% budget to security. 
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Count 

>30% 0 
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Table 3.9: Percentage of Overall IT budget allocated to cyber security  
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Fig.3.9: Percentage of budget allocated for cyber security 

 

3.4.8 Level till which devices get affected 

 

When a malicious attack happens, 72% of the times it is contained in the end point only. 28% 

of the time the infection spreads to some other systems as well but not to the entire network, 

probably due to network segmentation. Only in 8% of the cases, the infection spreads to the 

entire network. 

 

Level Count 

All devices in the network 30 

End point and some more devices 101 

Only endpoint 261 

Total 392 

 

Table 3.10: Count of level till which devices get affected 
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Fig.3.10: Level till which devices get affected 

 

3.4.9 Level of concern for cyber security 

62% of the respondents believe, organisations have moderate level of concern for security. 

Only 32% organisations have a high concern whereas 6% have low concern for security. 

 

Level  of concern Count 

Low 24 

Moderate 244 

High 124 

No concern 392 

 

Table 3.11: Level of concern for cyber security 
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Fig.3.11: Level of concern for cyber security 

 

3.4.10 Technologies used for protection 

Out of the total organisations covered, 86% have anti virus and anti spyware technologies 

installed. 77% have email security both in servers and all systems. 74% have updated anti 

virus and applications. Only 27%have cloud malware detection and 6% have outsourced 

security providers. 

 

Technologies used Count 

Outsourced security service provider 22 

Regular backup 78 

Cloud malware detection 98 

Segmentation of the network 109 

Firewalls and IDPS 207 

Regular system and network scans 221 

Updated antiviruses and softwares 268 

Email security installation on all devices 280 

Anti virus and anti spywares 311 

 

Table 3.12: Technologies used for protection 

 

24 

244 

124 

6% 

62% 

32% 

0 50 100 150 200 250

Low

Moderate

High

WHAT IS THE LEVEL OF CONCERN FOR CYBER SECURITY IN YOUR 
ORGANISATION? 



 

 
 

 

 

Fig.3.12: Technologies used for protection 

 

 

3.4.11 Approach followed for malware detection 

Out of the total respondents, 80% use signature detection approach. Almost same percentage 

use behavior      (58%) and static (52%) detection. 

Approach Count 

Network behavior detection 126 

Static behavior detection 190 

Dynamic behavior detection 211 

Signature detection 289 

Don't know 3 

Total 819 

 

Table 3.13: Approach followed for malware detection 
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Fig.3.13: Approach followed for malware detection 

 

3.4.12 Resource allocation to cyber security  

 

Out of the total number of respondents, 74% say that their organisations spend less that 10% 

of the total resources on security. 19% say the percentage to be between 10-20%. 7% say 

their organisations spend 20-30% resourses on cyber security and none of them say their 

organisations spend more than 30% resources on cyber security. 

 

Resource allocaion Count 

>30% 0 

20-30% 28 

10-20% 73 

<10% 291 

Total 392 

 

Table 3.14: Resource allocation to cyber security 
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Fig.3.14: Resource allocation to cyber security 

 

3.4.13 Response time after malicious attack 

 

Out of the total number of respondents, 56% say that their security teams take more than a 

day to respond to malicious attacks. 31% say the team responds within a day. 13% say the 

response time is less than an hour. Only 5% say it takes more than a week to respond to 

malicious attacks. 

 

Response time Count 

>= 1 week 18 

>1 day 219 

<1 hour 51 

1 day 122 

Total 392 

 

Table 3.15: Response time after malicious attack 
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Fig.3.15: Response time after malicious attack 

 

3.4.14 Factors hindering cyber security efforts 

Out of the total number of respondents, 85% say resource crunch is the main reason hindering 

cyber security efforts in their organisations. 80% cite lack of information as the reason. 68% 

blame insufficient training to be the reason and a percentage of 45% believe new automated 

and AI driven attacks are the reasons and they are not prepared for such advance attacks. 

  

Factors Count 

New automated and AI driven attacks 164 

Resource crunch 307 

Lack of information 288 

Insufficient training 246 

Others 0 

 

Table 3.16: Factors hindering cyber security efforts 
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Fig.3.16: Factors hindering cyber security efforts in the organisation 

3.5 Key Understandings 

 

The key understandings that we have got after analysis of the collected data are as follows: 

 

1) Organisations allocate very less percentage of overall budgets to cyber security. 

2) Organisations face a resource crunch when dealing with advance malware. 

3) Security persons are sometimes unaware of impending malicious attacks and 

futuristic attack mechanisms. 

4)  Lack of regular training amongst employees lead them to become weak against 

malicious attacks. 

5) Attackers are using advance AI and ML techniques for creation of malware whereas 

the current security mechanisms are unable to handle them. 

6) The average response time of security team is very high which leads to infection 

spreading in the entire organization. 

7) The level of concern for cyber security in organisations is low to moderate. 

8) Organisations are not using a combined approach of static, dynamic, network and 

sandbox evasion for detection of malware. 

9) Centralized security systems make mechanisms slow. 
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3.6 Objectives of the Study 

 

Internet is full of versatile malware, shellcode is the most common technology used by 

hackers nowadays. Intrusion detection system is able to mitigate the risk level up to certain 

limit because it relies on signature detection methodology. That‘s why the new version of 

shellcode is polymorphic due to which to detect the root cause is almost impossible in the 

existing detection technique. Due to such scenario we have identified the research gap in the 

current research and have proposed a framework to detect and mitigate untraced polymorphic 

shellcode.  

 

3.6.1 The Theoretical Framework of the Present Study 

 

We basically have to design a framework which can attack a shellcode from four different 

angles. We have to do a static analysis of shellcode, then a dynamic (behavior) analysis, then 

study its network footprint and finally try to see if it evades the sandbox. Then we aggregate 

the result obtained from these four stages and give the final result. 

 

3.6.2 Conceptual Model Framework 

 

Our conceptual model framework is a design created with the aim to identify and remove 

risks of polymorphic shellcodes. It uses advance machine learning algorithms for detection. It 

is going to attack a shellcode, in fact any type of malware from 4 sides-static, behavior, 

network and sandbox evasion: 

 

1) Static analysis: Means that we will study the static behavior of the sample and match 

it with already given behavior in our existing databases. If it matches with a malware 

we calculate the static probability of the sample for maliciousness. The machine 

learning model will be trained and tested with huge, ever increasing data. 

 

2) Behavior Analysis: There are advance malware like polymorphic and metamorphic 

malware which change their signatures quite often. In that case, we generally study 



 

 
 

 

the behavior of the sample to see if it matches with the behavior that normally 

malware families show. If it does, we again calculate the behavior probability of the 

sample for maliciousness. 

 

3) Network Analysis: Now we will see the network behavior of the sample to match it 

with the alerts that network monitors generate. If we see significant number of alerts, 

we again calculate the network probability of the sample for maliciousness. 

 

4) Sandbox Evasion Detection:Normally, an intrusion detection system will run a 

doubtful program in a controlled environment which is normally a sandbox. This 

environment will have all the resources required got the sample to run and all 

permissions are also given to the file. However, it is not allowed to run in an actual 

system, it is only run in a virtual system. This is a smart way to know the true 

characteristics of the sample and judge whether the file is malicious or benign before 

it enters the actual system environment. However, there are advance malware which 

are created to stay dormant whenever they detect that they are running in a virtual 

environment. There are many techniques which are applied for the detection of 

sandbox. Thus they try to evade a sandbox whenever they experience one. Therefore 

it is with surety one can declare a sample as a malware if it tries to evade a sandbox. 

This detection will give us a Boolean value of 0 or 1. 

 

5) Final Detection: From all the above four steps, we are going to get four probabilities. 

An average of these four probabilities is calculated to get the final detection 

probability. A threshold probability is calculated for the model according to the 

amount and variance of the data it currently has. A sample is declared as malicious if 

its combined average probability is above the threshold probability of the model. It is 

benign if the probability is lower. However, if the probability is equal to the threshold 

value, the sample is termed as unknown and is sent to the model again for further 

analysis. The model is cyclic in nature and every new sample is used as data for 

training of the model to make it more effective. Therefore it will always be in an 

updated state.  It will have information about all new malwares all the time. 

 

6) Decentralized Environment: The whole model is going to work in a decentralized 



 

 
 

 

environment. Thus the model is very resource efficient. Also because the detection 

mechanism is completely decentralized, therefore, every node is master node in the 

network and there is no central authority which can work for selfish gains or 

unrealistic profits. 

 

7) Blockchain network: All the transactions for detection of malware are logged in 

Blockchain network and the data about the malwares which is stored in each node is 

stored in the form of blocks in the block chain. Thus this database is immutable, 

secure, reliable, distributed and always updated. Thus every node participating in the 

malware detection model gets an always updated data at a very cost effective rate with 

the latest of machine learning technology. 

 

8) Balancing the model: the model has to be always in a balanced state so that is never 

biased with more of clean or more of malicious data. Whenever we find such a bias in 

the model according to our calculations, we either increase the clean samples or 

malicious samples for training of the model. 

 

 

 



 

 
 

 

 

 

Figure 3.17 Framework for Detection and Mitigation of Polymorphic Shellcode 

 

3.6.3 Objectives of the Framework: 

 

To identify and the mitigate risk factors occurring due to the execution of polymorphic 

shellcode.  

1) Injecting the binaries in the code caves of existing (PE) application by using binding, 

embedding and stubs methodology. This will create polymorphic shellcodes for our 

study. 

2) Understanding polymorphic and metamorphic techniques of creating advanced 

malware. 

3) Understanding the working of polymorphic shellcode including the attack 

methodology, hiding methodology replication methodology and metamorphosis. 



 

 
 

 

4) Working with live ransomware samples to understand their behavior and attack 

methodology. 

5) The static analysis, behavior analysis, network analysis and sandbox evasion detection 

of polymorphic shellcode on the host as well as on the network.  

6) Proposing the framework for the detection and mitigation of untraced polymorphic 

shellcodes using advanced machine learning techniques.  

7) Proposing how this framework would work best in a decentralized environment. 

8) Proposing blockchain network usage for recording and logging all transactions to 

make them secure, updated and reliable.   

9) Training the framework with already known samples. 

10) Testing the framework with live samples from the wild. 

11) Analysis of the proposed framework with its limitation and future scope.  

 

3.7 Experiments to assess Polymorphic shellcode threat: 

 

1. Exp 1: Creating a Shellcode by Smashing the Stack 

 

2. Exp 2: Injecting shellcode in PE file and making it polymorphic thus making it 

undetectable. 

 

3. Exp 3: Getting privileges after infecting a file with polymorphic shellcode, then 

running it through antiviruses to get results. 

3.7.1 Experiment 1 : Creating a Shellcode by Smashing the Stack 

Purpose- Exploiting a program having a buffer overflow vulnerability. Overflowing the 

buffer by giving a very large input. Then overwriting the ‘Return Address’ to point to a 

malicious shellcode which will then give admin access of the system to us. 

 

Hypothesis- The hypothesis is that in some vulnerable programs where bounds checking of 

the buffer is not strictly performed, the buffer can be overflown to point to the malicious 

code. In case, the return address cannot be exactly determined, NOP instructions are added 

before the malicious code. 

 



 

 
 

 

Explanation- Buffer overflow exploits are accomplished by mangling the way that C handles 

memory allocation. When a program in C begins, or starts a function, it allocates a stack of 

memory for that particular piece of the program. This stack consists of space for variables 

and data, as well as pointers to return flow control to the proper place in the stack. This 

allows stacks to grow dynamically as programs fork and carry out subroutines and other 

processes. This is efficient because the stack doesn't have to be initialized at the start of the 

program with room for every possible execution path of the program. Instead, as the program 

runs, memory is allocated on a per needed basis. 

Programs don't run in a vacuum, however, and one process can't be allowed to own the stack 

entirely until its completion. For this reason the return pointer on these individual pieces of 

the stack (called stack frames) is critical, so that at the end of the frame execution the 

processor can return to the original programmatic instructions and continue the program. 

Because these frames are allocated dynamically and because they are of a fixed size, if a 

programmer is not careful it becomes possible to pass in more variable data than is reserved 

on the stack. For instance, if the following represents a frame: 

------------------ 

|      data           | 

------------------ 

|      data           | 

------------------ 

|      data           | 

------------------ 

|      data           | 

------------------ 

| return pointer| 

------------------ 

 

Figure 3.18 Representation of a Stack Frame 

 

You can see that there are 5 'slots' for data in the frame; the sixth slot is for the return pointer. 

What happens if the program tries to write 6 'slots' of data into the frame? An exception 

probably, but if the attacker is careful they could arbitrarily send the pointer to a different 

location in memory, perhaps a location that contains malicious code. 



 

 
 

 

 

Procedure- The first step when we experiment with shell codes is to create a vulnerable 

program so let's create one in c  

 

#include<stdio.h>//lets include some basic library files  

#include<string.h> 

#include<stdlib.h> 

 

// IN int main function in gcc the second argument is to accept the //arguments 

// As you can see there are no checks made which processing the arguments // hence the 

program is vulnerable   

intmain(int argc,char*argv[])  

{ 

 

char buffer[256];// array of 256 characters is pretty standard  

 strcpy(buffer,argv[1]); 

 printf("%s\n",buffer); 

return0; 

 

} 

 

Figure 3.19 Creating a vulnerable program 

 

Let’s compile the following code with the following command  

 

gcc vulnerable.c -o vuln -z execstack -fno-stack-protector 

 

Make sure to disable some stack protection of gcc compiler that’s why we have used 

some parameters  

 

-z execstack -fno-stack-protector . 

 



 

 
 

 

 

After compiling the code successfully we can execute the program in linux with / operator 

followed by the ‘.’operator as - 

 

./vunl  helloworld  

 

Output of the following program will be the argument that was entered during the 

execution of the program  

 

Helloworld 

 

The most effective way to do this is to pass in malicious bytecode as part of the 'data' and 

then overwrite the return pointer with the location of the malicious bytecode. Even this 

process is tricky though, because the return pointer must point to the exact location of the 

exploit code or the code will fail. For instance, if the pointer lands in the middle of the 

exploit code it won't execute properly. A neat trick is to pad the start of the exploit 

shellcode with NOP (no operation) instructions. When the machine encounters a NOP it 

simply moves to the next instruction. If there are a series of NOP instructions preceding 

the malicious shell code then the pointer merely has to hit one of them, and then the 

instructions will cascade down the NOP's to the shellcode. This technique is called a NOP 

sled.  

 

Now before we try to crash the program with our infamous buffer overflow attack there is  

a program calledulimit   which restrict the length of the argument that is being passed. 

 

A simple way to check what the size ulimit is allows is just entering the ulimit in your 

linux terminal. 

 

Ulimit 

Unlimited  

 



 

 
 

 

If it returns unlimited everything will works fine otherwise go to the following link to set 

the limit of ulimit  

 

The first program is crashed using the following command. 

 

./vuln $(python -c 'print "h"*300') 

 

 

The output is  

 

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 

Segmentation fault (core dumped) 

Figure 3.20 Output after crashing the program 

 

As you can see we have used python to crash the program and after getting and printing 

‘h’ 256 times it gave segmentation fault error. 

 

There are two points worth noting: 

 

1. We have used a little python trick to generate ‘h’ 300 times but one can do it 

manually too but it will take a lot of time. 

2. We can count how many times it has printed ‘h’ before it gets crashed 

 

So we have learned lately how to crash any program and smash the stack of that program 

if it suffers from buffer overflow vulnerability. 

 

Let’s try to run gdb through our program and see where it crashed but first run the 

following command  



 

 
 

 

 

ulimit -c unlimited  

 

Then run  

 

gdb --core core  

 

gdb--core core  

 

Whenever a core is dumped during the execution of a program it generate a core file with 

the name of core which can be debugged with the help of gnu debugger AKA gdb. 

 

Output of gdb in one system is as follows. It may differ for others - 

 

Figure 3.21 Output of GDB 

 

Now few things need to be explained over here  



 

 
 

 

First of all there is a command in the gdb called i rwhich provides us the information 

about the system registers  

 

As we can see a register called rbp at 7th position which means register which contains 

value of the base variable in stack this case its 0x6868. 

 

Now a command x/20x $rsp is entered.  

 

Here rsp is the register contains the pointer to the stack variable and  x/20x is the way to 

print the information. 

 

Now as it can be seen in the above screenshot after printing the information of stack 

pointer we got  

 

0x7ffe8ae94af8: 0x68686868 0x68686868 0x68686868 0x68686868 

0x7ffe8ae94b08: 0x68686868 0x68686868 0x68686868 0x68686868 

0x7ffe8ae94b18: 0x68686868 0x00000000 0x00000000 0x00000000 

0x7ffe8ae94b28: 0x1d6a8fd3 0xecdf79e3 0x00400470 0x00000000 

0x7ffe8ae94b38: 0x8ae94bd0 0x00007ffe 0x00000000 0x00000000 

 

Figure 3.22 Information of stack pointer 

 

Now after doing this we got the address where our core was dumped we are going to 

make the note of this address for future purpose  

 

0x7ffe8ae94af8 

 

After that we have to find the beginning of our stack so we have to use some sort of brute 

force approach here so let’s execute another gdb command 

 

 x/20x $rsp -300 



 

 
 

 

0x7ffe8ae949cc: 0x00007ffe 0x00400470 0x00000000 0x004005ad 

0x7ffe8ae949dc: 0x00000000 0x8ae94bd8 0x00007ffe 0xa50fe8f6 

0x7ffe8ae949ec: 0x00000002 0x68686868 0x68686868 0x68686868 

0x7ffe8ae949fc: 0x68686868 0x68686868 0x68686868 0x68686868 

0x7ffe8ae94a0c: 0x68686868 0x68686868 0x68686868 0x68686868 

 

The program has started finding the values although to find the actual address. 

x/20x $rsp -312 

 

0x7ffe8ae949c0: 0x00000000 0x00000000 0x8ae94af0 0x00007ffe 

0x7ffe8ae949d0: 0x00400470 0x00000000 0x004005ad 0x00000000 

0x7ffe8ae949e0: 0x8ae94bd8 0x00007ffe 0xa50fe8f6 0x00000002 

0x7ffe8ae949f0: 0x68686868 0x68686868 0x68686868 0x68686868 

0x7ffe8ae94a00: 0x68686868 0x68686868 0x68686868 0x68686868 

 

0x7ffe8ae949c0: 0x00000000 0x00000000 0x8ae94af0 0x00007ffe 

0x7ffe8ae949d0: 0x00400470 0x00000000 0x004005ad 0x00000000 

0x7ffe8ae949e0: 0x8ae94bd8 0x00007ffe 0xa50fe8f6 0x00000002 

0x7ffe8ae949f0: 0x68686868 0x68686868 0x68686868 0x68686868 

0x7ffe8ae94a00: 0x68686868 0x68686868 0x68686868 0x68686868 

 

Here the address of beginning of stack is found. 

 

 

 

 

 

Figure 3.23 Finding beginning of the stack. 

 

So now we got the address of the end and beginning of our stack time to do some math 

and find out how much big our buffer is now because Linux shell is too powerful we can 

do that in single command  

 



 

 
 

 

echo 'ibase=16;' $(echo '7ffe8ae94af8-7ffe8ae949f0'|tr "a-z""A-Z")|bc 

 

 

 

This command is understood as follows: 

 

Echo is used to output stuff to standard output and ibase=16 is used to tell bc (bash 

calculator) that we are trying to enter base 16 value then again we are subtracting the 

address that we have noted previously after removing 0X from them also we changed the 

cases from lower to upper by piping the output of echo command to another tool called tr 

(transform cases ) and finally piped it to bc. 

 

The output is: 

 

264 which is the size of our stack  

 

Observation & Results- In the experiment, it was observed that a buffer in a vulnerable 

program can indeed be overflown and the return address can be overwritten to point to the 

malicious code. Once we are able to reach the malicious code, we can get the admin 

rights of the attacked machine and thus can use the machine for any malicious purpose. 

 

 

3.7.2 Experiment 2 : Injecting a polymorphic shellcode in PE file  

 

Purpose:Injecting a process executable file from the Windows binary file with a 

polymorphic shellcode and scanning this malicious file against a list of antiviruses. 

 

Hypothesis: A hypothesis can be formed that since many antiviruses do not have the 

required capability to detect dynamically generated polymorphic malwares, thus more 

than fifty percent of the antivirus software will not be able to detect it.  

 



 

 
 

 

Explanation- Once a PE file is injected with a polymorphic shellcode, it will become 

very difficult for the antiviruses to detect it. Signature matching fails and polymorphism 

is dynamic. In this experiment, we are going to use a tool called Shellter. Shellter is a 

dynamic shellcode injection tool, and the first truly dynamic PE infector ever created. It 

can be used in order to inject shellcode into native Windows applications (currently 32-bit 

applications only).  

 

Shellter is capable of re-encoding any native 32-bit standalone Windows application. 

Since we are trying to avoid AV detection, we need to avoid anything that might look 

suspicious to AV software such as packed applications or applications that have more 

than one section containing executable code. 

Shellter is capable of taking any of these 32-bit Windows applications and embedding 

shellcode, either your custom payload or one available from such applications as 

Metasploit, in a way that is very often undetectable by AV software. Since you can use 

any 32-bit application, you can create almost an infinite number of signatures making it 

nearly impossible for AV software to detect. 

 

The shellcode can be something yours or something generated through a framework, such 

as Metasploit. Shellter takes advantage of the original structure of the PE file and doesn’t 

apply any modification such as changing memory access permissions in sections (unless 

the user wants), adding an extra section with RWE access, and whatever would look 

dodgy under an AV scan. Shellter uses a unique dynamic approach which is based on the 

execution flow of the target application, and this is just the tip of the iceberg. Shellter is 

not just an EPO infector that tries to find a location to insert an instruction to redirect 

execution to the payload. Unlike any other infector, Shellter’s advanced infection engine 

never transfers the execution flow to a code cave or to an added section in the infected PE 

file. 

 

Procedure- After firing Shellter in Kali Linux, we need to select from among its various 

modes: Automatic or Manual (A/M/H). After that, Shellter asks for the location of the PE 

file. Here we can use a PE file from the list of readymade Windows binary files or use our 

own executable file. We choose ’vncviewer.exe’. Then it asks you to enable the ‘Stealth 

Mode’. This mode makes the file polymorphic. Then we will ask whether we want to use 



 

 
 

 

a listed payload or custom? This is the framework to be used for controlling the host. We 

select ‘L’. Then it asks to ‘select the payload by index’.  There are many options listed 

say: 

 

1. meterpreter reverse TCP 

2. meterpreter reverse HTTP 

3. meterpreter reverse HTTPS 

4. meterpreter bind shell 

5. reverse shell TCP 

6. bind shell TCP 

7. WinExec 

 

We choose ‘1. meterpreter reverse TCP’ to get reverse shell. 

 

Then it will ask for LHOST. Enter the local ip of your system. You can find the local ip 

by using command ‘ifconfig’.Next you need to enter LPORT. Enter anything in lport but 

the traditional port is 4000 and 4444 but you are free to use any port. Once you are done 

shellter will do the rest of the job itself.  

 

The file which is created is run through NoDistribute which is a scanner which scans your 

file through 35 antivirus software and tells as to which one detects malicious content in 

your file. 

 

Observations & Result- When the infected PE file was canned through 35 antivirus 

software, only one antivirus was able to detect it out of 35. This goes on to prove that 

once we make a polymorphic shellcode, then many antiviruses today do not have the 

required capability to detect malicious content in the file. 



 

 
 

 

 

Figure 3.24 Output from NoDistribute with our created shellcode. 

 

 



 

 
 

 

3.7.3 Experiment 3: Getting privileges after infecting a file with 

polymorphic shellcode. 

 

Purpose:  Writing an experiment to infect a PE file and then getting privileges of the 

attacked system through this file and showing that it remains undetected by many 

antivirus software. 

 

Hypothesis: Using this experiment we try to prove that it is possible to infect any process 

executable file with polymorphic shellcode. The infected file may then be used to attack a 

system and get all privileges of the system. After that many attacks can be performed on 

the compromised machine. 

 

Explanation:  Polymorphic shellcodes are dynamically generated and thus bypass simple 

signature matching antivirus systems. The dynamism and the latest techniques of 

polymorphism, helps the malicious software to evade many antivirus systems. Thus it 

becomes simple for the polymorphic shellcode to attack a compromised machine and get 

all privileges of the machine. Various attacks can then be performed on the machine like 

keylogging, camera hacking and obtaining information about system files. 

 

Procedure: Here in this experiment, we will take a Windows binary file called 

radmin.exe. Since we should not meddle with an actual Windows file, therefore, we copy 

it in root. After firing Shellter, it asks for the operation mode. We choose Auto. In the PE 

target, we give ‘/root/radmin.exe’. We are however not limited to these binaries. Before 

this we have done ‘ifconfig’ and we know the IP address of our machine is 192.168.0.7. 

Shellter will infect this PE file. 

  It will also ask if you want the ‘stealth mode’. This mode makes the file polymorphic. 

Then we will ask whether we want to use a listed payload or custom? This is the 

framework to be used for controlling the host. We select ‘L’. Then it asks to ‘select the 

payload by index’.  There are many options listed say: 

 

1. meterpreter reverse TCP 

2. meterpreter reverse HTTP 

3. meterpreter reverse HTTPS 



 

 
 

 

4. meterpreter bind shell 

5. reverse shell TCP 

6. bind shell TCP 

7. WinExec 

 

We choose ‘1. meterpreter reverse TCP’ to get reverse shell. Then it verifies the infected 

file. 

 

Then we copy ‘radmin.exe’ using pen drive to windows desktop. Enable the pen drive in 

Kali linux. Then copy the file in it. Then disable it in Kali. It will automatically get 

enabled in Windows. Copy the file in Windows Desktop. 

 

 

Figure 3.25 Copying ‘raadmin.exe’ file on desktop. 

 

Set up metasploit in Kali using the command ‘msfconsole’. Set lhost to 192.168.0.7. Set 

Lport to 1. Same as in the exploit. It can be 4000 or other port number also. 

Then fire the exploit. Now we get the reverse shell. If we write ‘sysinfo’, we get remote 

system’s information. We can get a screenshot or click a photo using webcam. Or write 

‘getPrivs’ to get privileges and probably even shut down the system. Just write ‘help’ to 

know all options’. Then exit the msf. 



 

 
 

 

 

Figure 3.26 Getting system information using infection through shellcode 

 

The file was scanned by 36 antiviruses out of which only 10 were able to detect that it 

was malicious. Rest all including QuickHeal and Kasperskey were not able to detect it. 

Name radmin.exe vncviewer.exe 
 

Threat Level High Medium 

Category Polymorphic shellcode Polymorphic shellcode 

Propagation 
Method 

Downloaded by users considering it 
as legit software 

Spam emails 

Behaviour  Degrades system performance 
significantly. 

 Can cause system to crash or 
shut down abruptly. 

 Modifies system. 

 Credential stealing. 

 Consumes system 
resources thus 
slowing down the 
system. 

 Injects its code into 
all running 
processes and 
spreads further. 

 Logs keystrokes. 

Figure 3.27 Threat Reports of two advance malwares created during testing 

 



 

 
 

 

 

Figure 3.28 Output of Nodistribute while detecting ‘raadmin.exe’ shellcode 

 



 

 
 

 

Observation & Results: Using the experiment, it was observed that using a dynamically 

generated polymorphic shellcode, injected in a PE file, the attacker was able to gain full 

access to the compromised machine and could do keylogging, getting the camera access 

or getting all system information and access to important system files of the compromised 

machine. This infection can easily bypass majority of the common antivirus systems 

especially those that only employ simple signature matching techniques. 

 

3.8 Significance of Research 

 

Cybercrime and cyber espionage are the biggest threats to businesses today. Not only are 

big to small organizations getting affected from it but individuals all over the world are 

also incurring losses. Hacking started as a fun activity and has now developed as a fully 

funded business. It’s used widely by rival organizations to either keep a track of the other 

organization’s business or ruin it partly or completely. Countries are using it for cyber 

warfare and cyber espionage against other countries.  

 

3.8.1 Need of the Study 

 

It is imperative that a check is put on malicious activities. The biggest threat, cyber world 

if facing today is that of ‘Polymorphic Shellcodes’. These are shellcodes which are 

polymorphic in nature, meaning that they change their look but have the same behavior. 

This makes them difficult to detect by Signature based detection systems. Some 

polymorphic shellcodes are also capable of changing their behavior at runtime. Thus 

Anomaly based detection systems also fail here.  

 

All the current solutions which are exiting today have a some lacunas in common: 

 

1. Signature Matching-Most of them focus on malware detection by signature matching 

and pattern recognition. Malware authors are now smarter than ever before and 

signature detection is of no use due to techniques like polymorphism,metamorphism 

etc.  



 

 
 

 

2. No behavioral analysis- Some of them do not take into consideration, the of 

malware, like file behavior, network behavior and other dynamic behavior of the 

file to be analyzed. 

3. Updating time-Another problem that current antiviruses face is that they take a lot 

of time to analyze the malware and then update the definition of antiviruses into 

user’s device.  

4. Danger to user’s privacy- The antivirus companies are sometimes a danger to the 

user’s privacy as they collect data from user on regular basis and use that to make 

money. The normal user acts only as a data feeder so that these antivirus 

companies can protect enterprises. 

5. Centralized Antivirus Companies-All the antivirus organizations are centralized in 

nature. This implies that a lot of computation power is required and very few 

computers are available to provide it. If a distributed system could be designed 

where all systems in the network contribute to the work of malware detection, 

things will become faster and more efficient. 

 

Note that the recent ransomware attacks by WannaCry and Petya can prove the above 

statements, not to mention that none of them were actually polymorphic or metamorphic. 

 

 

3.8.2 Benefit of the Study 

 

Our proposed model will take care of all kinds of polymorphic shellcodes. It consists of 

the snapshot technique and the revert-back model. It takes snapshots of the memory and 

processes and keeps them in the database to understand the working of the malware. Next 

time when the same malware shows up, we have the list of its behaviors and thus can 

easily detect it. After that we restore the memory and the processes back to their original 

state. Machine learning and artificial intelligence are further incorporated to make the 

work more efficient and detect any new malware also. Decentralized currency was 

another incredible innovation recently and it led us to the new system of bitcoins. 

Bitcoins are great but what makes them greater is the technology on which it works. The 

technology is known as blockchain and blockchain has so many other applications other 

than just decentralized currency. Here we use the blockchain concept to harness 



 

 
 

 

distributive power of all the systems in the network so that a large amount of computing 

power is gained with very little cost and everyone in the network is benefitted. 

 

Our work is highly significant both in the present and in the future. Hackers have recently 

used shellcodes in WannaCry and Petya Malwares. The next step is to use polymorphic 

shellcode attack. We must be ready for them and our works makes us ready. Also we are 

proposing a framework of policies for Intrusion Detection and Prevention Systems 

against such malware to harden them so that they can tackle any kind of threat.     

 

  



 

 
 

 

 

3.9 Designing the Framework (PosDeF) 

 

We are first going to design the framework conceptually using flowcharts. Then we will 

develop algorithms for it. Finally we would create programs to develop a complete, workable 

model which can detect any kind of malware with good accuracy. 

 

3.9.1 Design Methodology 

 

This is Applied, Quantitative Research and the research design is Experimental in nature. 

Various kinds of experiments would be conducted to prove the correctness of our proposed 

Framework for detection and mitigation of untraced polymorphic shellcodes.  

 

3.9.2 Objectives: 

 

1. Understand the various types of malwares, especially polymorphic shellcodes present 

in the wild today. 

 

2. Build a machine learning model for the detection of polymorphic shellcodes. 

 

3. Train the model using both malicious and legitimate samples. 

 

4. Do static analysis, behavior analysis, packet analysis and disassembly of the sample in 

the model. 

 

5. The machine automatically finds out the relevant features for the detection of 

polymorphic shellcode. 

 

6. Test the model with known samples. 

 

7.  Establish a cloud network for distributive analysis in the model. 

 



 

 
 

 

8. Maintain a ledger to keep a track of amount of computation given by each virtual 

node. 

 

9.  Rigorous testing of the model to ensure accuracy.   

3.9.3 PosDeF Design 

 

Based on recent innovations we have designed a decentralized system of malware detection 

in which no central antivirus company is involved and everybody in the network is 

contributing and is getting benefitted from this system. We use the latest techniques to fight 

the latest malware, i.e. 

 

1. Machine Learning(Supervised) 

2. Deep Learning 

3. Distributive Computing 

4. Ledger maintenance using Blockchain networks 

 

Machine learning is an upcoming field in computer science[26]. It is an application of 

artificial intelligence that gives the system, a capability to automatically learn and improve 

from experience without being explicitly programmed. It is basically a collection of programs 

meant to learn from examples, also called as ‘data set’. Say we want to teach an application 

to recognize handwritten characters. Now there are two ways of doing it. First is to write 

down a set of rules for each character specifying all different shapes and styles a character 

can have. Add to it huge variations in human handwriting. Also there would be separate rules 

for printed and cursive characters. Writing of such programs would be a humongous task for 

a programmer and it would also require tremendous computing power. 

 

The second way is to prepare a data set having many different examples of handwritten 

characters and the computer, by itself learns the rules that best identify a character. This way 

of learning is called supervised learning. Machine learning is of two types: supervised 

Learning and Unsupervised Learning.  

 

Supervised Learning: Here labeled training data is provided to the system and then it tries to 

classify the unknown sample. 



 

 
 

 

 

Unsupervised Learning: Here we do not provide labeled training data and ask the system to 

cluster the sample in n number of clusters. Unsupervised learning is quite difficult as it is 

very hard to analyze how system classifies data as it does not output the parameters on which 

it clusters the data.  

 

Computer science is changing very fast and according to some statistics, Artificial 

intelligence has arrived 10 years prior to the expected time. Researchers have shown an 

incredible success rate of detecting malwares using machine learning although the problem 

with machine learning is that no matter how much data you train the machine learning 

algorithm with, it’s not sufficient and also it takes huge amount of time to train a large dataset 

using machine learning [27]. However recent innovations like deep learning and cheaply 

available gpus have made machine learning really fast but still the time to train the model 

increases linearly as the size of dataset increases.  

 

3.9.4 Proposed Working of PosDeF 

 

In our approach, we first use supervised learning. We have a machine learning algorithm. It 

would be given some binary files as a training data set. Although most of our dataset will be 

contributed by the users of network, we have provided some initial dataset which comprises 

of malicious data from virus-share database, all .exe files from clean Windows installation 

and .exe files of popular software from filehippo database as a clean source of data. After 

getting trained, the algorithm would be given an unknown sample. Through the knowledge it 

has attained, it would be able to recognize the malicious file. The algorithm can be fine-tuned 

with better training samples. The whole process can be shown using a flowchart as below. 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

Figure 3.29 Flowchart to demonstrate proposed working of PosDeF. 

 

 



 

 
 

 

 

 

Figure 3.30 Machine Learning Stub 

 

 

 

Figure 3.31 Balancing the Training-Testing Dataset 
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Let’s understand the working of PosDeF step-by-step: 

 

3.9.4.1 Collection of Data for the Formation of the Training Set 

 

 For creating the training data set, we have to have large number of different files, 

some malicious and some benign. Having random data set is very important in 

supervised machine learning algorithm for test model formation. This algorithm is 

used here. Supervised machine learning adaptively learns from data. It does not need 

a specific set of rules given by the programmer. It actually learns by examples. We 

must take care that the data set which is used for training the data must be carefully 

chosen. It must be an unbiased and random set. If the examples are collected by 

random sampling only then can an accurate model is generated. In case our training 

data set is biased or partial, the resulting model would also be incorrectly biased. 

Therefore, for the system to be fair, not only should one have more data samples for 

fine-tuning of the model, but having the ‘right’ samples is the most important 

precedent. 

 

We have taken .exe and .dll files for training. For getting the legitimate files we have 

collected all binaries from Windows xp, Windows 7 and Windows 2008 which 

resulted into around 40000 clean files. More clean files can be obtained from trusted 

sites like FileHippo.com. For getting malicious files, we have used VirusShare.com 

dataset which contained around 96000 files. Other malicious files can be obtained 

from Contagio.com, malshare.com, scumware.com etc. Also polymorphic engines 

like ADMutate, Clet and PhatBot can be used to create polymorphic shellcodes.  

 

In all we have trained our model with around 1.3 lakh files for static analysis and 

2000 for dynamic, network and Sandbox evasion analysis. For clean files we have 

extracted 1000 exe files from clean installation of windows 7. We have used 

virusshare_00302.zip file as the collection of malwares we have randomly extracted 

1000 files from the above zip. 

 

3.9.4.2 Training with our initial dataset  



 

 
 

 

 

This step makes our model useful to some extent. We have used the dataset provided 

from virushare.com containing thousands of malicious samples and all files from a 

clean Windows 7 installation (around 2500 files). All these files are run through the 

system and the feature vector which is formed after following the steps in the model is 

given to the system labeled as malicious or benign. Through this, the model learns 

that which features distinguish a malicious file from a benign one. 

 

3.9.4.3 Profiling the files  

 

Profiling here refers to extracting information from files which can be useful in 

malware detection. It has following sub steps: 

 Static analysis –static analysis here refers to the act of extracting 

information based on file properties without running it. This is the 

quickest way to classify the file but not always accurate. We have 

extracted a total of 52 parameters using a python module called PE 

Analyzer 2. 

 

 Behavior analysis –Behavior analysis refers to the act of extracting 

information at runtime. We have extracted api call graphs, files created 

and affected at runtime etc. We have used Cuckoo for this. 

 

 

 Packet analysis – In this module we are doing the analysis of network 

traffic of a particular file using tcpdump and snort. 

 

 

 Sandbox Evasion Analysis – If the sample is trying to evade the 

sandbox, we consider that this is a sort of malware behavior.  

 

3.9.4.4 Convert the dataset into machine learning compatible format  

 



 

 
 

 

This step is about converting the raw data into structured data that can be understood 

by machine learning. We have normalized various parameters using various available 

techniques like ngram [28] and then used csv format as our dataset format. 

 

3.9.4.5 Pre train the model  

Pre training here refers to finding the variance in parameters so that the training time 

can be optimized.  

 

3.9.4.6 Train the dataset using various Machine Learning Algorithms 

 

We have tried various algorithms for training of dataset and compared various 

approaches and according to the data available, we will use a suitable machine 

learning algorithm. 

n all the stages of the model, be it static analysis, dynamic analysis, packet analysis or 

sandbox evasion, the basic steps remains the same. The underlying idea is shown in 

the figure below: 

 

 Analysis: We analyze the dataset to find out which features are relevant to our 

analysis and whether those features are in a usable format. 

 Feature Extraction: If features are not in a compatible format, they are 

converted into a compatible format.  

 Feature Selection: All relevant features, which are required for the algorithm, 

are selected and the irrelevant features are dropped. 

 Feature classification: All features are ranked according to their importance 

for prediction of maliciousness. 



 

 
 

 

 

 

Figure 3.32 The underlying steps in all four analysis parts.  

 

3.9.4.7 Iteratively scan all available files  

 

Since our model is based on distributive properties we will take advantages of our 

available nodes and constantly improve our model. Yara and Clamav are open source 

anti malwares available. We will scan the file and if it’s detected by existing 

definition of yara and clamav then label is as malicious. If it’s not detected by existing 

solution then let’s give our trained model a try. We will set the malicious threshold 

value based on our research. For example, if the calculated probability is below 5% 

then we will mark it as clean and if it is 95% then we will label it as malicious; if it’s 

in the middle of our lower threshold and higher threshold then we will leave it 

unlabeled as of now. Also if the file is proved to be clean then we will update the 

ledger of clean files and would not scan the file again but will surely fingerprint it. If 

the file is proved to be malicious then we will update our distributive ledger with the 

hash of that file which will act as our always-updated virus definition and will work 

much faster than current virus definition solutions. 



 

 
 

 

Concept of CVE’s: CVE stands for Common Vulnerabilities and Exposures. It is a 

publicly available database which provides a reference method for a list of public 

security threats. Most of the antimalware companies get their data from this list. We 

also use these CVE in the form of analysis by open anti malware systems like 

ClamAV and Yara. After analyzing our dataset, if we are able to find a new security 

threat, we update the CVE so that everyone knows of this threat almost immediately 

at the same time. We also have a reward system described below involving CVE’s. 

 

3.9.4.8 Reward the user 

 

Since in our model there is no central authority for which we have to pay our nodes. 

Users are everything in our network. They are the data providers and they are the ones 

who will benefit from model. So they must be the ones who should get rewarded for 

their contribution of bandwidth and computation power. The rewards can be in the 

form of points. These points can be in the form of CSR points for a company which 

they can use in any way that they want. Individuals can be awarded with getting their 

names in CVE files indicating that they helped finding a particular vulnerability and 

removing it. Later on the points can be used for giving any form of reward and 

recognition. 

 

 

 

3.9.4.9 Balancing the dataset  

 

There can be unbalancing issues with our dataset which can later be turned into 

undesirable results there can be two cases: 

 

More clean files than malicious – In this case the solution is simple. We will 

block the extra clean files to go into the training phase and delay them for the 

next time (whenever required). 

 

More malicious files that clean – We can perform the same step as above but 

this time we can do it in a better way. In our model, we are assuming that all 



 

 
 

 

executable files hosted on filehippo are clean so we can download some .exe 

files from filehippo and label them as clean which will further increase the 

accuracy of our model. 

 

3.9.4.10 Endless loop  

 

The whole process explained in our flowchart is continuous and will never end as 

when we will get more and more nodes, more and more files will be there and more 

and more computation power will be there so our model keeps on improving until it 

becomes better than existing solutions and there is no end to it. 

 

3.10 Algorithms used for Building PosDeF 

 

Here we present the various algorithms that we have created for building of the framework. 

We start by giving the final algorithm followed by the stub algorithms of static, dynamic, 

network analysis and sandbox evasion. 

 

3.10.1 The Final Algorithm 

 

The final framework is created using an algorithm which takes the various parts like Static 

analysis, Behavior analysis, Packet analysis and Sandbox evasion as stubs. The final 

algorithm predicts the possibility of maliciousness of the sample by calculating the average of 

probabilities predicted by all the stubs. 

 

Before this, a threshold value of maliciousness is calculated according to the data set that we 

currently have for training the framework. If our combined predicted value is lower than the 

threshold value then the sample is considered clean. If it is above the threshold value, the 

sample is considered malicious. However, if it is equal to the threshold value, the sample is 

considered unknown and sent for detection again. 

 

 

3.10.1.1 Algorithm for Training of PosDeF 



 

 
 

 

 

Let us assume that D is a multifactor set 

 

D={a U b U d U e} 

 

Where: 

 

aselected features of static analysis 

bselected features of dynamic (behavior) analysis 

cselected features of Snort analysis 

esandbox evasion (Boolean 0 or 1) 

 

We calculate four probabilities of maliciousness for a sample 

 

Pa= Static Probability of maliciousness 

Pb= Behavior Probability of maliciousness 

Pc= Snort Probability of maliciousness 

Pe= Sandbox Evasion Probability of maliciousness 

Cp=Combined Probability 

Tc= clean.threshold.percentage 

Tm=malicious.threshold.percentage 

 

Then we calculate combined probability of maliciousness for the sample by calculating 

average 

 

Cp=(Pa+Pb+Pc+Pe)/4 

 

R= Result after testing 

N=Total number of samples  

Nc= Number of clean samples 

Nm= Number of malicious samples 

 

Now, let’s see when a sample is passed from our model- 



 

 
 

 

 

Threshold calculations 

        4 

Tc=∑ Pi { R≠ Malicious}/n 

      i=1 

 

        4 

Tm=∑ Pi { R≠ Clean}/n 

      i=1 

 

 

3.10.1.2  Algorithm for Threshold Calculation for PosDeF during 

           the training phase. 

 

Say Sample[] is our array for training the model. It has both clean and malicious files. 

 

FindThresholdAlgorithm 

{ 

Nm0;   

Nc0;  

 

 //Initially we set number of clean and malicious samples to 0  

 

Tc0; 

Tm0; 

 

//Initially set the threshold of both clean and malicious samples to 0 

 

for (i=0 ;  i<=Sample.length ; i++) 

{ 

 Sample[i].Pa=Calculate.Static.Probability (Sample[i]); 

 



 

 
 

 

//Calculate.Static() is a function which calculates static maliciousness probability for 

Sample[i]  

 

 Sample[i].Pb=Calculate.Behavior.Probability (Sample[i]); 

 

//Calculate.Behavior() is a function which calculates Behavior maliciousness 

probability for Sample[i]  

 

Sample[i].Pc=Calculate.Snort.Probability (Sample[i]); 

 

//Calculate.Snort() is a function which calculates Snort i.e. network maliciousness 

probability for Sample[i]  

 

Sample[i].Pe=Calculate.SandboxEvasion.Probability (Sample[i]); 

 

//Calculate.SandboxEvasion() is a function which calculates whether the Sample[i] 

tries to evade the sandbox or not. This value is Boolean 0 or 1  

 

 

Sample[i].Cp= 

(Sample[i].Pa +  Sample[i].Pb +  Sample[i].Pc + Sample[i].Pe) / 4 ; 

  

 If ( Sample[i].result == clean) 

 { 

  Tc=Tc+ Sample[i].Cp ;  

  Nc ++ ; 

 } 

 else 

 { 

Tm=Tm + Sample[i].Cp; 

  Nm ++ ; 

 } 

} 



 

 
 

 

 

clean.threshold.percentage=Tc/Nc * 100 ; 

 

malicious.threshold.percentage=((Tm/Nm) –clean.threshold.percentage) * 100 ; 

 

unknown.threshold.percentage=more_ than(clean.threshold.percentage) and 

less_than(malicious.threshold.percentage) ; 

} 

 

 

3.10.1.3  Algorithm for Testing of PosDeF 

 

TestAlgorithm(Sample) 

{ 

Pa= Calculate.Static.Probability(Sample) 

Pb= Calculate.Behavior.Probability(Sample) 

Pc= Calculate.Snort.Probability(Sample) 

Pe= Calculate Sandbox Evasion.Probability(Sample) 

 

CP=(Pa+Pb+Pc+Pd)/4   

 

Md5Sum= Find Md5Sum(Sample) 

 

If (Cp>ThClean) 

{ 

//means file is malicious 

 

Log(Md5Sum) in clean sample database 

Start_BlockChain_Transaction(Md5Sum)  

} 

Else 

{ 

//means file is clean 



 

 
 

 

 

Log(Md5Sum) in malicious sample database 

Start_BlockChain_Transaction(Md5Sum) 

} 

} 

 

 

 

3.10.2  Static Analysis 

 

The data for training is in the form of .csv file which we have created using samples by 

extracting a total of 52 parameters using a python module called PE Analyzer 2 

 

This data has to be stored in a ‘Panda’ frame. Panda is a python package which provides fast 

and flexible data structure for analysis in python. The two important data structures for Panda 

are ‘Series’(1-Dimentional) and ‘Data Frame’(2-Dimentional).  

 

 

3.10.2.1  Algorithm for Static Training 

 

 

Extra Tree Classifier is used for feature selection here. Extra Tree stands for Extremely 

randomized trees. Extra Trees are computationally faster than other methods of feature 

selection. They select a cut point in the tree at random. Thus they reduce the computation 

burden of determining the cut point and leads to increased accuracy because of smoothening.  

Cut point is the point of best split which separates the samples of a node into two groups. The 

cut point randomization leads to a good variance reduction effect and gives great results in 

many high-dimensional complex problems. Therefore, in this case, Extra Tree classifier is 

used for static training. 

 

 

Static_Training (data)  



 

 
 

 

{ 

//Read data in Panda Frame for further processing 

 

X=Pandas.read(data); 

Y=data(labels);  

 

/* The labels are Boolean values of 1 or 0. Since this is training data we know which file has 

a clean and which a malicious label */ 

 

 

//Pretraining phase for shortlisting of features 

 

Feature_Selection=ExtraTreeClassifier.fit(X,Y); 

X_new=Feature_Selection(X); 

 

/*Now we apply Cross Validation technique by splitting the data into 80% training and 20% 

testing with the data with selected features along with their labels*/ 

 

Cross.Validation.split(X_new,Y,0.2); 

 

} 

 

3.10.2.2  Algorithm for finding out the best classification algorithm for 

Static   

          Testing 

 

We have the types of classification algorithms in Machine Learning like Linear Classifiers: 

Logistic Regression, Naive Bayes Classifier, Support Vector Machines, Decision Trees, 

Boosted Trees, Random Forest, Neural Networks, Nearest Neighbour etc. We have to check 

all algorithms and find out the score as to which algorithm works best with our data. The 

winner algorithm is then applied for the testing algorithm.  

 

 BestAlgoStatic() 



 

 
 

 

{ 

algo[]={a0,a1,a2,a3…..an}; // We put all the available algorithms in an array  

int i; 

float score[10]; 

for(i=0;i<n;i++) 

 { 

 score[i]=ai.fit(X.test,Y.test); 

//We try to find out the score with which an algorithm best fits a model 

 } 

j=max(score[]); 

WinAlgo=aj; //Algorithm with the maximum score is chosen for static testing  

} 

 

3.10.2.3  Algorithm for Static Testing 

 

P Calculate.Static.Probability(Sample) 

{ 

/*Extract features from the Sample file using python’s PE Analyser. Only those features are 

used which we have selected during the training phase */ 

 

Features[]={f1,f2,f3,….,fi}; 

Result=aj.predict.probability(Features[]); 

return Result; 

} 

 

3.10.3  Behavior Analysis 

 

Behaviour analysis or Dynamic analysis, tries to see the behaviour of the sample, rather than 

its signature and matches the behaviour with known malware behaviour patterns. In this way, 

even if the sample evades signature detection, it can get caught in behaviour analysis. 

 

 

3.10.3.1  Algorithm for Behaviour Training 



 

 
 

 

For behaviour training, we submit all our training data samples to Cuckoo. JSON reports are 

generated for these samples. All these JSON reports are converted into MIST reports. These 

MIST reports are then converted into an N-Gram sparse matrix using TF-IDF vectorizer 

object of skLearn. 

 

TF-IDF stands for ‘term frequency-inverse document frequency’. This means that the weight 

assigned to each token not only depends on its frequency in the document but also how 

recurrent that term is in the whole corpora. Actually in a big file, some words like “the”, “a”, 

“is” etc. are very frequently present. Therefore, they give very less meaningful information 

about the actual contents of the document. If we give the direct count data to the classifier, 

the very frequent terms will shadow the frequencies of the rarer but more interesting terms. 

Through TF-IDF, we reweigh the count features to make them more meaningful. 

 

Behaviour_Training(data[]) 

{ 

reports[]; 

mist_reports[]; 

int i=0; 

while(data.length) 

{ 

 reports.append(Cuckoo.submit(data[i]); //JSON reports generated 

 mist_reports.append(Cuckoo_to_mist(reports[i])); 

 //MIST reports generated 

 i++; 

} 

X=Tfidf.vectorizer.transform(mist_reports[]);  

// MIST reports getting transformed into NGram sparse matrices 

Y=data[].lables;  //Boolean 0 or 1 

Cross.Validation.split(X,Y,0.4);  

//60% data is used for training and 40% for testing  

} 

 

3.10.3.2  Finding Best Classification Algorithm for Behaviour Testing 



 

 
 

 

 

 BestAlgoBehaviour() 

{ 

algo[]={a0,a1,a2,a3…..an}; // We put all the available algorithms in an array  

int i; 

float score[10]; 

for(i=0;i<n;i++) 

 { 

 score[i]=ai.fit(X.test,Y.test); 

//We try to find out the score with which an algorithm best fits a model 

 } 

j=max(score[]); 

WinAlgo=aj; //Algorithm with the maximum score is chosen for static testing } 

 

3.10.3.3  Algorithm for Behaviour Testing 

 

P Calculate.Behavior.Probability(Sample) 

{ 

report=Cuckoo.submit(Sample); 

mist_report=Cuckoo_to_mist(report); 

transformed_mat=vectorizer.transform(mist.report); 

Result=aj.predict.probability(transformed_mat); 

return Result; 

} 

 

  



 

 
 

 

3.10.4.  Snort Analysis 

 

‘Snort’ analysis is done to obtain network characteristics of the file. Cuckoo creates a 

dump.pcap file. Snort generates a text report based on this file predicting alerts or malicious 

content in the sample. This text file is again converted into a sparse matrix of N grams using 

‘vectorizer’ object. 

 

3.10.4.1.   Algorithm for Snort Training 

 

 Snort_Training (data)  

{ 

pcap_reports[]; 

snort_reports[]; 

int i=0; 

while(data.length) 

{ 

 pcap_reports.append(Cuckoo.submit(data[i]);  

//dump.pcap files are generated by Cuckoo 

  

snort_reports.append(pcap_to_snort(pcap_reports[i])); 

 //Snort reports generated from pcap files 

  

i++; 

} 

X=vectorizer.transform(snort_reports[]);  

// Snort reports getting transformed into NGram sparse matrices 

 

 

Y=data[].lables;  //Boolean 0 or 1 

Cross.Validation.split(X,Y,0.4);  

//60% data is used for training and 40% for testing  

 

} 



 

 
 

 

 

3.10.4.2  Finding out the best algorithm for Snort Testing 

 

 BestAlgoSnort() 

{ 

algo[]={a0,a1,a2,a3…..an}; // We put all the available algorithms in an array  

int i; 

float score[10]; 

for(i=0;i<n;i++) 

 { 

 score[i]=ai.fit(X.test,Y.test); 

//We try to find out the score with which an algorithm best fits a model 

 } 

j=max(score[]); 

WinAlgo=aj; //Algorithm with the maximum score is chosen for static testing  

} 

 

3.10.4.3.  Algorithm for Snort Testing 

 

P Calculate.Snort.Probability(Sample) 

{ 

Pcap.file.Cuckoo.submit(Sample); 

Snort.report=Snort(Pcap.file); 

transformed_mat=vectorizer.transform(Snort.report); 

Result=aj.predict.probability(transformed_mat); 

return Result; 

} 

 

 

  



 

 
 

 

3.10.5.  Algorithm for Sandbox Evasion  

 

Boolean Find_Sandbox_Evasion(Sample) 

{ 

Report=Cuckoo.submit(Sample); 

//here we parse the JSON report to find out whether the sandbox is evaded or not  

 

return parse.sandbox(report); 

}  
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CHAPTER 4 

 

ANALYSIS AND INTERPRETATION 

 

 

4.1 Creation of Polymorphic and Metamorphic Shellcodes 

 

As shown in Figure 1, the creation of shellcode is broadly a two-step process in which 

first a host program is created which has some vulnerability like buffer overflow. This is 

the code in which the shellcode is injected. These two programs together become the 

payload which attacks the target computer. Both these codes have to be obfuscated so 

become undetectable. 

Steps in the creation of polymorphic and metamorphic shellcodes: 

A. Obfuscation of NOP sled 

B. Obfuscation of the shellcode 

 

4.1.1 Obfuscation of NOP Sled 

 

Normally the buffer overflow attack follows very simple steps. First the attacker finds a 

vulnerable program, which is most often a program with a buffer (an array) whose bounds 

are not being checked by the program. In a typical memory layout of this program, the 

used buffer will be followed by the EIP (Extended Instruction Pointer), which is the 

address of the program counter or the return address that the execution would jump to 

when the current function has finished. The attacker would overflow this buffer with a 

crafted input so that it overwrites the buffer and the EIP and instead points to the 

shellcode which the attacker wants to execute. This is a precise address where the 

shellcode is located. Now, the operating system designers are well aware of the buffer 

overflow attacks. Therefore, to get over these attacks, they have devised a process called 

‘Address Space Layout Randomization’. In this process, the address spaces including 

stacks, heaps and other memory structures are randomly offset. This makes guessing of 



 

 
 

 

the accurate location of the shellcode all the more difficult. To get over this problem, the 

attackers increase the address space using NOPs. NOP stands for No operation. These are 

one byte instructions[29] which actually perform no operation but take space in the 

instruction stream.It does not affect any programmer-accessible registers, flags or 

memory. It only affects the EIP and just takes the control flow to the next instruction 

without affecting the program in any way. A series of consecutive NOP instructions is 

called a NOP sled. The NOP sled is appended before the shellcode which the attacker 

wants to execute. This ensures that the CPU jumps somewhere in the sled to ultimately 

reach the shellcode to start the attack.  

This boon of NOP sleds can easily become a bane for the attacker. The moment a series 

of NOP instructions are visible to the Antivirus or the IDS, they will block the shellcode 

from executing. Here we come to a technique called obfuscation where we replace the 

NOPs with some other equivalent instructions to bypass the AVs and the IDS.     



 

 
 

 

 

Figure 4.1 Creation and injection of malicious payload for attacking the target system. 

There are multiple ways in which NOP sleds can be obfuscated[30]: 

 

 Single byte NOP equivalent instructions: single byte NOPs like 0x90 can easily be 

detected. However, if these 0x90 can be replaced by other equivalent instructions, 

then the chance of detection can be reduced. There are many single byte 

instructions which can act as a substitute for 0x90. Here is a list of instructions 

which can be used: 

 

 



 

 
 

 

ASCII character Instruction  ASCII character Instruction  

A Inc ecx W Push edi 

B Inc edx X Pop eax 

C Inc ebx Y Pop eax 

D Inc esp Z Pop edx 

E Inc ebp A Popa 

F Inc esi B Bound 

G Inc edi C Arpl 

H Dec eax D seg=fs 

 

Table 4.1 Single Byte NOP Equivalent instructions 

 

All the uppercase letters can be used to obfuscate the NOP sled. For example, the 

sentence-” GET THE REGISTER VALUE”, is a valid NOP equivalent sled. K2 

states[31] that there are at least 55 suitable replacements for NOP instructions for the Intel 

architecture. Sometimes, while deciding which equivalent NOP instruction to use, one 

may consider a number of factors. For example, using capital letters may be dangerous 

because the first group of capital letters increment or decrement registers[32]. This may 

affect the shellcode. The next group of capital letters are push and pop instructions which 

can play havoc with the stack. However, letters ‘abcdefghijklmno’ don’t map to anything. 

After that mapping to opcodes begins again. These can easily be used without crashing 

the system. Also using alphabets can be inefficient if the service is not an alphanumeric 

service. 

 

 Multibyte NOP equivalent sleds: The problem with one-byte fake NOPs is that 

not many of them are available. So it becomes easy for IDS to detect a fake NOP 

zone. Therefore to evade detection, the one byte NOPs can also be replaced by 



 

 
 

 

multibyte NOP instructions. The only requirement is that every instruction must 

be executable at the offset and must take the program counter to the address of the 

exploit. 

 

 Four byte NOP aligned sled-The restriction of multibyte NOP equivalent sleds is 

that every instruction must be executable. However, one can create an easier sled 

which needs to be executable after every 4 bytes i.e. after a word. Here only the 

last instruction needs to advance the program counter. 

 

 Trampoline sled-  Trampolines are memory locations where whenever execution 

into them, it bounces out immediately. This technique is used by the attacker to 

jump quickly to the shellcode address[31]. Actually whenever a system gets 

initialized, every process loads the contents of the external libraries in their 

address space. This address space is a reserved section of the memory. Thus these 

addresses are predictable. Now say the attacker uses an instruction ‘jmp ESP’ and 

knows the address of the register pointed by ESP. Now the attacker places his 

exploit in this register. Then he overwrites the return address by the address 

pointed by ESP. thus on returning, the application will jump and execute ‘jmp 

ESP’ instruction and the exploit at that location would be executed. 

 

4.1.2 Obfuscation of the shellcode 

 

There are various ways in which the shellcode can be obfuscated[33]. These are 

‘Code transformations’: 

 

 Dead code insertion-means that you change the signature by adding garbage 

instructions in the code which does not affect the code functionality. Eg. 

  a=h; b=23; f=m+n 

Can be changed to 

  a=h; a++; a++; b=23; a=a-2; f=m+n 

 

 Subroutine and Instruction reordering- here order of the subroutines is changed 

so that they are called in a random order. Also the order of the instructions may be 



 

 
 

 

changed as long as the interdependencies among instructions is retained. 

Instruction reordering example:  

  a= q+m; b=c-b; d=a*b 

 Can be changed to 

 b=c-b; a=q+m; d=a*b 

 

 Code transposition-Code transposition reorders the flow of the instructions 

keeping the result of the  program same. It can be achieved using either 

conditional or unconditional branches. This technique  was used by the Zperm 

virus. 

 

 Instruction substitution- means changing instructions in the code with equivalent 

instructions. Eg.    ADD reg,imm=>SUB reg,(-imm) 

  MOV reg1,reg2=> PUSH reg2 POP reg1 

  x=1=>y=21; x=y-20 

 

Similarly there are four instructions which would set the register r2 to zero 

CLEAR r2; MOVE 0,r2; AND 0,r2; XOR r2,r2  

 

 Code integration- in this technique, the virus first fragments the code of the program 

in which it has to get inserted, into small fragments. Then it inserts itself in between 

these fragments and then compiles the code to create a new code. This technique is 

used by Zmist virus. It de-compiles the PE file into fragments 32 MB long. Some 

code blocks are removed and Zmist inserts itself into the code. Then it creates the 

code again and compiles it into a new executable file. This virus then becomes very 

difficult to detect. 

 Register reassignment-basically means that you replace one register to the other 

while keeping the functionality of the code same. The binary sequence of the code 

changes and makes signature detection difficult. As an example, edx can be replaced 

by eax, edi can be replaced with ebx and esi can be replaced with edx. 

 

In addition to code obfuscation, for malwares, additional techniques are to be employed. 

These are called ‘Miscellaneous Transformations’: 



 

 
 

 

 

 Entry point obfuscation- Whenever a virus infects a PE file, it must gain control to 

start its execution. Normally the easiest way to do this is to change the entry point of 

the PE file to the virus body. But this method is the best detectable also. Therefore 

entry point obfuscation changes the entry point to the middle of the PE file and the 

control is obtained using jump or call instructions.  

 

 Information exfiltration obfuscation- Different kinds of data can be filtered from the 

compromised machine to the c&C server. All this web traffic may consist of screen-

shots, key log details, user id, passwords, email messages, recorded conversations, 

clicked photographs etc. All this data is hidden using encryption and then sent across.  

 

 Obfuscation of communication to the c&c server - Communication with the c&c 

server may use covert channels like TCP, ICMP and IPv6 tunnels. Also, compromised 

servers may be used as c&c servers without the knowledge of the administrator. 

Additionally, TOR can be used for all communications to make them untraceable. 

 

 Avoiding a big return address and hiding it-normally the return address in a 

shellcode is a huge zone.  The return address comes after the payload after 

overwriting the original return address and is repeated several times. Also it cannot be 

encrypted. If the detection methods find this large area, they may get suspicious. The 

idea is to avoid such a huge return address and hide it from the detecting eyes. Return 

address polymorphism [34]can be achieved by mutating the lower order bits in the 

address in each generation so that all these addresses point to somewhere in the NOP 

zone. 

 

 Self-modification of code- in many cases, a highly effective obfuscation technique is 

self-modification of code. Here, the code alters itself during runtime. What it 

essentially means is that the code can modify itself when it runs and it may not be the 

same code that was there when it first loaded. Self-modification involves dynamic 

code generation and subroutine patch management. This is an effective way of 

bypassing sandboxes. New code can be generated at runtime or even existing code 

can be modified.  



 

 
 

 

 

One way this can be done in Java rootkits is by modifying the JVM. One first locates the 

class which is to be modified. Then you extract it and disassemble it. Then you modify 

the bytecode and assemble the code back again. Then you can deploy the file back to its 

original location. Additionally, since all classes are children to the Object class, therefore 

the Object class can be modified to affect all child classes thereafter, say by adding a 

function like public void keyLogEventHandler(Event e) which will act as a key logger for 

all the classes. 

 

4.2 Using the Polymorphic Shellcode for Attack 

 

As shown in Figure 2, the payload has to enter the target system after getting all 

information about the system and the connected network. After entering the system, the 

malware has to perform three functions: first it has to send vital information about the 

system and the network back to the attacker, it has to infect the connected computers and 

it has to employ evasion techniques to bypass constant monitoring by the anti-malware 

systems. 

 

Steps of attack are: 

A. Launching a multi-staged attack 

B.  Sandbox evasion techniques 

C.  Polymorphic blending  

D.  Conversion to metamorphic code 

 

4.2.1Launching a Multi-staged attack 

 

There are various steps in launching a multi-staged attack: 

1. Information gathering 

2. Entering the target system 

3. Privilege escalation 

4. Establishing a connection back to the attacker 

5. Injecting a c&c component into the target 

6. Going deeper into the network 



 

 
 

 

7. Cleaning up the mess 

 

 

Figure 4.2. Process of Attacking the Target System with the created payload 



 

 
 

 

 

 Information gathering- In this step, the attacker uses various techniques to gather 

information about the target machine and its network configuration[35]. Social 

engineering and Google hacking are the most commonly employed techniques. In 

addition to that, information about the network is obtained using mechanisms like 

ARP, TCP SYN packets, ICMP echo requests, TCP connect and passive discovery. 

Port scanning is another useful technique. ‘WannaCry’, for example was a 

ransomware which hit the world in May 2017. It entered the target systems through 

open SMB ports. To know the operating system of the target machine, one can use 

nmap if packets can be sent to it. The command ‘nmap -o’ provides OS fingerprinting 

whereas if one can eavesdrop network traffic one can use ‘pof’ for passive 

fingerprinting. 

 

 Entering the target system- After gathering information about the target machine, it is 

now time to attack and penetrate it in the best possible manner. Normally an exploit is 

injected into the system and then it starts collecting local information about the 

compromised machine. 

 

 Privilege escalation- getting the admin rights makes the attacker ‘God’ of the 

compromised system. Thus the next step is to get root privileges of the machine. 

 

 Establishing a connection back to the attacker- The information collected and the 

rights obtained are of no use until the attacker can employ them. So the malware now 

establishes a connection back to the attacker which can further be used for much other 

exploitation, not just on the compromised machine but also on other machines of the 

connected network. 

 

 Injecting a c&c component into the target-This command and control component 

enables the attacker to execute many other commands on the compromised machine. 

 

 Going deeper into the network- The attacker may not stop at this local machine but 

would want its malware to spread deeper into the connected network.  

 



 

 
 

 

 Cleaning up the mess- To continue the stealth work, the system must not be left in an 

unstable state and all memory must be repaired before proceeding further. Thus it 

becomes imperative to clear one’s tracks and make the system ‘look’ like before.  

 

4.2.2 Sandbox Evasion Techniques 

 

A very powerful technique developed by antivirus and IDPS creators is sandbox 

technique. Using this technique, the suspicious programs can be run in a simulated 

environment called a sandbox. All programs, whether malicious or non-malicious would 

show their true nature in this environment. Thus the anti-malware program would be 

easily able to detect the malicious programs and weed them out of the system. However, 

attackers have come up with sandbox evasion techniques. They employ various methods 

to detect whether they are working in a simulated environment or the actual operating 

system. Accordingly, if they detect a sandbox, they would lie dormant or do very 

superfluous jobs. It’s only when they are sure they are running in the actual operating 

system, would they show their true working and would launch an appropriate attack.     

 

4.2.3 Polymorphic Blending Techniques 

 

Anomaly based IDPS’, especially those that are byte frequency based, find out about the 

presence of malware in the network stream by checking the payload behaviour anomalies 

of the malware. The indicators they track are input and output bytes, number of 

connections, number of packets, type of protocols used and the communication 

destination. As an example, data exfiltration can be a powerful network statistic to detect 

a malware. Say a system is baselines in the sense that it transfers data only to the internal 

systems. If a large amount of data starts going out of the system to an external server on 

the Internet, this change in behaviour can raise an alarm and alert the detection system. 

Also, increase in the packet frequency may indicate a denial of service attack. For 

detecting host level attacks, we detect protocols in the packets to see if they have 

ambiguous options, are too small or violate some application layer protocols. Attackers, 

can evade anomaly based detection systems by blending their traffic with normal traffic. 

They prepare the payloads and the behaviours of their packets in such a manner that the 

packets are indistinguishable from normal traffic. The message HTTP headers can be 



 

 
 

 

spoofed to merge with legitimate traffic. For example instead of the name of a c&c 

server, after connection, the host name can be given as google.com. Also TOR traffic can 

be disguised to look like a normal HTTPS traffic. Such blending techniques can be used 

to easily blend malware with normal traffic and evade anomaly based IDPS.   

 

 

  



 

 
 

 

4.2.4 Conversion to Metamorphic code 

Both polymorphic and metamorphic malwares can change their codes in each iteration as 

they propagate. Although the code changes but its ability and functionality remains the 

same. Even while the malware is in the system, it can change its code periodically and 

this makes it difficult to detect by antivirus and IPS systems[36]. Polymorphic malwares 

consist of two parts: VDR(Virus Decryption Routine) and EVB(Encrypted Virus Body). 

When a malware is hidden in a legitimate code, it is in its encrypted form to remain 

hidden from the AVs. To launch the attack, the VDR decrypts the encrypted virus body 

back to its original form so that the virus can perform its actions. Now the virus 

decryption routine VDR remains constant each time, though the key may keep changing. 

This static part of the code makes it possible for an antivirus program to identify the 

malware. Another problem is that when the decryption is over, the original code remains 

naked in the memory. So although it is very complex for the cracker to understand and 

debug polymorphic code which may have taken months to be written, he just has to wait a 

few hours till a decrypted , clean and comprehensive code is visible to him.To get over 

this problem, the attacker can divide the code into smaller parts and put each part into its 

own polymorphic envelop. The cracker would never see the complete code at once but 

still parts of original code would still be visible to him later. Thus comes metamorphism. 

The principle difference between polymorphism and metamorphism is that polymorphism 

doesn’t change the original code. It just hides it. However, metamorphism morphs or 

changes the code body itself. In other words, metamorphic code is body polymorphic. 

Thus the polymorphic code has to be changed to metamorphic code to evade detection 

completely. 

 

4.3 Working with Live Ransomware Samples- WannaCry and Petya 

 
Here we are working with live ransomware samples, specifically the most recent ones to 

attack the computer systems the world over-WannaCry and Petya. We do behavior analysis 

of these samples and study their behavior in detail so that we know their attack strategies and 

working. Through this study we try to understand the latest malware in a better manner so 

that we can develop appropriate strategies to create defenses against them. 

 

4.3.1 Recent Impact of Ransomwares  



 

 
 

 

 
Ransomware pose a grave threat to an organization’s profitability as well as reputation. Not 

only are security managers forced to pay the ransom, they sometimes lose their precious data 

and most of the times are not even  

 

in a position to make the loss public. In May 2017 WannaCry hit the global markets badly 

and immediately after, Petya came into light. The impact that they made will be discussed in 

the following sections. 

 

4.3.1.1 WannaCry 
 

Friday, May 12, 2017 was the day when about 40 hospitals of National Health Service in UK 

had to shut down their operations because of a major attack on their computer systems by a 

ransomware called ‘ WannaCry’. The entire data in these systems was encrypted and lives of 

many patients were in danger. Similar was the case of ‘FedEx’ in US,‘Telefonica’ in Spain, 

‘Deutsche Bahn’ in Germany and ‘Latam Airlines’ in South America. Ultimately 150 

countries with 2,00,000 computers were attacked by WannaCry and by Monday, some 

$50,000 were already paid to the attackers by various companies and individuals. However 

not everyone’s data was recovered even after the ransom was paid. The reason for that is, one 

cannot tie payment to who you are making it to.   The malware goes by various names like 

‘WannaCry’, ‘WannaCrypt’ and ‘WannaCryptor’. It is also called ‘EternalBlue’. Wannacry 

exploits vulnerability in the Service Message (SMB) Block of Microsoft Windows Operating 

System. After infecting, it encrypts files in the system and renders the system useless unless 

ransom is paid. It can also spread across network, affecting all computers connected to that 

network. Microsoft had released a patch earlier itself for this vulnerability. People who failed 

to patch their system on time were affected. Also, a patch was not released for Windows XP, 

which has stopped getting support from Microsoft three years back. 

 

4.3.1.2 Petya:  

 

Petya attacked in June 2017, just one month after WannaCry using almost the same SMB 

vulnerability exploit and NSA’s Eternal Blue. However, since many systems were already 

patched, its impact was very limited. The bitcoin payment system was very simplified and 



 

 
 

 

traceable and not much money was earned in bitcoins. This makes one ponder about whether 

the real purpose of the attack was actually monetary profit? Petya’s first target were the 

Ukrainian systems, both local and government. It entered the systems through a poisoned 

update for MeDoc accounting software. MeDoc is primarily used in Ukraine and Russia. It 

affected Ukrainian banks, airports, power companies and even Chernobyl Nuclear Plant. 

Outside Ukraine, it affected Danish Shipping company ‘Maersk’, French company ‘Saint 

Gobain’, British advertising company ‘WPP’, Russian oil production company ‘Rosneft’ and 

even ‘Jawaharlal Nehru port’ in Mumbai, India. Till June 28, less than 150 organisations in 

Ukraine and less than 50 in US were affected. Thus Petya’s main focus was not a fast lateral 

spread or financial gain but to destroy data, especially in Ukraine systems.  

 

4.3.2 Reasons of Attack of Ransomware 

There are many reasons why ransomwares like WannaCry and Petya are successful in 

attacking the systems. Some of the reasons are: 

 

1. Entering by social engineering:  These ransomwares are normally delivered 

via e-mails which will lure the recipient to click on malicious attachments to 

open them. This will release the ransomware on the machine and then it would 

start spreading across the network after infecting the first machine. The 

ransomware can also enter the machine by downloading a bad app or getting 

attachments from malicious sites. 

 

2. Not updating systems regularly: All operating systems regularly release 

patches for their updation after analysing different security threats. In the case 

of WannaCry, Microsoft had already released a patch called MS17-010 after 

realizing about the NSA leak. However, many people failed to update their 

machines with this patch and were thus vulnerable to ransomware attack. 

Three years ago Microsoft stopped supporting Windows XP systems. Thus 

those were the firsts to be attacked. A patch was released for them also after 

the attack. 

 

3. Non-Updation withPatches: This security lapse was known earlier this year 

and Microsoft had released a patch called MS17-010. However the attackers 



 

 
 

 

chose Windows XP operating systems because Microsoft had stopped 

supporting Windows XP three years ago. Also no patch was released for this 

operating system. So all systems still using Windows XP or higher versions of 

unpatched Windows systems were attacked. Therefore  Microsoft released an 

emergency patch over the weekend for Windows XP systems. 

 

4. SMB vulnerability: In MS Windows, there are some ports which are open by 

default[37]. One of them is the SMB(Service Message Block) port used for 

file and printer sharing. WannaCry and Petya both spread using this open port. 

SMB stand for Service Message Block. It runs as a thin layer on top of TCP 

protocol. It provides file and printer sharing facilities between different 

Windows machines. This is done using Inter Process Communication. It can 

run either directly on TCP(port 445) or using NetBIOS protocol on UDP ports 

(137,138) and TCP ports(137,139) or on legacy protocols like NBF and IPX or 

SPX. It is also called CIFS- Common Internet File System. Another protocol 

called ‘Samba’ was created for communication between Windows and non-

Windows systems. Samba is an open-source, free reimplementation of SMB 

for non-windows systems like UNIX and Linux. Actually, Windows opens the 

SMB and the NetBIOS ports by default for both local and outside access. 

WannaCry scans for an open SMB port to enter into the system. After that, it 

spreads just like any other worm[38].  Microsoft had released the second 

version of SMB called SMB v.2.United States, National Security 

Agency(NSA) had discovered the SMB vulnerability long time ago. However, 

instead of reporting it to Microsoft, it created ‘EternalBlue’. EternalBlue is an 

exploit based on this vulnerability. It was built to be used in future as a cyber-

weapon for NSA. Now, there is a group called ‘Shadow Brokers’. This group 

leaked EternalBlue. After the leak, Microsoft released a patch for this. 

However, companies and individuals who failed to update, were attacked. Not 

only was EternalBlue leaked, which was used in WannaCry, but many other 

NSA exploits like EternalChampion, EternalSynergy, EternalRomance, 

EmeraldThread and EducatedScholar were also leaked. These can easily be 

used for much bigger hacks. In fact, The Shadow Brokers have claimed to 

have many more leaks under their belt waiting to be released. 



 

 
 

 

 

5. No Network Segmentation: If the network is not properly segmented, the 

ransomware spreads at a very fast rate. However, if the network is segmented 

then the spread of the ransomware can be contained and the mitigation may 

also be easily possible. 

 

4.3.3 Behavioral analysis of WannaCry and Petya: 

 

 Wannacry: 

 

1. Attack Process: Once WannaCry enters the victim computer, it scans 

heavily for the SMB port vulnerability. If the port is found open, an 

SMB connection is set up. Then the patch MS17-010 is searched for. If 

it is not found then an encrypted shellcode is prepared in Base64 

encoding and is heap sprayed in the memory. Once found, the 

shellcode looks for DoublePulsar. This backdoor changes permission 

to remote access and calls a particular domain to see if it is registered. 

This is done to find out whether the malware is working in a sandbox 

or not. If the domain is not registered, SMB exploitation starts getting 

performed. A file called ‘taskche.exe’ is created which will carry out 

file encryption and will also help the malware spread across the 

network. In the meantime, TOR is used for all communications, bitcoin 

wallets are loaded, public and encryption key is prepared. The files 

start getting encrypted. WannaDecryptor.exe is set up and 

Please_Read_Me.txt file is created. The screen is locked and ransom 

message is displayed.  

 

2. File system analysis: The payload is ‘taskche.exe’ which is created from 

the worm’s resource ‘1831’. It has a huge size because of bundled TOR 

executables along with other tools and configuration files. The actual 

name of this file is ‘DiskPart.exe’. This is a MS utility for disk 

partitioning. WannaCry creates two DLL files in the memory-  a 32 bit dll 

and a 64 bit dll. Both of them contain an export called ‘PlayGame’. This 



 

 
 

 

writes a copy of the original worm to C:\WINDOWS\mssecsvc.exe and 

executes it. There are many files which are created in the process. B.wnry 

is a bitmap image containing a ransom note in it. C.wncr is a binary 

configuration file. It also has addresses of the TOR sites. R.wnry is a text 

file with a ransom note in it. S.wnry is a zip file with TOR executable. 

T.wnry is a dll. It is actually an encryption tool. Taskse.exe starts 

@WannaDecrytor@.exe. It is a support tool. U.wnry is a decryptor 

executable that opens GUI with a ransom note in it. Taskdl.exe is a 

support tool for deleting temporary files. msg\m_*.wnry is a directory 

with ransom note in different languages like English, Chinese, Bulgarian 

etc.if WannaCry is launched ith less than 2 arguments, it installs a service 

called mssecsvc.exe. This is Microsoft Security Center Service, version 

2.0. It drops the WannaCry binary and runs it. If the malware was run with 

two or more arguments, it enters the service mode. Files are encrypted 

with the extension of .wncrypt. Some libraries are loaded at runtime like 

kernel32, user32, advapi32.dll, shell32.dll, msvcrt.dll, mscp60.dll.     

    

3. Persistence analysis: Persistenceensures that the malware will 

continue to run even after the machine is rebooted, restarted or is 

logged off. For persistence, entering into the run keys in the registry is 

important. Two registry entries are required to ensure persistence: 

 Key:HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\

Run\<Random> Value:<Full_path>\tasksche.exe . CU stands 

for Current User. %Random is a pseudorandom name derived 

from the current computer name. This is a user level entry. 

 Key:HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\R

un\<Random>Value:<Full_path>\tasksche.exe. LM stands for 

Local Machine. This is a system level entry. Full_path is the 

path of the exe file. 

 If the DiskPart.exe file finds that it was running without the ‘/i’ switch, 

this means that the worm has not executed it. Therefore, the file 

registers itself as a service so that it gains persistence so that the worm 

is no longer required to run it.  



 

 
 

 

 

4. Network analysis: The network analysis is obtained by observing the 

pcap file. The important property of this ransomware which makes it 

different from the previous ransomwares is that it does not need to call a 

malicious server for encryption of the files. If the binary is in the system, 

it does not need to be connected to the Internet for encryption of the files. 

Other ransomwares before it, used to connect to the c&c servers to get the 

encryption key. Wannacry starts its execution by trying to connect to a 

domain ‘www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com’. If the 

machine fails in making the connection, the exploitation continues. 

However, if the connection is successful, the exploitation is stopped 

immediately. Actually, this is a way of ’Sandbox Evasion’ technique. 

Once WannaCry is sure that the domain is unregistered, the exploitation 

begins. However, it searches for a backdoor called ‘DoublePulsar’ before 

actual exploitation. So the attacker sends a SMB 

‘trans2SESSION_SETUP’ request to the infected system. This is a 

Transaction 2 Subcommand Extension. This is to find out whether the 

system is already compromised with DoublePulsar or not. The system 

responds with a “Not Implemented” message and a “Multiplex ID” is 

returned as part of this message. This has a value of 65(0x41) for the 

normal systems and 81(0x51) for infected systems. If the system is 

infected, then SMB can be used as a covert channel to install 

WannaCry.  Then the exploitation starts by setting up Windows Socket 

APIs. Wannacry uses MS17-010 exploit to laterally spread to other 

machines through open NetBIOS ports[39]. Once it finds a machine with 

an open NetBIOS port, it sends three NetBIOS session setup packets to it. 

One contains IP address of the machine to be exploited and the other two 

contain two IP addresses which are hardcoded in the malware only. It then 

spawns 2 threads, the first thread enumerates the network adapters and 

finds the address of the subnet of the compromised system. The first 

thread then generates threads for each IP address on this subnet. Each of 

these threads try to get connected to port 445 and if successful, the entire 

process of exploitation starts again on the newly infected machine.128 

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com/


 

 
 

 

instances of the second thread can be created within 2 seconds. This 

explains the widespread of this malware within a short span of time. 

WannaCry also downloads files from the dist.torproject.org and all further 

communications for bitcoin transfer happens through Tor only.     

 Petya: 

1. Attack Process: Petya was a ransomware which came in March 2016. 

The strain of this ransomware which came on 27 June 2017 was very 

different from the original version. Thus it was called ‘NotPetya’. The 

ransomware uses Eternal Blue exploit. The infection starts with a 

poisoned update for the MeDoc accounting software[40]. Petya infects 

the MBR and executes a malicious payload that encrypts the file 

system of the hard drive and does not let Windows system to boot. 

Like WannaCry takes the help of DoublePulsar for completing its 

execution, in a similar manner, Petya has joined hands with a 

traditional file-based ransomware called ‘Misha’. Petya needs to have 

administrative privileges to carry out low-level encryption of files and 

other malicious works. If those privileges cannot be obtained, Misha is 

launched. A deep analysis of Petya shows it is actually a ‘Wiper’. 

Normally files encrypted by Petya cannot be recovered. It wipes away 

the files and they can never be found again.  

 

2. File system analysis: Petya’s infection mechanism is to attack low 

level structures. It overwrites the beginning of the disk which is the 

Master Boot Record(MBR) by its own boot loader. This boot loader 

then loads its 32 sector kernel which then starts the encryption process 

of the files. AES-128 is used for encryption and the 128 bit key is 

randomly generated. This key is again encrypted with RSA 20148 

encryption algorithm. Petya starts with the file explorer.exe. Then 

ezvit.exe affects the Medoc software. Then rundll32.exe is dropped 

and unicryptC.exe is used for encryption. 

 

 



 

 
 

 

3. Persistence analysis: MBR and NTFS boot record are the only 

persistence mechanisms in case of Petya. 

 

4. Network analysis: For lateral propagation, in addition to EternalBlue 

exploit, WMI Commands, Mimikatz and PSExec were also used. 

Unlike WannaCry which infected a small number of computers and 

was designed to spread at a fast rate to the Internet, Petya is designed 

mostly for lateral propagation in the local network. It infected a large 

number of computers but the spread was slow and local rather than 

global. The SMB ports were scanned. If they were found to be 

unpatched for the EternalBlue exploit, this vulnerability was used to 

compromise the systems. However , if a patch was found, 

WMIC(Windows Management Instrumentation Command)was used 

for stealing local machine credentials using Mimikatz and then finding 

remote shares to spread. The WMI is a complete infrastructure for the 

Windows operating system which does management and 

administration of the operating system both locally and remotely. It is a 

very powerful tool but the same power can be used by attackers for 

remotely executing ransomware in target machines. There are various 

WMIC commands which were used by Petya for several purposes like 

detection of antivirus and virtual machines, persistence, theft of data, 

lateral movement and execution of various commands[41]. Mimikatz 

is used for stealing user credentials and through them executing Petya 

on infected machines. One of the WMIC commands used by Petya for 

executing powershell on a remote machine is: 

   wmic /node: [IP Address] /user: “[user  name]” /password: 

“[password]” process call     create “ cmd /c powershell.exe user” 

 

4.3.4Workingof WannaCry 

 

Once WannaCry enters the victim computer, it scans heavily for the SMB port vulnerability. 

If the port is found open, an SMB connection is set up. Then the patch MS17-010 is searched 

for. If it is not found then an encrypted shellcode is prepared in Base64 encoding and is 



 

 
 

 

heapsprayed in the memory. Once found, the shellcode looks for DoublePulsar. This malware 

downloader changes permissions to remote access and calls a particular domain to see if it is 

registered. This is done to find out whether the malware is working in a sandbox or not. If the 

domain is not registered, SMB exploitation starts getting performed. A file called 

‘taskche.exe’ is created which will carry out file encryption and will also help the malware 

spread across the network. In the meantime, TOR is used for all communications, bitcoin 

wallets are loaded, public and encryption key is prepared. The files start getting encrypted. 

WannaDecryptor.exe is set up and Please_Read_Me.txt file is created. The screen is locked 

and ransom message is displayed.  
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Figure 4.3  Flowchart showing working of WannaCry 

 

4.3.4.1 Components of WannaCry 

 

WannaCry is made up of the following components: 

 

4.3.4.1.1 DoublePulsar 

 

DoublePulsar is a malware downloader. Its basic purpose is to download additional malwares 

into the system. DoublePulsar is normally loaded into the machine before WannaCry and it is 

running as a background process undetected. WannaCry, after getting loaded, searches for 

DoublePulsar. After getting permission from WannaCry, DoublePulsar alters user mode 

process permissions and  sets up remote access. Once connected, DoublePulsar deletes itself. 

DoublePulsar was originally developed by ’Equation Group’ and was leaked by ‘The Shadow 

Brokers’ along with ‘EternalBlue’ in early 2017 [42]. So it was used with EternalBlue to 



 

 
 

 

carry out WannaCry attacks. Also, once a system is rebooted, DoublePulsar does not persist. 

DoublePulsar runs in kernel mode. However, this kernel payload does not load the actual 

DLL(Dynamic Link Library). It actually sets up an Asynchronous Procedure Call(APC) to 

another shellcode that performs the load. Since it does not make a LoadLibrary call, which is 

a local call, therefore the DLL is not written to the disk. So there is no entry in the Process 

Entry Block(PEB).Thus, it remains hidden. 

 

4.3.4.1.2 TOR 

 

TOR stands for ’The Onion Router’. It is a worldwide network of computers, initially 

developed by the U.S. Navy that helps people to browse the Internet anonymously[43]. TOR 

hides your identity because it moves your traffic across random TOR servers and encrypts the 

traffic for many times including the next node address and sends it through a virtual circuit 

comprising successive, randomly selected TOR relays. Each relay decrypts a layer of 

encryption to reveal only the next relay in the circuit. 

 

 

4.3.4.1.3 Domain Check 

 

Just a few days after WannaCry was launched, a man who goes by the name @MalwareTech, 

discovered a Kill Switch to stop the attack. This slowed down the destruction by the malware 

to a large extent. Actually, before WannaCry starts the SMB exploitation, it tries to connect 

to a domain addressed, ‘http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com’. If the 

machine fails in making the connection, the exploitation continues. However, if the 

connection is successful, the exploitation is stopped immediately. Actually, this is a way of 

’Sandbox Evasion’ technique. Whenever a malware attacks a machine, it ensures it is not 

running in a sandbox. A sandbox is a way employed by Antiviruses and IDPS systems. In 

this, any suspected program runs in a protected, silo environment, detached from the main 

operating system with limited resources. If any permissions for connections are asked for, 

example in this case, the malware asked for permission to connect to a domain, the 

permission is granted. This is to trick the malware into assuming that it is running in an actual 

environment and not in a sandbox. Therefore, the registration of this domain acted as a kill 

switch for Wannacry.  

http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com/


 

 
 

 

 

  



 

 
 

 

4.3.4.1.4Bitcoin Wallets 

 

Bitcoin is cryptocurrency and a digital payment system invented by a programmer called 

‘Satoshi Nakamoto’. It is an open software and was released in 2009. Wannacry asks it’s 

victims to pay in bitcoins for getting the decryption key. Before that, Bitcoin wallets are 

created in your system. It is a peer-to-peer system which takes place between users directly 

without an intermediate person. The transactions are recorded and verified in a public 

distributed ledger called ‘Blockchain’. Bitcoin is thus a decentralized digital currency. 

 

4.3.5 Precautions to be safe from ransomware 

 

After the huge destruction caused by WannaCry, some precautionary steps can be taken to 

prevent such an outbreak in the future[44]. First of all, any ports which are not required to be 

open at all times must be closed and opened only when that service is requested for. Second, 

one must keep all her systems, completely updated using patches whenever they arrive. 

Regular updation is likely to protect your systems from many vulnerabilities and malwares. 

Third, network segmentation plays a key role in preventing an infection to spread across 

other systems in the network thus protecting other systems and also containing the infection. 

Preventive actions like not clicking on suspicious files in your mails and protecting your 

system’s user id and password are anyday, very important. Lastly any individual or 

organization which finds a vulnerability must make it public for larger interest of the society 

and not hoard it for creation of cyber warfare. 

1. Good AV or IDS solution: A good and reliable antivirus and IDS solution 

goes a long way in protecting the network from known and unknown attacks. 

Antiviruses keep updating themselves when new strains of malwares are 

discovered. Most of the malwares are successfully blocked by good 

antiviruses. 

2. Backup and Restore: Always take a regular backup of your data so that even 

if the ransomware attacks, you have the most current backup and are able to 

restore your data without paying the ransom amount and becoming a victim to 

the attacker. 

3. Make a vulnerability public: As in the case of EternalBlue, the SMB 

vulnerability was known to NSA but they chose not to disclose it to Microsoft, 



 

 
 

 

rather, they made cyber weapons for them. These cyber weapons were leaked 

by Shadowbrokers group and WannaCry and Petya were created out of them. 

It is always in the interest of the public and government both that any 

vulnerability in any operating system, if known by an individual or an 

organisation, should be made public so that systems can be protected from it.  

4.3.6 Remedy after ransomware attack 

 

Though one can only take precautionary steps to get saved fully from WannaCry, however 

once infected, one can recover the keys only till the time the system is rebooted. Actually for 

encryption, WannaCry creates two keys -a ’public key’ and a ‘private key’. These are based 

on prime numbers and are used for encryption and decryption of files. These keys remain 

lingering in the memory and are not deleted till the system is rebooted. These can therefore 

be recovered and be used for decryption. 

 

4.4 Building PosDeF 

 

There are various tools that we require to build the framework.For our virtualization need we 

have used virtualbox with Windows 7 installed. Dynamic analysis is carried by Cuckoo 

framework. Cuckoo framework makes it easy to carry dynamic analysis on malwares it 

comes inbuilt with various packages like tcpdump which is used to extract network 

communication between malwares and its author, volatility framework for extraction of 

system calls during the execution , python pillow library for extraction of screenshot during 

execution and also automating the clicks on various clickable items during the execution. All 

these factors can contribute into prediction of type of file.  

 

4.4.1 Building the Static Part of PosDeF 

 

Static analysis refers to the act of extracting information based on file properties without 

running it. This is the quickest way to classify the file but not always accurate. These are 

metadata of a file. We have extracted a total of 52 parameters using a python module called 

PE Analyzer 2. PE Analyzer is a tool which is used to analyze the portable executable 

format of a file. Some technical indicators like file name, MD5 checksums or hashes, file 



 

 
 

 

type, file sizeprovide the preliminary view of the file to determine whether it is malicious or 

benign.  

 

There are various steps involved in building the Static part of the framework: 

 

1. Feature Extraction 

2. Feature Selection  

3. Feature Classification 

 

4.4.1.1 Feature Extraction 

 

Extract the static features from the binary files by using PE Analyzer. These are the 

features, which distinguish between a malware and a benign file.   



 

 
 

 

 

 

Figure 4.4 Snapshot of a part of the ‘data.csv’ file created for training and testing purpose 

 

 

 

 

 

This is an example of the feature vector for a file: 

 

 Feature vector: 

 



 

 
 

 

Name|md5|Machine|SizeOfOptionalHeader|Characteristics|MajorLinkerVers

ion|MinorLinkerVersion|SizeOfCode|SizeOfInitializedData|SizeOfUninitiali

zedData|AddressOfEntryPoint|BaseOfCode|BaseOfData|ImageBase|Section

Alignment|FileAlignment|MajorOperatingSystemVersion|MinorOperatingSy

stemVersion|MajorImageVersion|MinorImageVersion|MajorSubsystemVersi

on|MinorSubsystemVersion|SizeOfImage|SizeOfHeaders|CheckSum|Subsyst

em|DllCharacteristics|SizeOfStackReserve|SizeOfStackCommit|SizeOfHeap

Reserve|SizeOfHeapCommit|LoaderFlags|NumberOfRvaAndSizes|Sections

Nb|SectionsMeanEntropy|SectionsMinEntropy|SectionsMaxEntropy|Section

sMeanRawsize|SectionsMinRawsize|SectionMaxRawsize|SectionsMeanVirt

ualsize|SectionsMinVirtualsize|SectionMaxVirtualsize|ImportsNbDLL|Impor

tsNb|ImportsNbOrdinal|ExportNb|ResourcesNb|ResourcesMeanEntropy|Res

ourcesMinEntropy|ResourcesMaxEntropy|ResourcesMeanSize|ResourcesMi

nSize|ResourcesMaxSize|LoadConfigurationSize|VersionInformationSize|leg

itimate/malicious 

 

Legitimate File: 

 

AcroRd32Info.exe|9afe3c62668f55b8433cde602258236e|332|224|290|9|0|40

96|7168|0|6751|4096|8192|4194304|4096|512|5|0|0|0|5|0|24576|1024|28316|2|

33088|1048576|4096|1048576|4096|0|16|5|4.14491201014|0.393689010804|

5.97744194837|2252.8|512|4096|2177.6|664|3880|3|61|0|0|4|5.09749900993|

3.43599300049|5.92981166069|616.5|94|1164|72|15|1 

 

 

 

 

 

Malicious File: 

 

VirusShare_a69e89bbf39a25966660881912ec1a84|a69e89bbf39a259666608

81912ec1a84|332|224|258|10|0|119808|385024|0|61532|4096|126976|419430



 

 
 

 

4|4096|512|5|1|0|0|5|1|528384|1024|564364|2|33088|1048576|4096|1048576|4

096|0|16|5|5.6663371314|4.18953861211|7.96311398057|100966.4|9728|330

752|102644.2|9418|339748|3|90|0|0|6|3.77675976631|2.45849222582|5.3175

5235629|2740.16666667|48|9640|72|15|0 

 

 

4.4.1.2Feature Selection 

 

The features that are chosen are of the type integers or floats. The text based features 

are dropped. These are vectors because only computation on vectors can be used by 

algorithms. These features are then used by our system. Out of 54, 14 features are 

selected. Rest of the features which were not important for analysis was dropped. 

 

In the pre training phase, some features have to be selected according to their 

variance. Feature selection means selecting only those features in the data that 

contribute most to the output in which one is interested. The ‘Skikit Package Tree 

Classifier’ is used here. Tree classifier gives a simple set of rules to categorize data. 

During training, a node-splitting criterion is utilized to partition the input space so as 

to classify the training data points in each position. This process is applied recursively 

within each resulting partition not meeting a stopping condition [45]. In the training 

phase the Tree Classifier algorithm creates a decision tree by identifying patterns in 

an existing dataset and using that information to create the tree. 

 

When we select features, those which have a very high or a very low variance are not 

useful in machine learning. These are rejected. Skikit package tree classifier is used to 

select only those features which are helpful in the separation of two classes. 

 

It is important to understand that all these features must vary for them to be selected. 

Variance measures how a set of numbers is spread out. The features which are 

selected according to their variance are as follows: 

 

1. DllCharacteristics 



 

 
 

 

2. Machine 

3. ResourcesMaxEntropy 

4. MajorSubsystemVersion 

5. Subsystem 

6. Characteristics 

7. VersionInformationSize 

8.  ImageBase 

9.  SectionsMaxEntropy 

10. MajorOperatingSystemVersion 

11. SectionsMinEntropy 

12. MinorSubsystemVersion 

13. SizeOfOptionalHeader 

14. SectionsMeanEntropy 

 

 

 

4.4.1.3  Feature Classification 

 

These features differ according to their variances. Therefore, these features are ranked 

according to the feature showing the highest variance till the feature showing the 

lowest. 

 



 

 
 

 

 

Figure4.5: Features selected on the basis of their variance 

 

Let us understand these features one by one: 

 

1. DllCharacteristics: This field comes under ‘Optional Header Windows –

Specific Fields’ [46]. It contains information about dynamic linking and 

loading behavior of a file. All information in DLL is encoded as flags which 

are represented as on/off bits in 16 bits. For example, 0X0040 shows that the 

DLL can be relocated at load time. 

2. Machine: Architecture type of the computer. 

3. ResourcesMaxEntropy: The increased entropy in a PE file is an indicator 

that the file has been processed by a packager or a protector. It is most likely 

to be malicious. 

4. MajorSubsystemVersion: Tells the major subsystem version for a system. 

5. Subsystem:This is a 16 bit value which tells the subsystem for the operating 

system. For Eg. Windows 95 binaries will always use the Win32 subsystem. 

6. Characteristics: Collection of flags valid for libraries and object files. 



 

 
 

 

7. VersionInformationSize: Tells the size of the version information. Version 

has information like file version, operating system version, original filename 

etc. 

8. ImageBase: This tells what is the preferred address of the first byte of image 

when it is loaded into the memory. 

9.  SectionsMaxEntropy: Tells the maximum allowed entropy for a section. 

10. MajorOperatingSystemVersion:The major version number of the required 

operating system 

11. SectionsMinEntropy: Tells the minimum allowed entropy for a section. 

12. MinorSubsystemVersion: Contains the minimum subsystem version required 

to run the executable. A typical value for this field is 3.10 (meaning Windows 

NT 3.1). 

13. SizeOfOptionalHeader: This is required for executable files and not for obje 

t files. Its value is zero for oject files. 

14. SectionsMeanEntropy: Tells the mean entropy for a section. 

 

In the training phase we will test various algorithms and split the dataset into 80% for training 

and 20% for testing. We have to test all the classification algorithms with the default 

parameters and the results that we get are given in the screenshot below.  



 

 
 

 

 

 

Figure 4.6 Screenshot showing performance of various classification algorithms for testing of 

static analysis 

 

Therefore, in this case, we find that RandomForest classification algorithm is giving us the 

best result of a 99.35% success. This was being tested with default parameters. The False 

positive/ False negative rate on the test data is as follows: 

 

a.   False positive: 0.568241 

b.  False negative: 0.830565 

 

4.4.2Building the Behavior Part of PosDeF 

 

Static analysis of malware is not enough because malwares have become very smart in the 

recent decade. A polymorphic or a metamorphic malware changes its signature and behavior 

at runtime. Therefore, in addition to checking the signature of the file to be analyzed, we need 

to check its behavior also to determine whether it is malicious or benign. We will use various 

tools in a simulated environment to discover the behavior of a particular file at runtime. After 



 

 
 

 

discovering the behavior, we will use various machine learning algorithms to predict the type 

of file. When we are considering self-modifying and polymorphic code, static analysis fails 

and we have to move to dynamic analysis for the right detection. 

 

 

Steps: 

 

1) Files in binary format enter the Cuckoo system and are analyzed. 

2) Based on the analysis results, API call sequences are extracted and a behavior report 

is generated for each binary. 

3) These reports are converted to MIST format. 

4) This MIST format is converted into sequential data in a high-dimensional vector 

space by N-gram algorithm. 

5) Similarity of vectors is calculated and a sparse matrix is generated. 

6) Many classification algorithms work on this sparse matrix and according to our 

dataset; KNN (K nearest neighbor) algorithm shows best accuracy. 

7) KNN is applied on this sparse matrix. 

 

 

4.4.2.1 File Analyzed in Cuckoo Sandbox 

 

Cuckoo is a very popular sandbox [47] which is free and open-source system, provided by the 

Cuckoo Foundation. After analysis of the sample, it gives a detailed report of it. Not only 

does Cuckoo help in reporting whether a sample is malicious or benign, but it also help a 

researcher in understanding the way a malware operates, reasons for the breach and the final 

motive. Cuckoo can analyze only malicious files under Windows, OSX, Linux and Android.  

 

Operations that Cuckoo can perform are [48]: 

 

1) Analyze a malicious file sample. 

2) Trace all API calls and behavior of the sample. 

3) Analyze even SSL/TLS encrypted traffic. 

4) Do memory analysis of the infected system. 



 

 
 

 

5) Can find IP addresses, domains, file hashes etc. which tell about network-related 

compromises. 

 

Cuckoo comes inbuilt with various packages like tcpdump, volatility framework and python 

pillow.  Tcpdump is a network sniffer which captures the traffic of the malware during 

execution and dumps it into a file. Volatility Framework extracts system calls during 

execution [49]. It starts working after we have dumped the memory. This memory is volatile 

memory-RAM. Digital artifacts can be extracted from it. Rootkits can normally be detected 

using Volatility framework [50].  Python pillow library is used for taking screenshots of the 

OS desktop during execution. 

 

Cuckoo Architecture: 

 

The architecture of Cuckoo sandbox will typically consist of hosts and guests connected 

together by a virtual network. A Cuckoo host takes care of guests and analysis management. 

It starts analysis, dumps traffic and generate reports. A guest provides a clean environment 

where a sample file can be run. The behavior of the analyzed sample is reported back to the 

host. After submitting a sample to the host, the analysis is launched in a fresh and isolated 

machine.  

 

 

 

4.4.2.2 JSON Reports Generated 

 

1) We have used virtual box with Windows 7 installed and dynamic analysis of samples 

is carried out by the Cuckoo framework. Cuckoo is set upon Ubuntu host. 

2) We have used 2000 sample size. 1000 files are extracted from virusshare_00302.zip 

which is a collection of malwares. 1000 .exe files are extracted from a clean 

installation of Windows 7. 

3) We start submitting the samples to Cuckoo. Instead of submitting the 2000 samples 

manually, we have created a small python script to automate the process. We have 

created two directories- one for clean and the other for malicious files. Our code will 

submit files one by one to Cuckoo from these directories. 



 

 
 

 

4) After the analysis, Cuckoo generates a JSON (JavaScript Object Notation) file. A 

JSON file is normally a 25-30 page file. 

5) After we submit a sample in Cuckoo, it will open a VM (Virtual Machine) and 

execute the file. Then it will start collecting stats about that file. 

 

4.4.2.3 JSON Reports converted into MIST format 

 

A JSON file, though human readable, but is very lengthy and will take plenty of resources to 

be processed by a machine learning algorithm. This is because it is unstructured. The 

behavior patterns are not recognizable. Also complex and lengthy textual representations 

negatively impact the run time of analysis. Konard Reich at the University of Gottingen have 

developed a method called ‘Malheur’[51] in which they have created MIST format which is a 

very efficient format for representing Cuckoo generated JSON files. MIST stands for 

‘Malware Instruction Set’. It is a feature generation technique that represents the behavior 

analysis of a sample as a series of integers [52].They have used it to classify malware into 

different families and equally good for binary classification i.e. benign and malicious 

samples. 

 

MIST creates a smaller file size for analysis and reduces the processing time. MIST format is 

also not human readable but stores the same information in a structured manner in a very 

limited space. It is like the instruction sets used in processor design [53]. For conversion of 

the JSON file into MIST format, we have used an open source tool called ‘cockoo2mist’.  

 

 

 

 

CATEGORY_OPERATION | ARG_BLOCK 1 | AB 2 | …….| AB N 

 Level - 1 

  Level - 2 

   Level – 3      

         ………. 

Figure 4.7: Depiction of a MIST Instruction. 

 



 

 
 

 

Understanding a MIST instruction 

 

Level-1: Shows category and name of a monitored system call. For eg.  

03 05  

Here category is ‘filesystem’(03)and system call is ‘move_file’(05). 

Operation – is a particular system call. 

Arg_Block- arguments like file and mutex names. 

 

The following figure represents a CWSandbox representation of a load_dll command being 

converted into MIST format. 

 

 

 

 

 

 

Figure 4.8 : Understanding a MIST Instruction with the help of an example. 

 

 

Level -2: This level contains constant information, say file extension and file path.  

 

Level -3: This level contains information which varies often. For example, file size and file 

name are values which differ even when two variants of the same program are considered. So 

this information is stored here. 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.9MIST Levels 

 

 

4.4.2.4 MIST reports converted into N-Gram data 

 

Unstructured Information: Random Forest and Tree Classifier algorithms would normally 

work with structured data. However, if you have unstructured data, for eg.  in our case, we 

have JSON reports generated by Cuckoo sandbox. Now this data is in the text form and is 

unstructured as per the requirements of most of the classifier algorithms. Therefore for such 

unstructured data, we go in for N-Gram approach of classification. 

 

MIST instructions give a feature representation report for each binary. There are typical 

behavior patterns of malware like changing registry keys or modifying system files. These 

behaviors are represented in a particular sequence in these reports and thus these are very 

useful for malware detection. 

 

However for analysis techniques of machine learning, this is not a suitable format. We need 

to operate on vectors of real numbers[54]. So we apply a technique called n-gram to convert 

MIST report into a vector space. 

 

N-Gram approach- In our model we are using a 1-gram approach. Say we have 10 sentences. 

We break all these sentences into single words. We remove duplicates and find out all unique 

words. These are called tokens. Then we check the frequency of words in the sentence. This 

gives us the count of unique tokens. Now say we have to find similar sentences in some other 

Level 1 

Level 2 

Level 3 

Increasing detail and 

variability 

Identical behavior 

Fine difference in behavior 

Huge differential behavior 



 

 
 

 

file. If the same tokens occur in the other file also, we find the similarity index between these 

two files. This is the basic concept of n-grams. 

 

The same concept is used in our model also. Say we have some 10 malicious files. Let’s 

assume that a ‘crypt API’ call of code 11007 is being called in all these 10 files. Then 

according to the similarity with API calls, we can deduce that a file calling this particular 

11007 API call can be a malicious file. 

 

N-gram approach is based on the vector space and bag-of-words model. It finds shared 

behavior patterns. For example, function calls can be extracted from each analysis report and 

a sparse matrix can be generated.  

 

Say we represent a feature set by S and a set of all behavior analysis reports generated by 

MIST as M [55]. If there is a word s Є S and a report mЄ M, we have to calculate number of 

occurrences n in m to calculate frequency  

f=(m,s) 

 

4.4.2.5  Sparse matrix Generated 

 

N-gram breaks all available text into tokens. How we convert text into tokens depends upon 

our application. In our case, we are using 1-gram. After extraction of tokens, n-gram converts 

these tokens into sparse matrix. A sparse matrix is just the count of these tokens per file. 

 

Bag of Words feature extraction technique: This technique represents a string as a vector of 

token frequencies. For example- let’s take a sentence: 

“The pencil is sharpened by the sharpener” 

This is a string. It is represented as a vector: 

{the:2, pencil:1, is:1, sharpened:1, by:1, sharpener:1} 

 

Bag of words technique determines a token count for each string in isolation. Vectorization 

assigns a unique index for each token observed in the dataset as a whole. For example: 

 

File 1: a, x, c, d, a 



 

 
 

 

File 2: b, a 

Corpus: a, b, c, d, x 

 

Sparse Matrix: [ [2, 0, 1, 1, 1] 

      [1, 1, 0, 0, 0] ] 

This matrix is created with respect to the corpus. Corpus is every unique word in every file in 

the directory. 

 

4.4.2.6  KNN Classification Algorithm applied 

 

KNN is a machine learning classification algorithm which is: 

 Simple 

 Non-parametric 

 Lazy  

 Based on feature similarity 

 

Simple: KNN is a simple whose purpose is to use a database in which the data points are 

separated into several classes to predict the classification of a new sample point. 

 

Non-parametric: KNN does not make any assumptions on the underlying data distribution. 

Therefore in many real world problems for KNN can be used for classification if there is little 

or no prior knowledge about the distribution data. 

 

Lazy: KNN is not an eager algorithm. It does not use the training data points to do any 

generalization. There is no explicit training phase or it is very minimal. This also means that 

the training phase is very fast. 

 

Based on Feature Similarity: KNN Algorithm is based on feature similarity. Feature 

similarity means how closely out-of-sample features resemble our training set determines 

how we classify a given data point.  

KNN can be used for classification — the output is a class membership. An object is classified 

by a majority vote of its neighbors, with the object being assigned to the class most common 

among its k nearest neighbors.  



 

 
 

 

4.4.3 Building Network Part of PosDeF 

 

For creating the network part of the framework, we use a tool called Snort. Snort is an open 

tool used for network traffic analysis. It combines signature, protocol and anomaly 

inspection. It is both an IDS and an IPS. It can detect many variety of attacks and probes like 

: 

 

1) Buffer overflows 

2) Stealth port scans 

3) CGI attacks 

4) SMB probes 

5) OS fingerprinting attempts etc. 

 

Snort allows creating rules for detecting malicious traffic and alerting the user. These rules 

are used by SNORT functions for performing protocol analysis, content searching and 

content matching on network traffic[56]. 

 

Policies-When these rules are implemented, these implementations are called policies. 

 

Alerts- Snort raises alert in real time if a rule matches the content of a payload in the traffic. 

 

Snort rule-  

 

 

 

 

 

Snort rule header- 

 

 

For example:  

 

alert UDP 192.168.0.2 any -> any 80 ( msg : “Twitter” ; content: twitter.com ; sid:20003) 

Rule  Header    Rule Options 

Action       Protocol           Source IP  Source Port    Direction  Destination 

IP  Destination Port 



 

 
 

 

 

alert: action 

UDP: protocol 

192.168.0.2: source IP 

Any: source port 

Any: destination IP 

80: destination port 

Msg: rule options 

 

This rule header contains information which can send an alert for a packet in a UDP stream 

whose source IP address is 192.168.0.2 towards any destination IP, having port number 80. 

Rule Options tell the rule name and rule id and also the context that needs to be detected. 

Snort will take the associated action when the rule header and rule options match the content 

of the packet. In this example, if in the traffic a packet from the UDP stream contains the 

twitter server name an alert will be generated. 

 

4.4.3.1 Cuckoo generates dump.pcap file 

 

PCAP stands for Packet Capture. PCAP files are created by Cuckoo when they dynamically 

analyze any file as dump.pcap file and they contain network data which is created during a 

live network capture [57]. These files are used for packet sniffing and analyzing the network 

traffic. PCAP has an API for capturing network traffic from ports. It also monitors IP address 

and other network related parameters. Protocols are also investigated. 

 

4.4.3.2 Snort generates text file out of pcap file 

Snort uses this dump.pcap file and converts it into a text file. Actually dump.pcap is a binary, 

non-human readable file. Snort converts it into a readable format consisting of alert messages. 

A tcpdump tool is used for this. Snort is supporting IPV6 format too. 

 

tcpdump -n -tttt -r /snortLogFilePath/snortLogFileName > /pathWhereToStore/File.txt 

 

-r reads a single pcap file. 

 



 

 
 

 

A snort.conf file is the default configuration file which contains all configuration rules which 

are to be matched. All rule sets are defined in it. 

 

An alert file is generated from the pcap file. Below is a snapshot of such a file. 

[**] [1:2010935:2] ET POLICY Suspicious inbound to MSSQL port 1543 [**] 

[Classification: Potentially Bad Traffic] [Priority: 3]  

06/20-20:31:31.817215 232.10.237.105:2000 -> 230.29.20.24:1543 

TCP TTL:102 TOS:0x0 ID:260 IpLen:20 DgmLen:40 

******S* Seq: 0x43EE0000  Ack: 0x0  Win: 0x4000  TcpLen: 20 

[Xref =>http://doc.emergingthreats.net/2010935] 

 

4.4.3.3 Text file converted into MIST format 

 

This text files ha to be converted into the MIST format. MIST format is machine learning 

compatible format and is required if we want to give this data to various machine learning 

algorithms. 

 

4.4.3.4 MIST file converted into sparse matrix 

 

The MIST file again has to be converted to N Gram token sparse matrix for easy analysis. 

Relevant tokens are identified and a sparse matrix is created so that machine learning 

algorithms find these matrices efficient to operate upon. 

 

4.4.3.5 KNN applied to sparse matrix 

 

K Nearest Neighbor is the classification algorithm applied to this sparse matrix. When we 

compared it to other algorithms, it was giving an accuracy of 80.7%.  Therefore this was the 

best algorithm to be applied with the current data. Also according to its confusion matrix, it 

gave the least number of false positives and false negatives. 

 

Confusion Matrix- A confusion matrix is a table which describes the performance of a 

classification model based upon a set of data for which we already know the true values. For 

example: 

http://doc.emergingthreats.net/2010935
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Figure 4.10A Sample Confusion Matrix 

 

True Positive- Say in case of testing of files, the number of true positives was 200. What that 

means is that out of 286 files, 200 were predicted by the model as malign and they were 

actually malign. 

 

True Negative- 78 predicted as benign were actually benign and not malicious. 

 

False Positive (Type1 error)- 5 predicted as malicious but were actually non-malicious i.e. 

benign. 

 

False Negative (Type2 error)- 3 predicted by model as non-malicious but were actually 

malicious.   

 

Accuracy-Means how often is the classifier correct. 

  (TP+TN)/Total=(200+78)/286=0.972  

That means our model has a 97.2% accuracy. 

 

 

4.4.4 BuildingSandbox Evasion Detection part of PosDeF 

 



 

 
 

 

A very powerful technique developed by antivirus and IDPS creators is sandbox 

technique. Using this technique, the suspicious programs can be run in a simulated 

environment called a sandbox. All programs, whether malicious or non-malicious would 

show their true nature in this environment.  

Thus the anti-malware program would be easily able to detect the malicious programs and 

weed them out of the system. However, attackers have come up with sandbox evasion 

techniques. They employ various methods to detect whether they are working in a 

simulated environment or the actual operating system. Accordingly, if they detect a 

sandbox, they would lie dormant or do very superfluous jobs. It’s only when they are sure 

they are running in the actual operating system, would they show their true working and 

would launch an appropriate attack.     

 

In our model, we would find out whether sandbox is being evaded by the sample or not. 

Accordingly, a probability of 1 or 0 would be allocated if the sandbox is being evaded or 

not respectively. This calculated value will be used in the final calculation of 

maliciousness probability of the sample. A JSON file generated by Cuckoo has a sandbox 

evasion parameter. It has a Boolean value of 0 or 1. By parsing this JSON file one can 

find out whether the sample tried to evade the sandbox or not. If it tried to evade the 

sandbox, there is a 100% chance that it can be a malware. 

 

4.5 Distributive Execution of PosDeF 

 

Over the last decade, with the advent of advanced malware which change their behavior and 

structure at runtime, signature detection is no longer valid. For such polymorphic and 

metamorphic malwares, one needs complex detection involving static analysis, dynamic 

analysis, network analysis and sandbox evasion detection. Using machine learning for this 

process is the only viable solution. However, this complete processing also requires large 

computing power and resources.  

 

Distribution of processing is thus required to achieve an optimized solution. In this paper we 

have proposed Apache Spark as a distribution framework for machine learning malware 

detection. We have used Amazon AWS as a platform for execution. Blockchain is used for 

providing an immutable dataset of malware information to all nodes participating in the 



 

 
 

 

distributed malware detection system. A comparative study is also conducted between 

performance of non-distributive analysis and distributive analysis. 

 

4.5.1Introduction 

Malwares are as integral to the digital space as are normal applications. To counter every new 

type of malware is necessary for the proper working of all applications. 

 Malwares are evolving day by day and antivirus companies are finding it difficult to keep up 

the pace. It is imperative that a check is put on malicious activities. The biggest threat, cyber 

world if facing today is that of ‘Polymorphic and metamorphic malwares’. These are 

advanced malwares which change their look (signature) but have the same behavior. In the 

case of metamorphic malwares, they are capable of changing their signature a well as 

behavior at runtime. This makes them difficult to detect by Signature based detection 

systems. Thus Anomaly based detection systems also fail here.  

 

All the current solutions existing today have some lacunas in common: 

 

1. Signature Matching-Most of them focus on malware detection by signature matching 

and pattern recognition. Malware authors are now smarter than ever before and 

signature detection is of no use due to techniques like polymorphism, metamorphism 

etc.  

 

2. No behavioral analysis- Some of them do not take into consideration, file behavior, 

network behavior and other dynamic behavior of the file to be analyzed. 

 

3. Updating time-Another problem that current antiviruses face is that they take a lot of 

time to analyze the malware and then update the definition of antiviruses into user’s 

device.  

 

4. Danger to user’s privacy- The antivirus companies are sometimes a danger to the 

user’s privacy as they collect data from user on regular basis and use that to make 

money. The normal user acts only as a data feeder so that these antivirus companies 

can protect enterprises. 

 



 

 
 

 

5. Centralized Antivirus Companies-All the antivirus organizations are centralized in 

nature. This implies that a lot of computation power is required and very few 

computers are available to provide it. If a distributed system could be designed where 

all systems in the network contribute to the work of malware detection, things will 

become faster and more efficient. 

 

Note that the recent ransomware attacks by WannaCry and Petya can prove the above 

statements, not to mention that none of them were actually polymorphic or metamorphic. 

 

 

 

 

4.5.2 Proposed Distributive PosDeF 

 

Our proposed framework will take care of all kinds of malwares including polymorphic and 

metamorphic. We are analyzing static behavior, dynamic behavior, network behavior and 

sandbox evasion behavior. Machine learning is incorporated at every step to make the work 

more efficient and detect any new malware if current antivirus solutions label it as clean. 

Decentralized currency was another incredible innovation recently and it led us to the new 

system of bitcoins. Bitcoins are great but what makes them greater is the technology on 

which it works. The technology is known as blockchain and it has so many other applications 

other than just decentralized currency. Here we use this concept to harness distributive power 

of all the systems in the network so that a large amount of computing power is gained with 

very little cost and everyone in the network is benefitted. 

 

Our work is highly significant both in the present and in the future. Hackers have recently 

used shellcodes in WannaCry and Petya Malwares. The next step is to use polymorphic and 

shellcode attack. We must be ready for them and our works makes us ready.  

 



 

 
 

 

 

 

Figure 4.11 Proposed fraework for Decentralized Malware Detection. 

 

Let’s understand how the framework works. When a file which is to be tested enters the 

system, we have to profile the file. We check it using already existing antivirus solutions like 

Clam AV and Yara, which use VirusShare database. All these technologies are open source. 

If the file is detected by the antiviruses as malicious, we straight away label it as a malware 

and log it in the database as not-clean. However, if the file is claimed to be clean by the 

antiviruses, we do not completely believe them and run it through our model.  

 

Now after scanning about one lakh files from a balanced dataset of malicious and clean files, 

the model (through machine learning algorithms), automatically finds out the feature set 

which distinguishes  between clean and malicious files. We calculate a threshold value for 

maliciousness in a file in the form of probability. Now we calculate this probability in our test 



 

 
 

 

sample. If it is more than the threshold value, we label it as malicious. If it is less than the 

threshold value, we label it as clean. If it is equal to the threshold value, we label it as 

unknown and make it run through the model again for reanalysis. The results are stored in the 

form of an immutable ledger called Blockchain. 

 

Our framework uses various machine learning algorithms of clustering and classification like 

KNN, Random Forest, N-Gram, Tree classifier etc. Also for the training phase a huge dataset 

is required for the model to become viable and give correct results. The model is iterative so 

that it improves as more and more samples enter the system even during testing phase. Thus a 

great amount of computing power and data storage is required to run this model.  Therefore, 

running on a single node is not an effective solution.  

 

We use Amazon AWS Cloud services to run the framework in a distributed environment. 

Apache Spark framework is used for distributing the load between participating nodes.  

Blockchain not only maintains details about clean and malicious files on individual nodes but 

is also used for rewarding users according to the amount of computing power they donate for 

the detection model. This reward is in the form of tokens mined by the users. 

 

4.5.3 Centralized versus Distributive Computing 

 

There is a huge performance benefit that can be achieved using distributed computing [58]. 

Let’s take an example. Say we have 10,000 requests to be served. The processing time per 

request is say 1 second. Therefore, after the first response, the last response will come after 

100000/3600 = 27.7 hours. However, if we have 1000 nodes working in parallel, the same 

response is going to come in 100000/6000 = 1.6 minutes. This is a great performance benefit. 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

Centralized System  

    Processing time=1 sec 

 

Request 1          

Response 100000 

(Time=27.7 hours)    

 

Distributive System  

    Processing time=1 sec 

Request 1   

Response 100000 

(Time=27.7 hours) 

 

 

Figure 4.12 Comparison of performance between a centralized and a distributive system 

 

 

4.5.4 Role of Apache Spark in PosDeF 

 

Apache Spark is a framework used for cluster or distributed computing. It is an open source 

framework [59]. Since our model will run on all networked nodes, Spark will make them run 

parallel and will also give fault-tolerance. Therefore, even in the case of failure of any node, 

the system is not going to breakdown and will continue operating properly.  Spark gives to its 

users speed, easy usage and complex analytics. 

 

For distributive computing, we had many technologies like Hadoop, MapReduce and Storm. 

Now Hadoop normally runs in batch mode and cannot handle real time data [60]. Apache 

Spark, however gives us real-time data analysis in a distributive environment. The other 

advantage of Spark is that it gives a unified framework for a variety of datasets like text 

dataset, graph dataset etc. It also supports data from both real time and batch sources [61]. 

One Machine 

One Master 

Machine 

Machine 1 

Machine 2 

Machine n 



 

 
 

 

Spark also enables one to write applications in a variety of languages like Java, Scala and 

Python. Also, in addition to Map Reduce, it also lets a user use SQL queries, streaming data, 

machine learning and graph data processing. In an experiment done by the company 

‘DataBricks’ [62] in October 2014, a new world record was set for  sorting 100 TB of data by 

Apache Spark on 207 EC2 virtual machines in 23 minutes. Apache Spark runs everywhere on 

Hadoop Mesos, Kubernetes, standalone or in the cloud. It can work with diverse data sources 

like HDFS, Cassadara, HBase and S3 [63]. 

 

In our model, after testing it on a single node, we need to test it on thousands of nodes 

because we will have petabytes of data. For our testing purpose, we have leveraged AWS M3 

RAM medium instance that contains 3.75 GB, 1 core CPU and 410 GB of SSD. We have 

stored our data in HDFS which is designed for large storage only. 

 

 

4.5.4.1 AWS M3- M3 is an instance of AWS. M3 is a second generation, general-purpose 

EC2 instance type[64]. We are using a medium M3 instance. 

 

4.5.4.2 M3 medium- It has a RAM of 3.75 GiB with an instant storage (SSD) of 1X4 GB 

cache. M3 instances have high frequency Intel Xeon E5-2670(Sandy Bridge or Ivy 

Bridge) processors. M3 medium is a general purpose instance family. It has only one 

vCPU. 

 

4.5.4.3 Amazon EC2- EC2 is an Elastic Compute Cloud. It is a web service that gives 

secure, resizable compute capacity on the cloud. It is designed to make web-scale 

cloud computing easier for developers. New service instances can be added or 

removed within minutes to scale both up and down as one’s computing requirements 

change.  

 

Amazon EC2 gives users a wide choice of instance types to suit their needs. Instance 

types give various combinations of CPU, memory, storage and networking capacity 

to give one the right mix of resources to choose from. Each instance type includes 

one or more instance sizes to scale your resources as per your workload[65]. 



 

 
 

 

4.5.4.4SSD- Solid State Drives. These deliver high random IO performance. SSD is used as 

memory for  persistent storage of data. SSD uses interfaces compatible with traditional IO 

and Hard Disk Drives which help in simple replacement in many applications. In our model, 

410 GB of SSD is used. 

 

4.5.4.5HDFS- Hadoop Distributed File System. This is a fault-tolerant system and is 

designed to be deployed  on low cost hardware. It is specifically suitable for large data 

sets. Since our model will handle data in  petabytes, HDFS is suitable for it. It can scale to 

hundreds of nodes in a single cluster. Hadoop is  actually a data warehousing system and 

it needs MapReduce to process the data.  

 Spark is designed to write and read data from and to HDFS as well as from other 

storage systems like  HBase and Amazon’s S3. 

4.5.4.6 HDFS Architecture- HDFS has a master-slave architecture [66]. An HDFS 

cluster has one NameNode which is a master server managing the file system 

namespace. It also regulates access to files by the clients. Also there are a number of 

DataNodes which are one per node in the cluster which store data. A file is split into 

one or more blocks and these are stored in DataNodes. The NameNode manages 

opening, closing and renaming of files and directories. It also tells about the mapping 

of blocks to DataNodes. The DataNodes fulfill the request to read and write from the 

clients. The DataNodes are also involved in block creation, deletion and block 

replication.  

 

4.5.4.7 Non-Computational Data Locality- We need processing and data storage in 

the same node.  With databases, we had computational and data locality. What that 

means is that we had data in one  machine and processing in the other. So normally, data 

is stored on multiple machines but processing is  done on the server. This results in huge 

amount of data transfer. Thus traditional MapReduce is not  successful for efficient data 

sharing. Basically, Hadoop is used for data storage. It is not successful for  analysis. 

However, Spark increases speed of analysis in real time. 

 

4.5.4.8 Data and Processing on each machine- In a Hadoop cluster, data which is in 

the form of HDFS and the MapReduce system, both are present in each machine in 



 

 
 

 

the cluster. This has two advantages; first it introduces redundancy in the system. 

Therefore, fault-tolerance increases. Also since data and data processing software 

resides on the same machine, therefore information retrieval speed increases.  
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Fig 4.13 Traditional Database Processing Structure 
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Figure 4.14 Hadoop Cluster 

 

 

4.5.5 Working of the Hadoop Cluster 
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The Hadoop cluster works in a modular fashion and the work is divided between master and 

slave nodes. Detailed working is as follows: 

1) Start. 

2) Client requests for a file. 

3) JobTracker receives the request. 

4) NameNode which stores metadata tells which DataNodes store the blocks that make 

up that file. 

5) Client directly reads the blocks from the individual DataNodes. 

6) JobTracker schedules the Map and Reduce tasks on the appropriate TaskTrackers in a 

rack-aware manner. 

7) JobTracker monitors for any failing tasks that need to be rescheduled on a different 

TaskTracker. 

8) TaskTracker spawns JVMs to run Map and Reduce tasks and report back to the 

TaskTracker. 

Stop after the process completes. 

Figure 4.15 Hadoop Master-Slave Architecture 
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CHAPTER  5 

 

FINDINGS AND CONCLUSIONS 

 

 

After successfully training the model, we will test the model with about 40 files. Below first 

we will show the screenshots of actual execution first with a clean file and then with a 

malicious file. Then we show an excel document of the complete results with a dataset of 40 

files.  

 

5.1 Execution for a clean sample on the Framework: 

 

Say we have a file named ‘1.exe’.  

 

5.1.1 Static Analysis 

 

First we do static analysis for the file. When we get the result, the static analysis gives a 

probability of only 26% that this file is a malicious file. 

On the command prompt we can write: 

$ ./checkpe.py ../finalresult/clean/1.exe 

The result that we get is:  

[0.26 0.74] 

 

5.1.2  Dynamic Analysis 

 

This is the dynamic analysis for the file. Dynamic analysis or behavior analysis is done using 

‘Cuckoo Sandbox’. After setting up Cuckoo on Ubuntu host we will start submitting samples. 

Submitting of sample can be done using simple command:  

 



 

 
 

 

$ cuckoo submit /path/to/binary 

 

Because it would be cumbersome to go and submit every file manually here is a small python 

script that makes the work very simple. 

 

Import os 

from subprocess import call 

directory_in_str=”/home/varnit/Downloads/clean_files”; 

directory = os.fsencode(directory_in_str) 

for file in os.listdir(directory): 

   filename = os.fsdecode(file) 

   call([“cuckoo”, “submit”,”/home/varnit/Downloads/clean_files/”+filename]) 

 

Figure 5.1 Python Script for submitting files to Cuckoo 

 

Above script will fetch every other file into clean directory and submit it to cuckoo. There is 

a similar directory named malicious and we can run the same script for that as well. 

This is how Cuckoo runs and analyzes the file. 

 

Figure 5.2 Analysis of files by Cuckoo 

This screenshot shows Cuckoo processing file in the sandbox which is actually an Oracle VM 

VirtualBox here. 



 

 
 

 

 

Figure 5.3 Cuckoo processing the file in a virtual sandbox 

This is the JSON report generated for the file. 

 

Figure 5.4 A JSON report for the file analyzed by Cuckoo 

 



 

 
 

 

Now, this JSON file is human readable but it’s a lengthy file and it will be very difficult for a 

machine learning algorithm to process it. A man called Konrad Rieck at the University of 

Göttingen created a method name Malheur which has created a new format called mist 

format. MIST format represents JSON files very efficiently. They have used it to classify 

malwares into different families i.e. multiclass classification but it’s equally good for binary 

classification ie. malware or benign sample. 

 

Now we need to convert this JSON format into MIST format to make it more understandable 

for machine learning algorithms. 

 

 

 

Figure 5.5. Conversion of JSON report to MIST format 

 

Now though this MIST format is better than JSON format, however, it is still not appropriate 

for the machine learning algorithms. Therefore, the MIST format has to be converted into 

http://user.informatik.uni-goettingen.de/~krieck
http://www.sec.informatik.uni-goettingen.de/
http://www.sec.informatik.uni-goettingen.de/


 

 
 

 

sparse matrix format (‘transformed_mat’) for feeding into the machine learning algorithms. 

The 31 stored elements here show the 31 unique NGram tokens. We use ‘vectorizer’ which is 

an object provided by the Scikit-Learn library. The vectorizer object converts the MIST 

format file into sparse matrix. It splits the MIST file into unique tokens. It then assigns 

weight to each token proportional to the frequency in which it occurs in the MIST file. Then 

it creates a sparse matrix in which each row represents a document and each column 

represents a token.  

 

 

 

A sample ngram sparse matrix which is made of 16 files is of dimension - 

 

 

Figure 5.6 N Gram Sparse Matrix 

As visible in the above screenshot our matrix is of 16 by 7255 dimensions. 

 

 

Figure 5.7 A 16 X 7255 Dimension Sparse  Matrix 



 

 
 

 

 

 

Figure 5.8 Explanation of a sample Sparse Matrix. 

 

 

Figure 5.9 Commands to show the formation of Sparse Matrix for our data. 

 

Various algorithms like KNN, Perceptron, Random Forest, Passive-Aggressive, L2 Penalty 

etc. are compared. Out of these, KNN showed the best accuracy.  

 



 

 
 

 

The KNN (K Nearest Neighbor)  machine learning algorithm is applied on the sparse 

matrix(transformed_mat) to predict probability of maliciousness. The result below shows that 

there is only 20% chance of the file being a malware. 

 

 

Figure 5.10 KNN algorithm used to predict probability on the transformed matrix. 

 

5.1.3 Snort Analysis 

 

A snort analysis done on the file gives its network characteristics.  After submission to 

Cuckoo, a dump.pcap file is generated which gets converted into N Gram sparce matrix.  

 

 This is the screenshot of dump.pcap which is generated by Cuckoo. 

 

Figure 5.11 Snapshot of dump.pcap file 

The sparse matrix is called ‘transformed_mat’. Random Forest algorithm is used for 

predicting the probability of maliciousness of the file. It predicts that there is only 35% 

chance of the file being malicious. There is 65% chance of it being clean according to Snort 

analysis.  



 

 
 

 

 

Figure 5.12 Predicting probability of maliciousness using Random Forest Algorithm 

 

The sample does not evade the sandbox. Therefore there is no sandbox evasion screenshot. 

 

5.2 Execution for a malicious sample: 

 

Now, when we run the model with a malicious file, it is easy to see a stark comparison.  

 

5.2.1 Static Analysis 

 

Firstly let’s start with static analysis. In the training phase we will test various algorithms and 

again we split the set of data into 80% training and 20% testing. The graph below shows the 

result obtained from that. So we have found that Random Forest is the winner in classifying 

malwares based on static analysis. 

 



 

 
 

 

 

Figure 5.13 Comparison of various machine learning algorithms to show that Random Forest 

is the best 

 

Below one can clearly see that static analysis gives a 1 probability that the file is malicious. 

 

Figure 5.14 Result of a file showing malicious behavior 

 

5.2.2 Dynamic Analysis 

 

This is the dynamic analysis for the sample. Dynamic analysis or behavior analysis is done 

using ‘Cuckoo Sandbox’. This is how the sample is submitted to cuckoo for analysis. 

 

 

Figure 5.15 Same file submitted to Cuckoo for dynamic analysis. 

The sample runs in a sandbox which is actually an Oracle VM VirtualBox. 

 



 

 
 

 

 

Figure 5.16 Sample running in a VM virtual box. 

JSON report is generated for the sample. 

 

Figure 5.17 A JSON report generated for the sample 

 

Now, this is the sample JSON file extracted from a malicious sample. We have omitted most 

of the file and only included those portions through which we can get some idea of how 

malicious behaviour can be predicted by the help of a JSON report. 



 

 
 

 

Process Tree -> In the process tree it is visible that it's calling Internet Explorer. Now a 

malware may be trying to download some malicious payload in to the system or trying to 

inject itself into system through various processes like java applets, flash player or plain 

javascript. 

 

antisandbox_sleep -> A process attempted to delay the analysis task. 

 

antivm_virtualpc -> Tries to detect VirtualPC. 

 

antisandbox_unhook ->Tries to unhook Windows functions monitored by Cuckoo. 

 

DLL-loaded -> its visible through the JSON file that the malware is trying to load some dll 

which look suspicious.  

 

DNSAPI.dll-> This API is used to manipulate dns cache in windows. A malware can hijack 

this file to redirect users to any advertisement or it may start downloading  payloads. 

 

sspicli .dll-> This is a security support library for windows and is used to play with 

certificates. This library can be hijacked to manipulate security certificates in Windows. 

 

Rpcrt4.dll -> This is remote procedure call library which is used to call remote procedures 

i.e. functions that are deployed on remote computer. A malware can use this file to contact its 

master. 

 

cryptbase.dll-> this is the core cryptography library for Windows. A malware can use it to 

encrypt files and later ask for ransoms or for some other purposes. 

 

Strings -> This portion contains the extracted strings during the execution phase of a file. In 

our case we can see some suspicious strings for example tor. Tor urls are mostly used for 

anonymous communication and are definitely suspicious. 

The JSON report is converted into MIST format using a cuckoo2mist converter function in 

python. 

 



 

 
 

 

 

Figure 5.18 JSON report converted to MIST format using cuckoo2mist converter 

 

This is the screenshot for the MIST report. 

 

 

Figure 5.19 MIST report for the sample. 

 

For prediction of maliciousness of the sample, the best algorithm has to be found out. We 

compare all algorithms and according to the highest score, we find KNN to be the best. 

 



 

 
 

 

 

Figure 5.20 Graph comparing all algorithms and finding that KNN is best suited for analysis 

 

This MIST report is converted into an N Gram sparse matrix using vectorizer.transform() 

function of python. Then it is converted into an array. KNN classifier algorithm is applied to 

this array to predict behavior maliciousness of this sample. It is predicted that there is 60% 

chance that this sample is malicious and 40% chance that it is clean.  

 

Figure 5.21 KNN Algorithm predicting maliciousness of the sample from transformed matrix 

5.2.3 Snort Analysis 

 

Cuckoo generates a dump.pcap file. Snort converts this pcap file into a text file. A screenshot 

of that file is shown below. 

 



 

 
 

 

 

Figure 5.22 A dump.pcap file generated by Cuckoo 

 

We find Random Forest to be the best in this case by comparing it with all other algorithms. 

So KNN is being used for behavior analysis while Random Forest for Snort analysis in this 

case. We have calculated which algorithm scores best. The choice of algorithm may vary 

according to the data. Though the graph below shows that a lot of time is taken for training 

and testing for Random Forest, but the score is good and our main aim is to reduce the 

number of false positives and false negatives. 



 

 
 

 

 

 

Figure 5.23  Graph comparing all algorithms and showing Random Forest to be the best for 

analysis 

 

A text report generated by Snort is converted into a sparse matrix called ‘transformed_mat’. 

Random Forest classifier is used for predicting the probability of network maliciousness of 

this sample. The Random Forest classifier predicts the sample to be 74% malicious and 26% 

clean. 

 

 

Figure 5.24 Random Forest algorithm predicts maliciousness of the sample to be 74% 

 

  



 

 
 

 

5.2.4 Sandbox Evasion Detection 

The screenshot below shows that this sample tries to evade the sandbox. Therefore this 

definitely is a malware.  

 

Figure 5.25 Evasion of sandbox by the sample 

5.3 Final Results 

 

For the final testing we have taken 40 samples. Some of them are considered clean and some 

malicious by standard anti-virus software. For every malicious file that we find, we 

quarantine it after logging. Following are the benefits of our model as compared to standard 

models present in the market today: 

 

 Our model has been successfully able to detect all malware with 100% accuracy. 

 Our model is free as compared to standard antivirus software and Intrusion Detection 

Prevention Systems which are costing as high as thousands of dollars. 



 

 
 

 

 Our model is non-proprietary and non-central. Therefore it is free from bias. It is also 

free from illegitimate profit making where companies would float their self-created 

malware and then propose paid solutions for them. 

 Our model has an instant update facility. It is updated at all times. The moment a new 

malware hits the Internet, its entire signature and behavior reaches the model and it 

updates its database accordingly. 

 It is a fast model as compared to other models in the system. Its complexity is log n. 

the work is distributed and divided among all nodes. Thus it is never resource-heavy 

and always fast no matter now heavy the analysis of the sample is. 

 In our model everyone benefits. Both consumers and companies. Consumers get 

efficient anti malware facilities for free and companies get latest malware signatures 

which were previously undetected. 

 

5.3.1 Results obtained from the PosDeF after all four steps 

 

After the final calculation, we have also categorized the malware according to the 

level of severity. Informational means it has very less malware behavior and is not a 

big threat. Low means the severity is more than Informational but still the threat is not 

great. High means it poses a great threat to the system. Finally, Critical means the 

highest level of threat and this type of malware must be dealt with immediately. 

 

 Level of Severity  Combined Probability  Color 

 Clean      <0.5000  

 Informational     0.5000-0.5500 

 Low      0.5500-0.6000   

 Medium    0.6000-0.6500   

 High     0.6500-0.7000   

 Critical     >0.70 

 



 

 
 

 

serial 

no. File md5 

static 

probability 

malicious 

cuckoo 

probability 

snort 

probability 

Sandbox 

evasion 

expected 

result 

combined 

probability 

Level 

 of  

Severity 

1 

8f7cffcaee650d8354e109a02c

446ab5 0.22 0.2 0.25 0 Clean 0.1675 
 

 

2 

bdfabedacd6f18b5efb14b7529

f3ed3e 0.00 0.2 0.25 0 Clean 0.1125 

 

3 

849a4f51bd705d66e89777461

a387bec 0.00 0 0.25 0 Clean 0.0625 

 

4 

e91b86766137a96b110579fd0

375140f 0.00 0.2 0.25 0 Clean 0.1125 

 

5 

7a85072003bac69bf5d7b4864

d18468b 0.00 0.2 0.26 0 Clean 0.115 

 

6 

3d07c3d2c72dba175cb37d690

bd668e5 0.28 0.2 0.25 0 Clean 0.1825 

 

7 

ddb88d0bb116d468b2b3efbb6

e3d6d06 0.00 0.1 0.27 0 Clean 0.0925 

 

8 

3290d6946b5e30e7041499057

4883ddb 0.00 0.2 0.26 0 Clean 0.115 

 

9 

212bd731ad0a24112b902219b

f5df492 1.00 0.2 0.25 0 Clean 0.3625 

 

10 

0e5bc786206a3762ce47a0a2d

bd01d7b 0.00 0.2 0.25 0 Clean 0.1125 

 

11 

ffb142b184585cb9535499751

6f050e4 0.54 0.4 0.72 1 Malicious 0.665 

 

12 

ff889fc4c0e946969a216da6c0

0bc9e7 1.00 0.5 0.71 0 Malicious 0.5525 

 

13 

ff976b8cecd95e189c710b1e70

a4cce2 0.96 0.2 0.79 1 Malicious 0.7375 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

14 ffdf8eb73c7e506d8e1006cf57

3bd76e 

1.00 0.6 0.72 0 Malicious 0.58      

 

 

15 

fff8783b7567821cec8838d075

d247e1 1.00 0.5 0.66 0 Malicious 0.54 

 

16 

fff71367aec8f4985fb1071aad9

bb677 1.00 0.5 0.77 0 Malicious 0.5675 

 

17 

ffaf901cce614413547e4ff5a3a

d105d 0.96 0.3 0.73 1 Malicious 0.7475 

 

18 

ffac33bb85018d70153a36bf39

ff1406 1.00 0.4 0.75 1 Malicious 0.7875 

 

19 

ffaf901cce614413547e4ff5a3a

d105d 0.96 0.3 0.7 1 Malicious 0.74 

 

20 

ffb142b184585cb9535499751

6f050e4 0.54 0.4 0.8 1 Malicious 0.685 

 

21 

4087f52a17eb28592a7dc0d84

40a980e 0.26 0 0.26 0 Clean 0.13 

 

22 

f7b53b4bd50c13d17f5c54f82c

de7836 0 0.2 0.25 0 Clean 0.1125 

 

23 

81418288d97ad8fddee1a9153

8a85a6b 0 0 0.25 0 Clean 0.0625 

 

24 

ba4e1a60bd20ca7978c76d79f

19e37f0 0.22 0.3 0.27 0 Clean 0.1975 

 

25 

fe2b659d941440294ab90559a

cf69f11 0.22 0.2 0.25 0 Clean 0.1675 

 

26 

3da66ef520d45081dcffdaecd3

de17c8 0 0 0.22 0 Clean 0.055 

 

27 

0f498e1e332f1c1fbf32b55880

5ed0d5 0.36 0.1 0.25 0 Clean 0.1775 

 

 

28 

 

ad61f7afe913b2642650504df2

 

0 

 

0.2 

 

0.26 

 

0 

 

Clean 

 

0.115 

 

 



 

 
 

 

83aa63 

29 

44daf0a410ab80e7cab7c12ede

5ffb34 0.28 0.2 0.25 0 Clean 0.1825 

 

30 

b2f75222e51d1e896951787ae

9de8bb6 0.23 0.1 0.14 0 Clean 0.1175 

 

31 

b82466f58fd7776c135890485f

d119a1 0.78 0.7 0.62 0 Malicious 0.525 

 

32 

73c5a538151abc30d7d4c164f

ca14131 0.69 0.4 0.34 1 Malicious 0.6075 
 

33 

e26ce823eb40720c2ec9c5334

d578369 0.96 0.7 0.77 0 Malicious 0.6075 
 

34 

03fff11a415b7026c1fc01e45d

771c93 0.87 0.5 0.79 0 Malicious 0.54 

 

35 

5effd66560365ded439d209f4d

493ece 1.00 0.6 0.72 0 Malicious 0.58 

 

36 

f428a574e9f26745fb70ee3128

daf876 0.92 0.4 0.66 0 Clean  0.495 

 

37 

03b9ab193fb9c0a4d57365cb0

80bc88b 0.96 0.5 0.77 0 Malicious 0.5575 

 

38 

a14df5a55c2f3b760c37953f36

d5f459 0.79 0.5 0.73 0 Clean 0.505 

 

39 

6d7cbfd1a6f527df4546da1f68

87a339 1.00 0.3 0.75 1 Malicious 0.7625 

 

40 

718e0121fb212ea4448e67648

def9fb9 1.00 0.6 0.7 1 Malicious 0.825 

 

41 

ca80332eaa27a9a97327b4e78

ade9574 0.77 0.62 0.70 1 Malicious 0.7725 

 

 

42 

 

a44f2d1a832aa9aba551d552c6

9f44da7b02ff7a126c3a6eb4b1

 

0.62 

 

0.78 

 

0.77 

 

0 

 

Malicious 

 

0.5425 

 

 



 

 
 

 

Table 5.1 : Final Results obtained by testing sample files 

5.3.2 Comparison with the existing Centralized systems 

In the existing frameworks commonly used today, centralised technologies are used. These 

technologies are allow and inefficient. We have used decentralised technologies like Apache 

Spark on Amazon AWS Cloud for implementation of the model. The graph below shows the 

result of training on Spark. It shows that as the number of nodes increase, execution time 

decreases. From 140 when running our program on a single node and reduces to 40 seconds 

when run on 3 or 4 nodes. 

 

 

 

Figure 5.26 Graph showing training on Apache Spark. 

 

22a32265c34b 

43 

c9cfdc43448980fcd17066bc00

b73baa 0.61 0.53 0.71 1 Malicious 0.7125 

 

Time in 

seconds. 

Number of nodes. 



 

 
 

 

The next graph shows that the distribution is successfully done on all four nodes and all of 

these are used by the program for distributed execution. Here we have taken 4 machines with 

IP Addresses: 

 

172.31.29.19 

172.31.23.172 

172.31.28.58 

172.31.25.122 

We have tested all four nodes for an aggregated load of one hour. The X-axis shows time and 

the Y-axis shows distribution of load. 

 

 

 

 

 

Figure 5.27 Distribution of load on 4 nodes aggregated for 1 hour. 

 

 

When we launch an instance of AWS, it is given a hostname. Our Amazon EC2 private DNS 

name looks like this: 



 

 
 

 

ip-173-31-23-172.us-west-2.compute.internal. 

ip-173-31-23-172 is IPV4 address which is the internal domain.  

 

Compute is the service and west is the region. This name is for a Linux instance. 

 

5.3.2.1 Working of the Distributed Framework 

 

1) We create a sample Amazon EMR cluster by using the AWS Management Console. 

2) After going to the AWS Management Console, we select Elastic MapReduce Service. 

Amazon EWS gives a managed Hadoop framework. Thus it becomes easy, fast and 

cost-effective to prove huge volumes of data across dynamic, scalable Amazon EC2 

instances. It also lets you run other distributed frameworks like Apache Spark. 

3) Then we select the number of nodes required to run our model. Here we select first 

one, then two, then three and then four nodes to find out the effectiveness of 

distribution. 

4) We also select the tools required for processing i.e. ‘Apache Spark’ and ‘Hadoop’. 

Spark for distributed data processing and Hadoop for in-node data processing.  

5) After that, an Apache Zeppelin Notebook is exposed to us. Here we write our program 

and execute it in a distributed manner using Hadoop and Apache Spark. Zeppelin is a 

web based notebook for interactive data exploration. It is used for data ingestion, 

discovery, analytics, visualization and collaboration. 

 

 

5.3.2.2 Blockchain for Records and Rewards 

 

Blockchain is a data structure that distributes trust among many nodes instead of one. It’s like 

a single link list that lives on everybody’s computer (miner) on the network. It is a huge chain 

of transactions. It’s more like a distributive ledger. It grows continuously as more and more 

transactions are added to the network [67]. A blockchain is an immutable list of transactions 

that have ever occurred in the network that all the nodes have to store a copy of. Each block 

contains address to the next block. It also has the complete record of the transaction including 

timestamp and transactional data. 

 



 

 
 

 

Rewards: are a way to recognize nodes and their users who give their CPU speed and 

execution power and their storage for the running of this system. The rewards are in the form 

of recognitions. They can take any form. Say a person contributes his resources to our 

framework. Now he becomes instrumental in discovering a new malware in the process. Then 

his contributions can be recognized by putting his name in CVE database along with the 

name of the malware to appreciate that he helped in discovering that malware.   

 

 The blockchain is verifiable. The transaction is represented as a 25 character hash. This hash 

is a string of letters and numbers. All the miners in the network will validate the transaction 

for it to be added to the blockchain. All these miners have to vote on the validity of each 

transaction. Before they can vote, they have to provide a proof that they have computed this 

random mathematical problem. This is the proof of their computational work. This is called 

‘Proof of work’ algorithm.    

 



 

 
 

 

 

 

Figure 5.28  A part Blockchain of five blocks generated by Implemented model. 

 

1.  Nonce - Nonce is a 32-bit (4-byte) field in Bitcoin network. It is used to decide 

how hard it would be to mine a new block for the transaction to proceed. 

 

2.  Hash- Hash is an alphanumeric value that is calculated for the data present in 

each block. This is the digital fingerprint of this data. It is because of the hashes 

why Blockchain can be trusted. If the data is modified in some way, its hash value 

changes and is rejected by other blocks in the chain.  

 



 

 
 

 

3. Md5sum- This is the message digest of the file being profiled. It is a calculated 

checksum. The  Hash field gives hash value for the entire block whereas Md5sum 

gives the hash value of the file present in the block. 

 

4. Previous Hash- Is used for maintaining the integrity of the chain. This contains 

hash of the previous block.  

 

5. Status- Tells whether the tested sample is malicious, clean or unknown. 

 

6. Timestamp- is the Unix timestamp format. It stores the time when the block 

was created. This is there in case we want to scan the available files again and 

change the status.  

 

5.3.2.3 Using Ethereum for maintaining Blockchains 

 Initially Bitcoins were used as a payment system which is digitized and has no 

central regulatory system.  It is a peer to peer currency. Ethereum is an 

infrastructure in addition to being a payment system. It provides Smart Contracts 

and even Crowdsourcing. It provides developers with expanded functionality 

because it is written in a Turing Complete language. A Turing complete language 

enables you to do anything with it provided you have enough time and computing 

power. 

 

The database in both Bitcoin and Ethereum is stored in every node. Now this 

increases the storage requirement of every node participating in the detection 

mechanism. Therefore we build the Ethereum blockchain on top of our Hadoop 

Cluster in an indexed manner. 

 

 

 

 

   



 

 
 

 

 

 

 

Figure 5.29 Comparison of Ehereum Blockchain database architecture without Indexing and 

with Indexing on top of Hadoop. 



 

 
 

 

5.4  Conclusions 

 

 Polymorphic shellcodes can be detected by the above mentioned framework. This is 

an organized manner through which most of the polymorphic shellcodes can be 

correctly identified and the risks can be mitigated.  Our model was accurately able 

to detect all the malwares. In line 38 of the final results table, the sample was 

expected to be clean but our model showed it to be malicious of a mild kind. We ran it 

on NoDistribute and no antivirus was able to declare it as malicious. This can be a 

case when the existing antivirus solutions were not able to detect the malware because 

of several reasons, maybe it was of a mutating kind or it evaded the sandbox. 

Whatever may be the case, our model was able to prove that it was indeed a malicious 

sample with maliciousness probability of 0.505.  

 Similarly on line number 31, the present models, predicted the probability of the 

sample to be clean. But our model declared it as malicious with maliciousness 

probability of 0.525. This can be the case that the sample was new therefore the 

existing solutions could not detect its maliciousness. Since our model takes a 360
0
 

approach to detection therefore our model was successful in detecting the malware. 

 In line 41, 42 and 43, we have details of advance malware that we had created on our 

own using Metasploit, AdmMutate, Clet and other techniques and inserted them in 

legitimate coode using Shellter. In NoDistribute, only 1 out of 36 popular antimalware 

solutions were able to detect them but our framework detected them accurately.  

  This Machine learning framework is used for the detection of all types of malwares. 

The model is iterative, thus self- improving.  It is made efficient and scalable using 

Amazon AWS cloud technologies. The load distribution is carried out by the 

framework of Apache Spark which uses Hadoop and HDFS architecture. Immutable 

dataset is stored in a secure manner through Blockchain. All nodes are rewarded for 

providing their computing power through tokens in the Blockchain. The complete 

model is in the execution stage and is running fine in a lab environment. It can be 

scaled easily to the real world implementation by increasing the number of nodes in 

the cloud. 

 

5.5 Limitations of the Study 



 

 
 

 

 

There are some limitations to this study.  

 Distributive environment- The framework has to work in a distributive environment 

so as to be resource efficient. In a centralized environment, the framework can 

become slow and ineffective and the identification of malicious shellcode may take 

lot of time. 

 High data requirement- More the data for the training of the model, more accurate 

will the model be. Thus one more limitation is the amount of dataset we use for 

training and testing purposes as there is a chance of false positives wherein a benign 

code may be identified as malicious and vice-versa because of paucity of enough data. 

Also deep learning will be more accurate if it has more iterations and that cn happen 

with a large dataset. 

 Dependence on ancillary technologies- the framework depends on Ethreum 

blockchain and cloud technologies. The Ethereum blockchain can be replaced with 

any other blockchain and Amazon cloud also can be replaced by other cloud 

platforms. But the overall efficiency of the framework is somewhat dependant on 

these ancillary technologies also. So when they imrove, our framework improves too.  

 

5.6 Further Research Potential 

 

There is a lot of scope for further research in this subject. There may be more efficient ways 

to detect the polymorphic shellcodes. Those ways may take less time and may have very less 

chance of false positives. We tried the Neural Network approach also because of cheap 

GPUs. This approach works very well in a distributive environment. However, the score that 

this algorithm gave was less than the other algorithms. Therefore, we had to leave this 

approach. In future, when this algorithm is developed further, we may get a better score and 

use this algorithm. The model will improve as dataset increases. More the data means better 

trained the machine. Therefore as we get more samples for training our machine, the accuracy 

of the machine will start increasing further. Also when more users get attached in the block 

chain, more and more people will be giving their data for analysis, thus enhancing the dataset. 

Also, since all the systems participating in the blockchain are voluntarily giving their CPU 

services also thus as more block increase, the efficiency of the blockchain and thus the entire 



 

 
 

 

system will also shows an increase. Cloud technology is used to carry out distributed 

services. As Cloud services become more efficient and cheap, the system improves further.  
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acquision for malicious files(3/3) 

 

.



 

 
 

202 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

Reviewer Certificate for International Conference 
 

 

 

 

  



 

 
 

203 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

 

 

APPENDIX 3 

 

Screenshots of NoDistribute malware detection of 

self created malwares 

 



 

 
 

204 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

 



 

 
 

205 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

206 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

 

 



 

 
 

207 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

208 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

 

 



 

 
 

209 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

210 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

211 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

212 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

213 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 



 

 
 

214 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

  



 

 
 

215 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

 
 

APPENDIX 3 : PROGRAMMING CODES USED FOR COMPLETE 

EXECUTION 

Static analysis code 

 

Training code  

 
import pandas as pd 
import numpy as np 
import pickle 
import sklearn.ensemble as ske 
from sklearn import cross_validation, tree, linear_model 
from sklearn.feature_selection import SelectFromModel 
from sklearn.externals import joblib 
from sklearn.naive_bayes import GaussianNB 
from sklearn.metrics import confusion_matrix 
 
data = pd.read_csv('data.csv', sep='|') 
X = data.drop(['Name', 'md5', 'legitimate'], axis=1).values 
y = data['legitimate'].values 
 
print('Researching important feature based on %i total features\n' % X.shape[1]) 
 
# Feature selection using Trees Classifier 
fsel = ske.ExtraTreesClassifier().fit(X, y) 
model = SelectFromModel(fsel, prefit=True) 
X_new = model.transform(X) 
nb_features = X_new.shape[1] 
 
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X_new, y ,test_size=0.2) 
 
features = [] 
 
print('%i features identified as important:' % nb_features) 
 
indices = np.argsort(fsel.feature_importances_)[::-1][:nb_features] 
for f in range(nb_features): 
    print("%d. feature %s (%f)" % (f + 1, data.columns[2+indices[f]], fsel.feature_importances_[indices[f]])) 
 
# XXX : take care of the feature order 
for f in sorted(np.argsort(fsel.feature_importances_)[::-1][:nb_features]): 
    features.append(data.columns[2+f]) 
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#Algorithm comparison 
algorithms = { 
        "DecisionTree": tree.DecisionTreeClassifier(max_depth=10), 
        "RandomForest": ske.RandomForestClassifier(n_estimators=50), 
        "GradientBoosting": ske.GradientBoostingClassifier(n_estimators=50), 
        "AdaBoost": ske.AdaBoostClassifier(n_estimators=100), 
        "GNB": GaussianNB() 
    } 
 
results = {} 
print("\nNow testing algorithms") 
for algo in algorithms: 
    clf = algorithms[algo] 
    clf.fit(X_train, y_train) 
    score = clf.score(X_test, y_test) 
    print("%s : %f %%" % (algo, score*100)) 
    results[algo] = score 
 
winner = max(results, key=results.get) 
print('\nWinner algorithm is %s with a %f %% success' % (winner, results[winner]*100)) 
 
# Save the algorithm and the feature list for later predictions 
print('Saving algorithm and feature list in classifier directory...') 
joblib.dump(algorithms[winner], 'classifier/classifier.pkl') 
open('classifier/features.pkl', 'wb').write(pickle.dumps(features)) 
print('Saved') 
 
# Identify false and true positive rates 
clf = algorithms[winner] 
res = clf.predict(X_test) 
mt = confusion_matrix(y_test, res) 
print("confusion matrix %s" % mt) 
print("False positive rate : %f %%" % ((mt[0][1] / float(sum(mt[0])))*100)) 
print('False negative rate : %f %%' % ( (mt[1][0] / float(sum(mt[1]))*100))) 
 

 

Static analysis prediction code  

 
#! /usr/bin/python2 
import pefile 
import os 
import array 
import math 
import pickle 
from sklearn.externals import joblib 
import sys 
import argparse 
 
def get_entropy(data): 
    if len(data) == 0: 
 return 0.0 



 

 
 

217 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

    occurences = array.array('L', [0]*256) 
    for x in data: 
   occurences[x if isinstance(x, int) else ord(x)] += 1 
 
    entropy = 0 
    for x in occurences: 
 if x: 
     p_x = float(x) / len(data) 
     entropy -= p_x*math.log(p_x, 2) 
 
    return entropy 
 
def get_resources(pe): 
    """Extract resources : 
    [entropy, size]""" 
    resources = [] 
    if hasattr(pe, 'DIRECTORY_ENTRY_RESOURCE'): 
 try: 
            for resource_type in pe.DIRECTORY_ENTRY_RESOURCE.entries: 
                if hasattr(resource_type, 'directory'): 
                    for resource_id in resource_type.directory.entries: 
                        if hasattr(resource_id, 'directory'): 
                            for resource_lang in resource_id.directory.entries: 
                                data = pe.get_data(resource_lang.data.struct.OffsetToData, 
resource_lang.data.struct.Size) 
                                size = resource_lang.data.struct.Size 
                                entropy = get_entropy(data) 
 
                                resources.append([entropy, size]) 
        except Exception as e: 
            return resources 
    return resources 
 
def get_version_info(pe): 
    """Return version infos""" 
    res = {} 
    for fileinfo in pe.FileInfo: 
        if fileinfo.Key == 'StringFileInfo': 
            for st in fileinfo.StringTable: 
                for entry in st.entries.items(): 
                    res[entry[0]] = entry[1] 
        if fileinfo.Key == 'VarFileInfo': 
            for var in fileinfo.Var: 
                res[var.entry.items()[0][0]] = var.entry.items()[0][1] 
    if hasattr(pe, 'VS_FIXEDFILEINFO'): 
          res['flags'] = pe.VS_FIXEDFILEINFO.FileFlags 
          res['os'] = pe.VS_FIXEDFILEINFO.FileOS 
          res['type'] = pe.VS_FIXEDFILEINFO.FileType 
          res['file_version'] = pe.VS_FIXEDFILEINFO.FileVersionLS 
          res['product_version'] = pe.VS_FIXEDFILEINFO.ProductVersionLS 
          res['signature'] = pe.VS_FIXEDFILEINFO.Signature 
          res['struct_version'] = pe.VS_FIXEDFILEINFO.StrucVersion 
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    return res 
 
def extract_infos(fpath): 
    res = {} 
    pe = pefile.PE(fpath) 
    res['Machine'] = pe.FILE_HEADER.Machine 
    res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader 
    res['Characteristics'] = pe.FILE_HEADER.Characteristics 
    res['MajorLinkerVersion'] = pe.OPTIONAL_HEADER.MajorLinkerVersion 
    res['MinorLinkerVersion'] = pe.OPTIONAL_HEADER.MinorLinkerVersion 
    res['SizeOfCode'] = pe.OPTIONAL_HEADER.SizeOfCode 
    res['SizeOfInitializedData'] = pe.OPTIONAL_HEADER.SizeOfInitializedData 
    res['SizeOfUninitializedData'] = pe.OPTIONAL_HEADER.SizeOfUninitializedData 
    res['AddressOfEntryPoint'] = pe.OPTIONAL_HEADER.AddressOfEntryPoint 
    res['BaseOfCode'] = pe.OPTIONAL_HEADER.BaseOfCode 
    try: 
        res['BaseOfData'] = pe.OPTIONAL_HEADER.BaseOfData 
    except AttributeError: 
        res['BaseOfData'] = 0 
    res['ImageBase'] = pe.OPTIONAL_HEADER.ImageBase 
    res['SectionAlignment'] = pe.OPTIONAL_HEADER.SectionAlignment 
    res['FileAlignment'] = pe.OPTIONAL_HEADER.FileAlignment 
    res['MajorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MajorOperatingSystemVersion 
    res['MinorOperatingSystemVersion'] = pe.OPTIONAL_HEADER.MinorOperatingSystemVersion 
    res['MajorImageVersion'] = pe.OPTIONAL_HEADER.MajorImageVersion 
    res['MinorImageVersion'] = pe.OPTIONAL_HEADER.MinorImageVersion 
    res['MajorSubsystemVersion'] = pe.OPTIONAL_HEADER.MajorSubsystemVersion 
    res['MinorSubsystemVersion'] = pe.OPTIONAL_HEADER.MinorSubsystemVersion 
    res['SizeOfImage'] = pe.OPTIONAL_HEADER.SizeOfImage 
    res['SizeOfHeaders'] = pe.OPTIONAL_HEADER.SizeOfHeaders 
    res['CheckSum'] = pe.OPTIONAL_HEADER.CheckSum 
    res['Subsystem'] = pe.OPTIONAL_HEADER.Subsystem 
    res['DllCharacteristics'] = pe.OPTIONAL_HEADER.DllCharacteristics 
    res['SizeOfStackReserve'] = pe.OPTIONAL_HEADER.SizeOfStackReserve 
    res['SizeOfStackCommit'] = pe.OPTIONAL_HEADER.SizeOfStackCommit 
    res['SizeOfHeapReserve'] = pe.OPTIONAL_HEADER.SizeOfHeapReserve 
    res['SizeOfHeapCommit'] = pe.OPTIONAL_HEADER.SizeOfHeapCommit 
    res['LoaderFlags'] = pe.OPTIONAL_HEADER.LoaderFlags 
    res['NumberOfRvaAndSizes'] = pe.OPTIONAL_HEADER.NumberOfRvaAndSizes 
 
    # Sections 
    res['SectionsNb'] = len(pe.sections) 
    entropy = map(lambda x:x.get_entropy(), pe.sections) 
    res['SectionsMeanEntropy'] = sum(entropy)/float(len(entropy)) 
    res['SectionsMinEntropy'] = min(entropy) 
    res['SectionsMaxEntropy'] = max(entropy) 
    raw_sizes = map(lambda x:x.SizeOfRawData, pe.sections) 
    res['SectionsMeanRawsize'] = sum(raw_sizes)/float(len(raw_sizes)) 
    res['SectionsMinRawsize'] = min(raw_sizes) 
    res['SectionsMaxRawsize'] = max(raw_sizes) 
    virtual_sizes = map(lambda x:x.Misc_VirtualSize, pe.sections) 
    res['SectionsMeanVirtualsize'] = sum(virtual_sizes)/float(len(virtual_sizes)) 
    res['SectionsMinVirtualsize'] = min(virtual_sizes) 
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    res['SectionMaxVirtualsize'] = max(virtual_sizes) 
 
    #Imports 
    try: 
        res['ImportsNbDLL'] = len(pe.DIRECTORY_ENTRY_IMPORT) 
        imports = sum([x.imports for x in pe.DIRECTORY_ENTRY_IMPORT], []) 
        res['ImportsNb'] = len(imports) 
        res['ImportsNbOrdinal'] = len(filter(lambda x:x.name is None, imports)) 
    except AttributeError: 
        res['ImportsNbDLL'] = 0 
        res['ImportsNb'] = 0 
        res['ImportsNbOrdinal'] = 0 
 
    #Exports 
    try: 
        res['ExportNb'] = len(pe.DIRECTORY_ENTRY_EXPORT.symbols) 
    except AttributeError: 
        # No export 
        res['ExportNb'] = 0 
    #Resources 
    resources= get_resources(pe) 
    res['ResourcesNb'] = len(resources) 
    if len(resources)> 0: 
        entropy = map(lambda x:x[0], resources) 
        res['ResourcesMeanEntropy'] = sum(entropy)/float(len(entropy)) 
        res['ResourcesMinEntropy'] = min(entropy) 
        res['ResourcesMaxEntropy'] = max(entropy) 
        sizes = map(lambda x:x[1], resources) 
        res['ResourcesMeanSize'] = sum(sizes)/float(len(sizes)) 
        res['ResourcesMinSize'] = min(sizes) 
        res['ResourcesMaxSize'] = max(sizes) 
    else: 
        res['ResourcesNb'] = 0 
        res['ResourcesMeanEntropy'] = 0 
        res['ResourcesMinEntropy'] = 0 
        res['ResourcesMaxEntropy'] = 0 
        res['ResourcesMeanSize'] = 0 
        res['ResourcesMinSize'] = 0 
        res['ResourcesMaxSize'] = 0 
 
    # Load configuration size 
    try: 
        res['LoadConfigurationSize'] = pe.DIRECTORY_ENTRY_LOAD_CONFIG.struct.Size 
    except AttributeError: 
        res['LoadConfigurationSize'] = 0 
 

    # Version configuration size 
    try: 
        version_infos = get_version_info(pe) 
        res['VersionInformationSize'] = len(version_infos.keys()) 
    except AttributeError: 
        res['VersionInformationSize'] = 0 



 

 
 

220 Tilak Maharashtra Vidyapeeth, Dept. of Computer Science, Pune. 

 

    return res 
 
if __name__ == '__main__': 
    parser = argparse.ArgumentParser(description='Detect malicious files') 
    parser.add_argument('FILE', help='File to be tested') 
    args = parser.parse_args() 
    # Load classifier 
    clf = joblib.load(os.path.join( 
        os.path.dirname(os.path.realpath(__file__)), 
        'classifier/classifier.pkl' 
    )) 
    features = pickle.loads(open(os.path.join( 
        os.path.dirname(os.path.realpath(__file__)), 
        'classifier/features.pkl'), 
        'r').read() 
    ) 
 
    data = extract_infos(args.FILE) 
 
    pe_features = map(lambda x:data[x], features) 
         
 
    
 
    res= clf.predict_proba([pe_features])[0] 
     
    print( res) 
 

 

Behaviour analysis code 

 
from sklearn.feature_extraction.text import TfidfVectorizer 
vectorizer =TfidfVectorizer(min_df=5, 
                                 max_df = 0.8, 
                                 sublinear_tf=True, 
                                 use_idf=True,decode_error='ignore') 
 
files = [open("reports_mix/report ({}).mist".format(x),'r') for x in range(1,200)] 
corpus = [] 
for x in range (0,197): 
    { 
        corpus.append(files[x].read()) 
    } 
 
x = vectorizer.fit_transform(corpus)  
 
y=[] 
for i in range(1,100): 
    y.append(0); 
for i in range(101,199): 
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    y.append(1); 
 
from sklearn.cross_validation import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.6, random_state=42) 
from sklearn.neighbors import KNeighborsClassifier 
import logging 
import numpy as np 
from optparse import OptionParser 
import sys 
from time import time 
import matplotlib.pyplot as plt 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.feature_extraction.text import HashingVectorizer 
from sklearn.feature_selection import SelectFromModel 
from sklearn.feature_selection import SelectKBest, chi2 
from sklearn.linear_model import RidgeClassifier 
from sklearn.pipeline import Pipeline 
from sklearn.svm import LinearSVC 
from sklearn.linear_model import SGDClassifier 
from sklearn.linear_model import Perceptron 
from sklearn.linear_model import PassiveAggressiveClassifier 
from sklearn.naive_bayes import BernoulliNB, MultinomialNB 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.neighbors import NearestCentroid 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.utils.extmath import density 
from sklearn import metrics 
 
def benchmark(clf): 
    print('_' * 80) 
    print("Training: ") 
    print(clf) 
    t0 = time() 
    clf.fit(X_train, y_train) 
    train_time = time() - t0 
    print("train time: %0.3fs" % train_time) 
 
    t0 = time() 
    pred = clf.predict(X_test) 
    test_time = time() - t0 
    print("test time:  %0.3fs" % test_time) 
 
    score = metrics.accuracy_score(y_test, pred) 
    print("accuracy:   %0.3f" % score) 
 
    if hasattr(clf, 'coef_'): 
        print("dimensionality: %d" % clf.coef_.shape[1]) 
        print("density: %f" % density(clf.coef_)) 
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        print("classification report:") 
        print(metrics.classification_report(y_test, pred 
                                            )) 
 
     
        print("confusion matrix:") 
        print(metrics.confusion_matrix(y_test, pred)) 
 
    print() 
    clf_descr = str(clf).split('(')[0] 
    return clf_descr, score, train_time, test_time 
 

results = [] 
for clf, name in ( 
        (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), 
        (Perceptron(n_iter=50), "Perceptron"), 
        (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), 
        (KNeighborsClassifier(n_neighbors=10), "kNN"), 
        (RandomForestClassifier(n_estimators=100), "Random forest")): 
    print('=' * 80) 
    print(name) 
    results.append(benchmark(clf)) 
 
for penalty in ["l2", "l1"]: 
    print('=' * 80) 
    print("%s penalty" % penalty.upper()) 
    # Train Liblinear model 
    results.append(benchmark(LinearSVC(penalty=penalty, dual=False, 
                                       tol=1e-3))) 
 
    # Train SGD model 
    results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, 
                                           penalty=penalty))) 
 
# Train SGD with Elastic Net penalty 
print('=' * 80) 
print("Elastic-Net penalty") 
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, 
                                       penalty="elasticnet"))) 
 
# Train NearestCentroid without threshold 
print('=' * 80) 
print("NearestCentroid (aka Rocchio classifier)") 
results.append(benchmark(NearestCentroid())) 
 
# Train sparse Naive Bayes classifiers 
print('=' * 80) 
print("Naive Bayes") 
results.append(benchmark(MultinomialNB(alpha=.01))) 
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results.append(benchmark(BernoulliNB(alpha=.01))) 
 
print('=' * 80) 
print("LinearSVC with L1-based feature selection") 
# The smaller C, the stronger the regularization. 
# The more regularization, the more sparsity. 
results.append(benchmark(Pipeline([ 
  ('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False, 
                                                  tol=1e-3))), 
  ('classification', LinearSVC(penalty="l2"))]))) 
 
# make some plots 
 
indices = np.arange(len(results)) 
 
results = [[x[i] for x in results] for i in range(4)] 
 
clf_names, score, training_time, test_time = results 
training_time = np.array(training_time) / np.max(training_time) 
test_time = np.array(test_time) / np.max(test_time) 
 
plt.figure(figsize=(12, 8)) 
plt.title("Score") 
plt.barh(indices, score, .2, label="score", color='navy') 
plt.barh(indices + .3, training_time, .2, label="training time", 
         color='c') 
plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange') 
plt.yticks(()) 
plt.legend(loc='best') 
plt.subplots_adjust(left=.25) 
plt.subplots_adjust(top=.95) 
plt.subplots_adjust(bottom=.05) 
 
for i, c in zip(indices, clf_names): 
    plt.text(-.3, i, c) 
 
plt.show() 
 

 

Snort analysis code 

 
from sklearn.feature_extraction.text import CountVectorizer  
from sklearn.feature_extraction.text import TfidfVectorizer 
vectorizer =TfidfVectorizer(min_df=5, 
                                 max_df = 0.8, 
                                 sublinear_tf=True, 
                                 use_idf=True,decode_error='ignore') 
 
files = [open("/home/varnit/projects/shellcode/snort_mix_reports/{}.txt".format(x),'r') for x in range(1,200)] 
corpus = [] 
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for x in range (0,197): 
    { 
        corpus.append(files[x].read()) 
    } 
 
     
 
     
x = vectorizer.fit_transform(corpus)  
y=[] 
for i in range(1,100): 
    y.append(0);   
 
for i in range(101,199): 
    y.append(1); 
 
from sklearn.cross_validation import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.6, random_state=42) 
 
import logging 
import numpy as np 
from optparse import OptionParser 
import sys 
from time import time 
import matplotlib.pyplot as plt 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.feature_extraction.text import HashingVectorizer 
from sklearn.feature_selection import SelectFromModel 
from sklearn.feature_selection import SelectKBest, chi2 
from sklearn.linear_model import RidgeClassifier 
from sklearn.pipeline import Pipeline 
from sklearn.svm import LinearSVC 
from sklearn.linear_model import SGDClassifier 
from sklearn.linear_model import Perceptron 
from sklearn.linear_model import PassiveAggressiveClassifier 
from sklearn.naive_bayes import BernoulliNB, MultinomialNB 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.neighbors import NearestCentroid 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.utils.extmath import density 
from sklearn import metrics 
 
def benchmark(clf): 
    print('_' * 80) 
    print("Training: ") 
    print(clf) 
    t0 = time() 
    clf.fit(X_train, y_train) 
    train_time = time() - t0 
    print("train time: %0.3fs" % train_time) 
 
    t0 = time() 
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    pred = clf.predict(X_test) 
    test_time = time() - t0 
    print("test time:  %0.3fs" % test_time) 
 
    score = metrics.accuracy_score(y_test, pred) 
    print("accuracy:   %0.3f" % score) 
 
    if hasattr(clf, 'coef_'): 
        print("dimensionality: %d" % clf.coef_.shape[1]) 
        print("density: %f" % density(clf.coef_)) 
 
         
        
     
 
     
        print("classification report:") 
        print(metrics.classification_report(y_test, pred 
                                            )) 
 
     
        print("confusion matrix:") 
        print(metrics.confusion_matrix(y_test, pred)) 
 
    print() 
    clf_descr = str(clf).split('(')[0] 
    return clf_descr, score, train_time, test_time 
 

results = [] 
for clf, name in ( 
        (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), 
        (Perceptron(n_iter=50), "Perceptron"), 
        (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), 
        (KNeighborsClassifier(n_neighbors=10), "kNN"), 
        (RandomForestClassifier(n_estimators=100), "Random forest")): 
    print('=' * 80) 
    print(name) 
    results.append(benchmark(clf)) 
 
#for penalty in ["l2", "l1"]: 
#    print('=' * 80) 
#    print("%s penalty" % penalty.upper()) 
    # Train Liblinear model 
#    results.append(benchmark(LinearSVC(penalty=penalty, dual=False, 
#                                       tol=1e-3))) 
 
    # Train SGD model 
#    results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, 
#                                           penalty=penalty))) 
 
# Train SGD with Elastic Net penalty 
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#print('=' * 80) 
#print("Elastic-Net penalty") 
#results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, 
#                                       penalty="elasticnet"))) 
 
# Train NearestCentroid without threshold 
print('=' * 80) 
print("NearestCentroid (aka Rocchio classifier)") 
results.append(benchmark(NearestCentroid())) 
 
# Train sparse Naive Bayes classifiers 
print('=' * 80) 
print("Naive Bayes") 
results.append(benchmark(MultinomialNB(alpha=.01))) 
results.append(benchmark(BernoulliNB(alpha=.01))) 
 
print('=' * 80) 
#print("LinearSVC with L1-based feature selection") 
# The smaller C, the stronger the regularization. 
# The more regularization, the more sparsity. 
#results.append(benchmark(Pipeline([ 
#  ('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False, 
#                                                  tol=1e-3))), 
#  ('classification', LinearSVC(penalty="l2"))]))) 
 
# make some plots 
 
indices = np.arange(len(results)) 
 
results = [[x[i] for x in results] for i in range(4)] 
 
clf_names, score, training_time, test_time = results 
training_time = np.array(training_time) / np.max(training_time) 
test_time = np.array(test_time) / np.max(test_time) 
 
plt.figure(figsize=(12, 8)) 
plt.title("Score") 
plt.barh(indices, score, .2, label="score", color='navy') 
plt.barh(indices + .3, training_time, .2, label="training time", 
         color='c') 
plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange') 
plt.yticks(()) 
plt.legend(loc='best') 
plt.subplots_adjust(left=.25) 
plt.subplots_adjust(top=.95) 
plt.subplots_adjust(bottom=.05) 
 
for i, c in zip(indices, clf_names): 
    plt.text(-.3, i, c) 
 
plt.show() 
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